New Ciders Made by an Exhaustion Method: An Option to Val-Orise Subproducts from the Making of Ice Ciders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Making of the Experimental Ciders
2.1.1. Enrichment of the Apple Juices
2.1.2. Fermentation of the Enriched Apple Juices
2.2. Analytical Procedures
2.2.1. Microbiological Analysis
2.2.2. Oenological Parameters
2.2.3. Volatile Compounds
- Major volatiles (ethyl acetate, methanol, 1-propanol, iso-butanol, 1-butanol, amyl alcohols, 2-phenylethanol) were analysed by GC-FID in the split mode (1/5) previous distillation of the sample by direct heating, and were eluted with helium (1 mL/min) according to the conditions reported elsewhere [28].
- Minor volatiles (alcohols, esters, fatty acids and volatile phenols) were determined by Stir Bar Sorptive Extraction and Gas Chromatography with Mass Spectroscopy (SBSE-GC-MS) using a 7890 GC coupled to a 5975 MSD (Agilent, Palo Alto, CA, USA) as described previously [14]. Briefly, the volatiles were adsorbed onto a polydimethylsiloxane coated bar (20 mm length, 0.50 mm thickness phase, Twister, Gerstel GmbH & Co, Mülheim und der Ruhr, Germany) suspended in the headspace of a 60 mL-vial and stirred at 700 rpm for 18 h, at 20 °C. The volatile profiles were quantified in SIM mode and the results expressed as µg of internal standard (2-ethyl-1-hexanol, 1.17 mg/L) per liter.
2.3. Sensory Analysis
2.4. Statistical Analyses
3. Results
3.1. Enrichment of the Apple Musts
3.2. Microbiological and Chemical Characteristics of the Enriched Juices
3.3. Fermentation Behaviour of Pure Cultures
3.4. Volatile Compounds of Ciders
3.5. Sensory Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- European Cider Trends 2020. Available online: www.aicv.org/Industrydata/Publications (accessed on 30 June 2021).
- Uthurry, C.A.; Susca, M.J.; Fontanini, J.M.; Gresia, J.A.; Bezic, C.A.; Caponi, A.M.; Franchi, M.L. Physicochemical and sensorial characterisation of Argentine ciders. J. Inst. Brew. 2019, 125, 433–442. [Google Scholar] [CrossRef]
- Cider Market. Available online: https://www.marketresearchfuture.com (accessed on 8 July 2021).
- Market Data Forecast|Industry Reports & Business Intelligence. Available online: https://www.marketdataforecast.com (accessed on 8 July 2021).
- SmartCompany. Afterpay’s Evolution Continues with Launch of Money App. Available online: https://www.smartcompany.com.au (accessed on 8 July 2021).
- Miles, C.A.; Alexander, T.R.; Peck, G.; Galinato, S.P.; Gottschalk, C.; van Nocker, S. Growing apples for hard cider production in the United States-Trends and research opportunities. Hort. Technol. 2020, 30, 148–155. [Google Scholar] [CrossRef]
- Peck, G.M.; Knickerbocker, W. Economic case studies of cider apple orchards in New York state. Fruit Quat. 2018, 26, 5–10. [Google Scholar]
- Global Ice Cider Market 2020-Key Players. Available online: https://manometcurrent.com/Business (accessed on 8 July 2021).
- Picinelli Lobo, A.; Pando Bedriñana, R.; Rodríguez Madrera, R.; Suárez Valles, B. Aromatic, olfactometric and consumer description of sweet ciders made by cryo-extraction. Food Chem. 2021, 338, 127829. [Google Scholar] [CrossRef] [PubMed]
- Cidre de Glace du Québec. Available online: https://cartv.gouv.qc.ca/appellations-reconnues. (accessed on 8 July 2021).
- BOE. Boletín Oficial del Estado Nº 44 21th February 2017. Real Decreto 72/2017por el que se Aprueba la Norma de Calidad de las Diferentes Categorías de Sidra Natural y de la Sidra. Available online: https://www.boe.es/boe/dias/2017/02/21/pdfs/BOE-A-2017-1749.pdf (accessed on 8 July 2021).
