Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Perceptual Measurements
2.4. Solution Formulation
2.5. Statistical Analysis
3. Results
3.1. Perceptual Measures
3.2. Physiological Measures
3.3. Solution Preference
4. Discussion
Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Hristov, A. Yield, Content, and Composition of Peppermint and Spearmints as a Function of Harvesting Time and Drying. J. Agric. Food Chem. 2010, 58, 11400–11407. [Google Scholar] [CrossRef]
- Eccles, R. Menthol and Related Cooling Compounds. J. Pharm. Pharmacol. 1994, 46, 618–630. [Google Scholar] [CrossRef]
- Watson, H.R.; Hems, R.; Rowsell, D.G.; Spring, D.J. New compounds with the menthol cooling effect. J. Soc. Cosmet. Chem. 1978, 29, 185–200. [Google Scholar]
- Cometto-Muñiz, J.; Cain, W.S. Thresholds for odor and nasal pungency. Physiol. Behav. 1990, 48, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.T. TRPM8 and dyspnea: From the frigid and fascinating past to the cool future? Curr. Opin. Pharmacol. 2011, 11, 218–223. [Google Scholar] [CrossRef]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2016, 47, 1035–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, R. Improving Performance: A question of taste? Aspetar Sports Med. J. 2021, 10, 46–51. [Google Scholar]
- Stevens, C.J.; Mauger, A.R.; Hassmén, P.; Taylor, L. Endurance Performance is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations. Sports Med. 2017, 48, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Griggs, K.E.; Stephenson, B.T.; Price, M.J.; Goosey-Tolfrey, V.L. Heat-related issues and practical applications for Paralympic athletes at Tokyo 2020. Temperature 2019, 7, 37–57. [Google Scholar] [CrossRef]
- Eccles, R. Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite 2000, 34, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R.; Du-Plessis, L.; Dommels, Y.; Wilkinson, J. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream. Appetite 2013, 71, 357–360. [Google Scholar] [CrossRef]
- Flood, T.; Waldron, M.; Jeffries, O. Oral l-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 117, 1501–1512. [Google Scholar] [CrossRef]
- Jeffries, O.; Goldsmith, M.; Waldron, M. L-Menthol mouth rinse or ice slurry ingestion during the latter stages of exercise in the heat provide a novel stimulus to enhance performance despite elevation in mean body temperature. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 118, 2435–2442. [Google Scholar] [CrossRef]
- Parton, A.J.; Waldron, M.; Clifford, T.; Jeffries, O. Thermo-behavioural responses to orally applied l-menthol exhibit sex-specific differences during exercise in a hot environment. Physiol. Behav. 2020, 229, 113250. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Thoseby, B.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but notice slurry ingestion. Scand. J. Med. Sci. Sports 2015, 26, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.; Bennett, K.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. A Comparison of Mixed-Method Cooling Interventions on Preloaded Running Performance in the Heat. J. Strength Cond. Res. 2017, 31, 620–629. [Google Scholar] [CrossRef]
- Gavel, E.H.; Logan-Sprenger, H.M.; Good, J.; Jacobs, I.; Thomas, S.G. Menthol Mouth Rinsing and Cycling Performance in Females Under Heat Stress. Int. J. Sports Physiol. Perform. 2021, 16, 1014–1020. [Google Scholar] [CrossRef]