- Kirkey, C.; Braden, T. An introduction to ice cider in Quebec: A preliminary overview. J. East. Stud. 2014, 43, 47–62. [Google Scholar]
- Pando Bedriñana, R.; Picinelli Lobo, A.; Suárez Valles, B. Influence of the method of obtaining freeze-enriched juices and year of harvest on the chemical and sensory characteristics of Asturian ice ciders. Food Chem. 2019, 274, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Pando Bedriñana, R.; Picinelli Lobo, A.; Rodríguez Madrera, R.; Suárez Valles, B. Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains. Food Chem. 2020, 310, 125831. [Google Scholar] [CrossRef] [PubMed]
- Picinelli Lobo, A.; Antón-Díaz, M.J.; Pando Bedriñana, R.; Fernández García, O.; Hortal-García, R.; Suárez Valles, B. Chemical, olfactometric and sensory description of single-variety apple juices obtained by cryo-extraction. LWT-Food Sci. Technol. 2018, 90, 193–200. [Google Scholar] [CrossRef]
- Kontkhanen, D.; Inglis, D.L.; Pickering, G.P.; Reynolds, A. Effect of yeast inoculation rate, acclimatization and nutrient addition on icewine fermentation. Am. J. Enol. Vitic. 2004, 55, 366–370. [Google Scholar]
- Erasmus, D.J.; Cliff, M.; van Vuuren, H.J.J. Impact of yeast strain on the production of acetic acid, glycerol and sensory attributes of icewine. Am. J. Enol. Vitic. 2004, 55, 371–378. [Google Scholar]
- Pigeau, G.M.; Bozza, E.; Kaiser, K.; Inglis, D.L. Concentration effect of Riesling icewine juice on yeast performance and wine acidity. J. Appl. Microbiol. 2007, 103, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Bowen, A.J. Managing the quality of icewines. In Managing Wine Quality, 1st ed.; Reynolds, A., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 523–552. [Google Scholar]
- Pando Bedriñana, R.; Mangas Alonso, J.J.; Suárez Valles, B. Evaluation of autochthonous Saccharomyces bayanus strains under stress conditions for making ice ciders. LWT-Food Sci. Technol. 2017, 81, 217–225. [Google Scholar] [CrossRef]
- Synos, K.; Reynolds, A.G.; Bowen, A. Effect of yeast strain on aroma compounds in Cabernet franc icewines. LWT-Food Sci. Technol. 2015, 64, 227–235. [Google Scholar] [CrossRef]
- Crandles, M.; Reynolds, A.G.; Khairallah, R.; Bowen, A. The effect of yeast strain on odor active compounds in Riesling and Vidal blanc icewines. LWT-Food Sci. Technol. 2015, 64, 243–258. [Google Scholar] [CrossRef]
- Zhang, B.-Q.; Shen, J.-Y.; Duan, C.-Q.; Yan, G.-L. Use of indigenous Hanseniaspora vinae and Metschnikowia pulcherrima co-fermentation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc icewine. Front. Microbiol. 2018, 9, 2303. [Google Scholar] [CrossRef]
- Hong, M.; Li, J.; Chen, Y. Characterization of tolerance and multi-enzyme activities in non-Saccharomyces yeasts isolated from Vidal Blanc icewine fermentation. J. Food Biochem. 2019, 43, 313027. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Musts Analysis, 2014 ed.; International Organization of Vine and Wine: Paris, France, 2014. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Blanco, D.; Gutiérrez, M.D.; Mangas, J.J.; Noval Vallina, A. Determination of sugars and alcohols in apple juice and cider by HPLC. Chromatographia 1988, 25, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Picinelli, A.; Suárez, B.; Moreno, J.; Rodríguez, R.; Caso-García, L.M.; Mangas, J.J. Chemical characterization of Asturian cider. J. Agric. Food Chem. 2000, 48, 3997–4002. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Min, L.; Jixin, L.; Tengzhen, M.; Shunyu, H.; Morata, A.; Suárez Lepe, J.A. Biotechnology of ice wine production. In Advances in Biotechnology for Food Industry; Grumezescu, A., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 14. [Google Scholar]
- Carbonell-Capella, J.M.; Parniakov, O.; Barba, F.J.; Grimi, N.; Bals, O.; Lebokka, N.; Vorobiev, E. “Ice” juice from apples obtained by pressing at subzero temperatures of apples pretreated by Pulsed Electric Fields. Innov. Food Sci. Emerg. Technol. 2016, 33, 187–194. [Google Scholar] [CrossRef]
- Pando Bedriñana, R.; Querol Simón, A.; Suárez Valles, B. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias. Food Microbiol. 2010, 27, 503–508. [Google Scholar] [CrossRef]
- Pallman, C.L.; Brown, J.A.; Olineka, T.L.; Cocolin, L.; Mills, D.A.; Bisson, L.F. Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 2001, 52, 198–203. [Google Scholar]
- Pando Bedriñana, R.; Lastra Queipo, A.; Suárez Valles, B. Screening of enzymatic activities in non-Saccharomyces cider yeasts. J. Food Biochem. 2012, 36, 683–689. [Google Scholar] [CrossRef]
- Alessandria, V.; Giacosa, S.; Campolongo, S.; Rolle, L.; Rantsiou, K.; Cocolin, L. Yeast population diversity on grapes during on-vine withering and their dynamics in natural and inoculated fermentations in the production of icewines. Food Res. Int. 2013, 54, 130–147. [Google Scholar] [CrossRef]
- Chamberlain, G.; Husnik, J.; Subden, R.E. Freeze-desiccation survival in wild yeasts in the bloom of icewine grapes. Food Res. Int. 1997, 30, 435–439. [Google Scholar] [CrossRef]
- Bučková, M.; Puškárová, A.; Ženišová, K.; Kraková, L.; Piknová, L.; Kuchta, T.; Pangallo, D. Novel insights into microbial community dynamics during the fermentation of Central European ice wine. Int. J. Food Microbiol. 2018, 266, 42–51. [Google Scholar] [CrossRef]