- Gibson, O.R.; Wrightson, J.G.; Hayes, M. Intermittent sprint performance in the heat is not altered by augmenting thermal perception via L-menthol or capsaicin mouth rinses. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 119, 653–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, R.; Temm, D.; Hucker, H.; McDonald, K. Repeated Menthol Mouth Swilling Affects Neither Strength nor Power Performance. Sports 2020, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Barwood, M.J.; Gibson, O.R.; Gillis, D.J.; Jeffries, O.; Morris, N.; Pearce, J.; Ross, M.L.; Stevens, C.; Rinaldi, K.; Kounalakis, S.N.; et al. Menthol as an Ergogenic Aid for the Tokyo 2021 Olympic Games: An Expert-Led Consensus Statement Using the Modified Delphi Method. Sports Med. 2020, 50, 1709–1727. [Google Scholar] [CrossRef]
- Best, R.; McDonald, K.; Hurst, P.; Pickering, C. Can taste be ergogenic? Eur. J. Nutr. 2020, 60, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Best, R. Menthol Mouth Swilling and Endurance Running Performance in the Heat. Ph.D. Thesis, Teesside University, Middlesbrough, UK, 2019. [Google Scholar]
- Shi, L.; Hopfer, H.; Ziegler, G.; Kong, L. Starch-menthol inclusion complex: Structure and release kinetics. Food Hydrocoll. 2019, 97, 105183. [Google Scholar] [CrossRef]
- Soottitantawat, A.; Takayama, K.; Okamura, K.; Muranaka, D.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, P. Microencapsulation of l-menthol by spray drying and its release characteristics. Innov. Food Sci. Emerg. Technol. 2005, 6, 163–170. [Google Scholar] [CrossRef]
- Yildiz, Z.I.; Celebioglu, A.; Kilic, M.E.; Durgun, E.; Uyar, T. Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. J. Food Eng. 2018, 224, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Mündel, T.; Jones, D.A. The effects of swilling an l(−)-menthol solution during exercise in the heat. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 109, 59–65. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program; Institute of Environmental Health Sciences; National Institutes of Health (NTP). National Toxicology Program Chemical Repository Database. Research Triangle Park, North Carolina. 1992. Available online: https://ntp.niehs.nih.gov/ (accessed on 1 June 2021).
- Best, R.; Spears, I.R.; Hurst, P.; Berger, N.J.A. The Development of a Menthol Solution for Use during Sport and Exercise. Beverages 2018, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Best, R.; Payton, S.; Spears, I.; Riera, F.; Berger, N. Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat. Sports 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G.; Kuklane, K.; Fan, J.; Hodder, S.; Ouzzahra, Y.; Lundgren, K.; Au, Y.; Loveday, D. A database of static clothing thermal insulation and vapor permeability values of non-Western ensembles for use in ASHRAE Standard 55, ISO 7730, and ISO 9920. ASHRAE Trans. 2015, 121, 19. [Google Scholar]
- Best, R.; Maulder, P.; Berger, N. Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial. Beverages 2021, 7, 9. [Google Scholar] [CrossRef]
- Zhang, H.; Huizenga, C.; Arens, A.E.; Wang, D. Thermal sensation and comfort in transient non-uniform thermal environments. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 92, 728–733. [Google Scholar] [CrossRef]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescott, J.; Ripandelli, N.; Wakeling, I. Binary Taste Mixture Interactions in PROP Non-tasters, Medium-tasters and Super-tasters. Chem. Senses 2001, 26, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Yeomans, M.R.; Tepper, B.J.; Rietzschel, J.; Prescott, J. Human hedonic responses to sweetness: Role of taste genetics and anatomy. Physiol. Behav. 2007, 91, 264–273. [Google Scholar] [CrossRef]
- Key, F.M.; Abdul-Aziz, M.A.; Mundry, R.; Peter, B.M.; Sekar, A.; D’Amato, M.; Dennis, M.Y.; Schmidt, J.M.; Andrés, A.M. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 2018, 14, e1007298. [Google Scholar] [CrossRef] [Green Version]