- Mangas, J.J.; Rodríguez, R.; Suárez, B.; Picinelli, A.; Dapena, E. Study of the polyphenolic profile of cider apple cultivars at maturity by multivariate techniques. J. Agric. Food Chem. 1999, 47, 4046–4052. [Google Scholar] [CrossRef] [Green Version]
- del Campo, G.; Berregi, I.; Iturriza, N.; Santos, J.L. Ripening and changes in chemical composition of seven cider apple varieties. Food Sci. Tech. Int. 2006, 12, 477–487. [Google Scholar] [CrossRef]
- Blanco-Gomis, D.; Herrero-Sánchez, I.; Mangas Alonso, J.J. Characterization of apple cider cultivars by chemometric techniques using data from High Performance Liquid Chromatography and Flow Injection Analysis. Analyst 1998, 123, 1187–1191. [Google Scholar] [CrossRef] [Green Version]
- Markowski, J.; Baron, A.; Le Quéré, J.-M.; Plocharski, W. Composition of clear and cloudy juices from French and Polish apples in relation to processing technology. LWT-Food Sci. Technol. 2015, 62, 813–820. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Corollaro, L.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- Miyawaki, O.; Inakuma, T. Development of Progressive Freezing Concentration and its applications: A review. Food Bioproc. Technol. 2021, 14, 39–51. [Google Scholar] [CrossRef]
- Belly, M.; Stoeckle, P.; Masneuf-Pomarède, I.; Dubourdieu, D. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int. J. Food Microbiol. 2008, 122, 312–320. [Google Scholar] [CrossRef]
- Belda, I.; Navascués, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulospora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef]
- Picinelli Lobo, A.; Antón-Díaz, M.J.; Mangas Alonso, J.J.; Suárez Valles, B. Characterization of Spanish ciders by means of chemical and olfactometric profiles and chemometrics. Food Chem. 2016, 213, 505–513. [Google Scholar] [CrossRef]
- González-Flores, M.; Rodríguez, M.E.; Oteiza, J.M.; Barbagelata, R.J.; Lopes, C.A. Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from Patagonia and their potential for cidermaking. Int. J. Food Microbiol. 2017, 249, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Antón, M.J.; Suárez Valles, B.; García Hevia, A.; Picinelli Lobo, A. Aromatic profile of ciders by Chemical, Quantitative, Gas Chromatography-Olfactometry and Sensory analysis. J. Food Sci. 2014, 79, S92–S99. [Google Scholar] [CrossRef]
- Haider, W.; Barillier, D.; Hayat, A.; Gaillard, J.-L.; Ledauphin, J. Rapid quantification and comparison of major volatile compounds of ciders from France (Normandy and Brittany) using microextraction by packed sorbent. Anal. Meth. 2014, 6, 1364–1376. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma-A review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbiol. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Nurgel, C.; Pickering, G. Modelling of sweet, bitter and irritant sensations and their interactions elicited by model ice wines. J. Sens. Stud. 2006, 21, 505–519. [Google Scholar] [CrossRef]
Juice Type | Yeast Strains | Harvests | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
J | S | H | J1 | J2 | J3 | C6 | CHP | TD291 | 1 | 2 | |
15 days fermentation | |||||||||||
Maximum yeast concentration (log cfu/mL) | ns | *** | ** | 7.74 ± 0.42 | 7.79 ± 0.77 | 8.01 ± 0.97 | 8.43 ± 0.85 | 7.56 ± 0.39 | 7.54 ± 0.55 | 6.81–8.14 | 7.15–9.85 |
Maximum ethanol production rate (g/L/day) | ns | *** | ns | 3.57 ± 1.09 | 3.31 ± 1.23 | 3.40 ± 1.15 | 4.23 ± 0.80 | 4.00 ± 0.42 | 2.05 ± 0.35 | 1.65–5.06 | 2.08–4.35 |
Final ciders | |||||||||||
Ethanol yield (g ethanol/g sugar consumed) | ns | ns | *** | 0.46 ± 0.05 | 0.49 ± 0.04 | 0.46 ± 0.07 | 0.45 ± 0.06 | 0.49 ± 0.05 | 0.46 ± 0.06 | 0.49–0.54 | 0.37–0.49 |
Total sugars (g/L) | ns | *** | *** | 122.6 ± 9.3 | 127.1 ± 9.0 | 123.5 ± 7.0 | 128.4 ± 8.6 | 115.7 ± 3.3 | 129.2 ± 4.4 | 112.1–135.2 | 111.5–142.8 |
Alcoholic degree (% v/v) | ns | *** | ** | 10.89 ± 0.93 | 10.57 ± 0.97 | 10.43 ± 0.83 | 10.02 ± 0.74 | 11.69 ± 0.29 | 10.20 ± 0.39 | 10.10–12.00 | 9.20–12.10 |
Total acidity (sulphuric acid/L) | *** | ns | ns | 11.70 ± 0.32 | 13.12 ± 1.04 | 13.89 ± 1.41 | 12.54 ± 1.17 | 12.98 ±1.61 | 13.19 ± 1.29 | 9.65–14.59 | 11.48–15.09 |
Volatile acidity (g acetic acid/L) | ns | *** | ns | 0.65 ± 0.15 | 0.58 ± 0.12 | 0.64 ± 0.15 | 0.54 ± 0.10 | 0.75 ± 0.05 | 0.58 ± 0.15 | 0.43–0.80 | 0.41–0.81 |
Total phenols (g tannic acid/L) | *** | ns | ns | 3.5 ± 0.1 | 4.0 ± 0.3 | 3.7 ± 0.2 | 3.6 ± 0.2 | 3.8 ± 0.3 | 3.7 ± 0.3 | 3.4–4.4 | 3.4–3.9 |
Glycerol (g/L) | ns | ** | *** | 7.7 ± 1.3 | 7.2 ± 1.0 | 7.4 ± 0.9 | 7.9 ± 1.0 | 7.8 ± 0.4 | 6.6 ± 1.2 | 7.3–9.6 | 5.1–7.8 |
Sorbitol (g/L) | *** | ns | *** | 23.0 ± 3.3 | 18.7 ± 2.1 | 23.5 ± 3.2 | 21.8 ± 3.8 | 21.7 ± 3.7 | 21.6 ± 3.5 | 20.3–27.0 | 16.4–20.6 |
Total sugars/Total acidity | *** | ns | ns | 10.5 ± 0.9 | 9.8 ± 1.3 | 9.0 ± 1.1 | 10.3 ± 1.2 | 9.0 ± 1.2 | 9.9 ± 1.0 | 7.8–11.9 | 7.7–12.3 |
Total sugars/Total phenols | ns | *** | ** | 35.1 ± 3.4 | 32.3 ± 4.0 | 33.5 ± 2.8 | 35.5 ± 3.3 | 30.3 ± 2.3 | 35.2 ± 2.2 | 25.7–37.4 | 29.6–41.8 |
Malic acid (g/L) | *** | ns | *** | 15.8 ± 0.7 | 17.2 ± 2.2 | 19.1 ± 0.9 | 16.8 ± 1.9 | 17.8 ± 2.0 | 17.5 ± 2.0 | 15.5–20.3 | 14.6–18.8 |
Shikimic acid (mg/L) | *** | *** | ns | 39.0 ± 12.8 | 67.1 ± 11.5 | 58.2 ± 10.9 | 68.0 ± 12.4 | 47.4 ± 14.1 | 48.8 ± 14.9 | 23.4–86.8 | 39.4–75.2 |