- Dussor, G.; Cao, Y.-Q. TRPM8 and Migraine. Headache J. Head Face Pain 2016, 56, 1406–1417. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.-H.; Chen, S.-P.; Fann, C.S.-J.; Wang, S.-J.; Wang, Y.-F. TRPM8 genetic variant is associated with chronic migraine and allodynia. J. Headache Pain 2019, 20, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeda, M.; Ohka, S.; Nishizawa, D.; Hasegawa, J.; Nakayama, K.; Ebata, Y.; Ichinohe, T.; Fukuda, K.-I.; Ikeda, K. Cold pain sensitivity is associated with single-nucleotide polymorphisms of PAR2/F2RL1 and TRPM8. Mol. Pain 2021, 17. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Batterham, A.M. True and false interindividual differences in the physiological response to an intervention. Exp. Physiol. 2015, 100, 577–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Metric | Female (n = 6) | Male (n = 6) 1 | Combined (n = 12) |
---|---|---|---|
Height (cm) | 166.8 ± 1.7 | 181.2 ± 6.1 | 174.0 ± 8.5 |
Mass (kg) | 63.6 ± 5.3 | 83.2 ± 11.5 | 73.4 ± 13.3 |
Age (y) | 24.0 ± 6.9 | 33.3 ± 7.1 | 28.7 ± 8.4 |
Parameter | Comparison (A–B) Timepoint | Raw Difference | p Value | Cohen’s d | 90% C.I. | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Thermal Comfort (AU) | 1 | −0.625 | 0.119 | −0.488 | −0.982 | 0.026 |
2 | −0.292 | 0.492 | −0.205 | −0.681 | 0.279 | |
3 | −0.708 | 0.027 | −0.735 | −1.259 | −0.182 | |
4 | −0.542 | 0.121 | −0.485 | −0.978 | 0.029 | |
5 | −0.083 | 0.782 | −0.082 | −0.556 | 0.396 | |
6 | 0.625 | 0.040 | 0.670 | 0.128 | 1.186 | |
7 | −0.333 | 0.666 | −0.128 | −0.602 | 0.352 | |
8 | −0.250 | 0.551 | −0.178 | −0.653 | 0.305 | |
9 | −0.083 | 0.876 | −0.04 | −0.520 | 0.430 | |
Thermal Sensation (AU) | 1 | 0.167 | 0.438 | 0.232 | −0.255 | 0.709 |
2 | 0.083 | 0.674 | 0.125 | −0.355 | 0.599 | |
3 | −0.167 | 0.504 | −0.200 | −0.675 | 0.285 | |
4 | −0.500 | 0.082 | −0.553 | −1.053 | −0.029 | |
5 | 0.000 | 1.000 | 0.000 | −0.475 | 0.475 | |
6 | −0.167 | 0.504 | −0.200 | −0.675 | 0.285 | |
7 | 0.000 | 1.000 | 0.000 | −0.475 | 0.475 | |
8 | 0.417 | 0.241 | 0.358 | −0.141 | 0.841 | |
9 | 0.375 | 0.473 | 0.215 | −0.271 | 0.691 | |
Heart Rate (bpm) | 1 | −2.000 | 0.487 | −0.207 | −0.683 | 0.277 |
2 | −0.583 | 0.790 | −0.079 | −0.553 | 0.398 | |
3 | −0.500 | 0.865 | −0.050 | −0.524 | 0.426 | |
4 | 4.000 | 0.193 | 0.400 | −0.103 | 0.886 | |
5 | 0.833 | 0.754 | 0.093 | −0.385 | 0.567 | |
6 | 3.167 | 0.179 | 0.415 | −0.090 | 0.902 | |
7 | −3.833 | 0.141 | −0.458 | −0.949 | 0.053 | |
8 | −1.083 | 0.616 | −0.149 | −0.623 | 0.332 | |
9 | 1.000 | 0.558 | 0.174 | −0.308 | 0.649 | |
Tympanic temperature (°C) | 1 | −0.200 | 0.235 | −0.362 | −0.846 | 0.137 |
2 | −0.162 | 0.367 | −0.271 | −0.749 | 0.219 | |
3 | −0.183 | 0.121 | −0.485 | −0.979 | 0.029 | |
4 | −0.088 | 0.012 | −0.873 | −1.419 | −0.293 | |
5 | −0.054 | 0.178 | −0.415 | −0.902 | 0.090 | |
6 | 0.125 | 0.003 | 1.118 | 0.486 | 1.712 | |
7 | 0.054 | 0.262 | 0.341 | −0.156 | 0.823 | |
8 | 0.046 | 0.596 | 0.157 | −0.324 | 0.632 | |
9 | 0.088 | 0.154 | 0.442 | −0.066 | 0.932 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Best, R.; Naicker, R.; Maulder, P.; Berger, N. Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants. Beverages 2021, 7, 62. https://doi.org/10.3390/beverages7030062
Best R, Naicker R, Maulder P, Berger N. Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants. Beverages. 2021; 7(3):62. https://doi.org/10.3390/beverages7030062
Chicago/Turabian StyleBest, Russ, Rachana Naicker, Peter Maulder, and Nicolas Berger. 2021. "Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants" Beverages 7, no. 3: 62. https://doi.org/10.3390/beverages7030062
APA StyleBest, R., Naicker, R., Maulder, P., & Berger, N. (2021). Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants. Beverages, 7(3), 62. https://doi.org/10.3390/beverages7030062