Juice Type | Yeast Strains | Harvests | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
J | S | H | J1 | J2 | J3 | C6 | CHP | TD291 | 1 | 2 | |
Major volatiles (mg/L) | |||||||||||
Ethyl acetate | ns | *** | ns | 57.5 ± 12.4 | 61.2 ± 13.3 | 62.9 ± 12.4 | 50.4 ± 5.7 | 69.8 ± 7.0 | 61.4 ± 14.7 | 42.0–80.2 | 44.1–78.8 |
Methanol | *** | ns | *** | 46.1 ± 6.1 | 48.5 ± 5.4 | 34.9 ± 6.5 | 43.8 ± 8.5 | 42.9 ± 8.2 | 42.7 ± 9.1 | 39.8–54.6 | 27.1–43.8 |
1-Propanol | ns | *** | * | 36.3 ± 12.5 | 33.3 ± 11.9 | 33.8 ± 9.2 | 20.9 ± 3.6 | 44.9 ± 4.4 | 37.6 ± 5.2 | 21.8–51.5 | 16.2–50.7 |
Iso-butanol | ns | *** | *** | 33.7 ± 8.2 | 36.7 ± 8.9 | 33.9 ± 8.7 | 37.2 ± 8.4 | 26.9 ± 1.1 | 40.3 ± 7.1 | 25.0–50.7 | 25.7–36.3 |
1-butanol | *** | ns | * | 3.4 ± 0.1 | 3.1 ± 0.2 | 5.9 ± 0.4 | 4.0 ± 1.3 | 4.1 ± 1.3 | 4.3 ± 1.4 | 2.7–5.8 | 3.1–6.6 |
Amyl alcohols | ns | *** | ns | 218.4 ± 43.9 | 220.1 ± 41.4 | 224.2 ± 45.5 | 267.2 ± 44.2 | 203.1 ± 4.6 | 191.8 ± 8.9 | 188.3–317.4 | 180.6–236.2 |
2-Phenylethanol | ns | *** | ns | 34.9 ± 23.4 | 57.5 ± 46.6 | 32.8± 18.3 | 77.6 ± 34.2 | 23.3 ± 10.2 | 24.2 ± 8.7 | 15.3–154.9 | 18.0–69.3 |
Minor volatiles (µg/L I.S.) | |||||||||||
Minor alcohols + Volatile phenols | |||||||||||
Hexanol | ns | ns | *** | 0.5 ± 0.1 | 0.5 ± 0.0 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5–0.7 | 0.4–0.6 |
1-Octanol | *** | *** | *** | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.1–0.2 | 0.1–0.3 |
4-vinylguaiacol | ** | *** | ns | 0.9 ± 0.6 | 0.7 ± 0.5 | 0.3 ± 0.2 | 1.2 ± 0.6 | 0.5 ± 0.2 | 0.3 ± 0.1 | 0.2–1.9 | 0.2–2.0 |
4-vinylphenol | * | *** | ns | 0.4 ± 0.3 | 0.2 ± 0.2 | 0.1 ± 0.1 | 0.5 ± 0.3 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1–1.0 | 0.1–0.6 |
Esters | |||||||||||
Ethyl butyrate | ns | ns | *** | 1.2 ± 0.7 | 0.9 ± 0.4 | 1.1 ± 0.5 | 1.0 ± 0.5 | 1.2 ± 0.6 | 0.9 ± 0.9 | 0.4–1.0 | 1.0–2.5 |
Ethyl-2-methylbutyrate | ns | ** | *** | 1.1 ± 0.9 | 0.8 ± 0.3 | 1.0 ± 0.5 | 1.3 ± 0.7 | 0.9 ± 0.5 | 0.7 ± 0.5 | 0.2–1.4 | 0.6–2.9 |
Ethyl-3-methylbutyrate | ns | *** | ** | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.1–0.4 | 0.1–0.2 |
Ethyl valerate | ** | ns | *** | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.1–0.2 | 0.1–0.4 |
Ethyl hexanoate | ns | * | * | 20.6 ± 12.9 | 15.9 ± 5.8 | 15.5 ± 8.5 | 16.3 ± 6.7 | 22.3 ± 12.7 | 13.5 ± 6.3 | 6.0–37.6 | 8.4–54.1 |
Ethyl octanoate | ns | *** | ns | 139.7 ± 61.0 | 151.2 ± 47.8 | 119.2 ± 45.1 | 151.2 ± 52.8 | 171.7 ± 33.7 | 87.3 ± 21.4 | 62.4–224.3 | 59.1–239.3 |
Ethyl nonanoate | ns | ns | *** | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1–0.3 | 0.2–0.4 |
Ethyl decanoate | * | ns | ns | 167.2 ± 35.6 | 190.5 ± 48.3 | 144.5 ± 40.4 | 155.3 ± 51.9 | 187.6 ± 25.2 | 159.2 ± 48.7 | 61.9–267.3 | 112.9–218.6 |
Ethyl benzoate | *** | ns | *** | 4.1 ± 1.1 | 2.6 ± 1.1 | 2.5 ± 0.4 | 3.5 ± 1.3 | 2.6 ± 0.9 | 3.1 ± 1.1 | 1.4–4.1 | 2.3–5.6 |
Diethyl succinate | ns | *** | *** | 2.5 ± 1.3 | 3.2 ± 1.7 | 3.2 ± 1.0 | 4.1 ± 1.5 | 2.5 ± 1.0 | 2.2 ± 0.7 | 1.1–3.7 | 2.0–7.0 |
Ethyl dodecanoate | ns | ns | * | 22.1 ± 9.3 | 20.1 ± 8.4 | 16.5 ± 12.0 | 19.8 ± 8.1 | 22.7 ± 12.4 | 16.1 ± 8.7 | 4.9–29.7 | 9.4–41.6 |
Ethyl tetradecanoate | ns | ** | ** | 4.4 ± 3.6 | 3.3 ± 2.0 | 3.7 ± 3.9 | 4.9 ± 2.4 | 3.8 ± 3.5 | 2.7 ± 3.5 | 0.5–9.5 | 0.9–12.6 |
Ethyl cinnamate | * | ns | *** | 1.0 ± 0.5 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.4 | 0.6 ± 0.2 | 0.7 ± 0.4 | 0.4–0.9 | 0.5–1.7 |
Ethyl hexadecanoate | ns | ** | ns | 5.4 ± 2.6 | 5.5 ± 1.9 | 6.5 ± 3.2 | 7.1 ± 1.6 | 4.7 ± 2.6 | 5.6 ± 3.0 | 1.9–8.2 | 2.5–12.3 |
Ethyl oleate | ns | *** | ns | 0.6 ± 0.4 | 0.9 ± 0.9 | 0.7 ± 0.9 | 1.3 ± 1.1 | 0.6 ± 0.3 | 0.3 ± 0.1 | 0.1–3.2 | 0.2–1.0 |
Isoamyl decanoate | ns | ns | ** | 1.2 ± 0.3 | 1.4 ± 0.4 | 1.2 ± 0.4 | 1.4 ± 0.4 | 1.3 ± 0.2 | 1.1 ± 0.4 | 0.7–2.0 | 0.9–2.0 |
Isoamyl octanoate | ns | *** | ** | 1.6 ± 0.9 | 2.2 ± 1.0 | 1.5 ± 0.7 | 2.4 ± 1.1 | 2.0 ± 0.4 | 1.0 ± 0.3 | 0.6–2.2 | 0.8–4.1 |
Methyl octanoate | *** | ns | *** | 0.3 ± 0.2 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1–0.2 | 0.1–0.5 |
Methyl decanoate | *** | ns | ns | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.2 ± 0.1 | 0.1–0.3 | 0.1–0.3 |
Isoamylethyl acetate | ns | *** | ** | 0.8 ± 0.4 | 1.0 ± 0.4 | 1.0 ± 0.4 | 1.4 ± 0.1 | 0.7 ± 0.3 | 0.7 ± 0.3 | 0.3–1.5 | 0.6–1.7 |
Ethylphenyl acetate | *** | ns | *** | 1.3 ± 0.3 | 2.6 ± 0.4 | 2.0 ± 0.6 | 2.1 ± 0.6 | 1.8 ± 0.6 | 2.0 ± 0.8 | 0.9–2.9 | 1.3–3.3 |
Isoamyl acetate | ns | ns | ns | 9.7 ± 3.6 | 10.7 ± 3.8 | 9.5 ± 3.2 | 9.5 ± 2.4 | 9.3 ± 3.6 | 11.1 ± 4.1 | 4.8–17.9 | 5.0–17.0 |
2-Phenylethyl acetate | ns | ns | *** | 4.0 ± 2.7 | 10.7 ± 12.4 | 3.8 ± 1.8 | 9.7 ± 11.7 | 4.7 ± 5.4 | 4.0 ± 3.2 | 3.4–34.8 | 0.7–4.2 |
Fatty acids | |||||||||||
Hexanoic | ns | ns | *** | 1.6 ± 0.7 | 1.6 ± 0.7 | 1.5 ± 0.7 | 1.4 ± 0.8 | 2.0 ± 0.7 | 1.3 ± 0.3 | 0.6–1.6 | 1.5–3.0 |
Octanoic | ns | * | *** | 23.3 ± 12.7 | 24.7 ± 15.8 | 22.1 ± 11.6 | 28.9 ± 18.2 | 27.0 ± 8.1 | 14.1± 3.1 | 9.7–24.5 | 13.3–55.2 |
Decanoic | ns | ns | *** | 41.1 ± 13.5 | 41.2 ± 13.7 | 38.2 ± 16.7 | 39.6 ± 18.6 | 43.8± 13.0 | 37.1 ± 10.6 | 16.1–42.9 | 32.6–64.9 |
Dodecanoic | ns | ns | *** | 1.7 ± 0.5 | 1.7 ± 0.7 | 1.6 ± 1.3 | 1.6 ± 0.5 | 1.8 ± 1.0 | 1.6 ± 1.1 | 0.4–2.3 | 0.9–4.4 |
Harvest | J1 | J2 | J3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attributes | J | S | H | C6 | CHP | TD291 | C6 | CHP | TD291 | C6 | CHP | TD291 | |
Candy | ns | ns | ns | 1 | 28.6 | 14.3 | 28.6 | 0.0 | 0.0 | 0.0 | 57.1 | 42.9 | 14.3 |
2 | 57.1 | 35.7 | 57.1 | 35.7 | 42.9 | 28.6 | 14.3 | 14.3 | 14.3 | ||||
Fruity | ** | ns | ns | 1 | 14.3 | 28.6 | 35.7 | 41.7 | 50.0 | 33.3 | 57.1 | 71.4 | 71.4 |
2 | 57.1 | 21.4 | 28.6 | 64.3 | 14.3 | 28.6 | 57.1 | 42.9 | 42.9 | ||||
Apple | * | ns | ns | 1 | 42.9 | 28.6 | 28.6 | 33.3 | 16.7 | 16.7 | 14.3 | 28.6 | 14.3 |
2 | 57.1 | 28.6 | 57.1 | 42.9 | 28.6 | 0.0 | 28.6 | 28.6 | 28.6 | ||||
Floral | ns | ns | ns | 1 | 0.0 | 0.0 | 14.3 | 25.0 | 16.7 | 0.0 | 28.6 | 7.1 | 28.6 |
2 | 14.3 | 14.3 | 14.3 | 14.3 | 0.0 | 0.0 | 14.3 | 28.6 | 14.3 | ||||
Butter | *** | ns | ** | 1 | 14.3 | 14.3 | 28.6 | 41.7 | 33.3 | 50.0 | 28.6 | 14.3 | 28.6 |
2 | 0.0 | 0.0 | 0.0 | 21.4 | 28.6 | 28.6 | 14.3 | 14.3 | 21.4 | ||||
Acidic/Fresh | ns | ** | ns | 1 | 14.3 | 0.0 | 28.6 | 33.3 | 16.7 | 16.7 | 14.3 | 21.4 | 57.1 |
2 | 42.9 | 28.6 | 42.9 | 28.6 | 14.3 | 28.6 | 28.6 | 14.3 | 35.7 | ||||
Bitter | ns | ns | * | 1 | 57.1 | 42.9 | 14.3 | 25.0 | 33.3 | 16.7 | 57.1 | 28.6 | 28.6 |
2 | 0.0 | 35.7 | 0.0 | 14.3 | 71.4 | 14.3 | 0.0 | 14.3 | 21.4 | ||||
Astringent | ns | ns | ** | 1 | 14.3 | 28.6 | 14.3 | 41.7 | 33.3 | 33.3 | 28.6 | 21.4 | 28.6 |
2 | 28.6 | 21.4 | 14.3 | 7.1 | 0.0 | 28.6 | 0.0 | 28.6 | 7.1 | ||||
Overall Quality | ns | * | ns | 1 | 3.0 | 3.0 | 3.0 | 2.0 | 2.0 | 2.5 | 2.0 | 2.0 | 2.5 |
2 | 4.0 | 2.0 | 4.0 | 3.5 | 2.0 | 3.0 | 3.0 | 2.0 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pando Bedriñana, R.; Picinelli Lobo, A.; Rodríguez Madrera, R.; Suárez Valles, B. New Ciders Made by an Exhaustion Method: An Option to Val-Orise Subproducts from the Making of Ice Ciders. Beverages 2021, 7, 75. https://doi.org/10.3390/beverages7040075
Pando Bedriñana R, Picinelli Lobo A, Rodríguez Madrera R, Suárez Valles B. New Ciders Made by an Exhaustion Method: An Option to Val-Orise Subproducts from the Making of Ice Ciders. Beverages. 2021; 7(4):75. https://doi.org/10.3390/beverages7040075
Chicago/Turabian StylePando Bedriñana, Rosa, Anna Picinelli Lobo, Roberto Rodríguez Madrera, and Belén Suárez Valles. 2021. "New Ciders Made by an Exhaustion Method: An Option to Val-Orise Subproducts from the Making of Ice Ciders" Beverages 7, no. 4: 75. https://doi.org/10.3390/beverages7040075
APA StylePando Bedriñana, R., Picinelli Lobo, A., Rodríguez Madrera, R., & Suárez Valles, B. (2021). New Ciders Made by an Exhaustion Method: An Option to Val-Orise Subproducts from the Making of Ice Ciders. Beverages, 7(4), 75. https://doi.org/10.3390/beverages7040075