Electroencephalograms during Mental Arithmetic Task Performance
Abstract
:1. Summary
2. Data Description
2.1. EEG Recording
2.2. EEG Selection
2.3. Characteristics of Participating Subjects
2.4. Dataset Format Description
- -
- “sub-<participant_label>_task-<task_label>_channels.tsv” file provides the general information about the EEG channels (name, filters used, sampling frequency),
- -
- “sub-<participant_label>_task-<task_label>_eeg.edf” file contains the raw EEG data,
- -
- “sub-<participant_label>_task-<task_label>_eeg.json” file contains metadata for recording file,
- -
- “sub-<participant_label>_task-<task_label>_events.tsv” file provides the info about the recording events.
3. Methods
3.1. Experiment Design
3.2. Participants
3.3. Good/Bad Counters Selection
Author Contributions
Funding
Conflicts of Interest
References
- Sarter, M.; Berntson, G.G.; Cacioppo, J.T. Brain imaging and cognitive neuroscience: Toward strong inference in attributing function to structure. Am. Psychol. 1996, 51, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Baars, B.J. Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Boundaries Conscious. Neurobiol. Neuropathol. 2005, 150, 45–53. [Google Scholar] [CrossRef]
- Bressler, S.L.; Kelso, J.A.S. Cortical coordination dynamics and cognition. Trends Cogn. Sci. 2001, 5, 26–36. [Google Scholar] [CrossRef]
- Beaty, R.E.; Benedek, M.; Silvia, P.J.; Schacter, D.L. Creative Cognition and Brain Network Dynamics. Trends Cogn. Sci. 2016, 20, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eysenck, M.W. Fundamentals of Cognition; Routledge: Abingdon-on-Thames, UK, 2018. [Google Scholar] [CrossRef]
- Banich, M.; Compton, R. Cognitive Neuroscience; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends and future directions. Physiol. Meas. 2018, 39, 08TR02. [Google Scholar] [CrossRef]
- Soleymani, M.; Pantic, M.; Pun, T. Multimodal Emotion Recognition in Response to Videos. IEEE Trans. Affect. Comput. 2012, 3, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, J.; Väyrynen, E.; Seppänen, T. High-Frequency Electroencephalographic Activity in Left Temporal Area Is Associated with Pleasant Emotion Induced by Video Clips. Comput. Intell. Neurosci. 2015, 2015, 762769. [Google Scholar] [CrossRef]
- Weiss, S.; Mueller, H.M. The contribution of EEG coherence to the investigation of language. Brain Lang. 2003, 85, 325–343. [Google Scholar] [CrossRef] [Green Version]
- González-Garrido, A.A.; Gómez-Velázquez, F.R.; Salido-Ruiz, R.A.; Espinoza-Valdez, A.; Vélez-Pérez, H.; Romo-Vazquez, R.; Gallardo-Moreno, G.B.; Ruiz-Stovel, V.D.; Martínez-Ramos, A.; Berumen, G. The analysis of EEG coherence reflects middle childhood differences in mathematical achievement. Brain Cogn. 2018, 124, 57–63. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Höll, M.; Kantz, H. The relationship between the detrended fluctuation analysis and the autocorrelation function of a signal. Eur. Phys. J. B 2015, 88, 327. [Google Scholar] [CrossRef]
- Kiyono, K. Establishing a direct connection between detrended fluctuation analysis and Fourier analysis. Phys. Rev. E 2015, 92, 042925. [Google Scholar] [CrossRef] [PubMed]
- Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.; Glatard, T.; Halchenko, Y.O.; et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 2016, 3, 160044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S. Sources of Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science 1999, 284, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro-Chagas, P.; Piazza, M.; Dehaene, S. Decoding the processing stages of mental arithmetic with magnetoencephalography. Cortex 2018, (in press). [Google Scholar] [CrossRef] [PubMed]
- Jatoi, N.-A.; Kyvelou, S.-M.; Feely, J. The acute effects of mental arithmetic, cold pressor and maximal voluntary contraction on arterial stiffness in young healthy subjects. Artery Res. 2014, 8, 44–50. [Google Scholar] [CrossRef]
- Finlay, M.C.; Lambiase, P.D.; Ben-Simon, R.; Taggart, P. Effect of mental stress on dynamic electrophysiological properties of the endocardium and epicardium in humans. Heart Rhythm 2016, 13, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Noto, Y.; Sato, T.; Kudo, M.; Kurata, K.; Hirota, K. The Relationship Between Salivary Biomarkers and State-Trait Anxiety Inventory Score Under Mental Arithmetic Stress: A Pilot Study. Anesth. Analg. 2005, 101, 1873–1876. [Google Scholar] [CrossRef]
- Kissler, J.; Müller, M.M.; Fehr, T.; Rockstroh, B.; Elbert, T. MEG gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin. Neurophysiol. 2000, 111, 2079–2087. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Rivera, S.M.; White, C.D.; Glover, G.H.; Reiss, A.L. Dissociating Prefrontal and Parietal Cortex Activation during Arithmetic Processing. NeuroImage 2000, 12, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Age | Gender | Number of Subtractions | Count Quality |
---|---|---|---|---|
Subject0 | 21 | F | 9.7 | B |
Subject1 | 18 | F | 29.35 | G |
Subject2 | 19 | F | 12.88 | G |
Subject3 | 17 | F | 31 | G |
Subject4 | 17 | F | 8.6 | B |
Subject5 | 16 | F | 20.71 | G |
Subject6 | 18 | M | 4.35 | B |
Subject7 | 18 | F | 13.38 | G |
Subject8 | 26 | M | 18.24 | G |
Subject9 | 16 | F | 7 | B |
Subject10 | 17 | F | 1 | B |
Subject11 | 18 | F | 26 | G |
Subject12 | 17 | F | 26.36 | G |
Subject13 | 24 | M | 34 | G |
Subject14 | 17 | F | 9 | B |
Subject15 | 17 | F | 22.18 | G |
Subject16 | 17 | F | 11.59 | G |
Subject17 | 17 | F | 28.7 | G |
Subject18 | 17 | F | 20 | G |
Subject19 | 22 | M | 7.06 | B |
Subject20 | 17 | F | 15.41 | G |
Subject22 | 19 | F | 4.47 | B |
Subject21 | 20 | F | 1 | B |
Subject23 | 16 | F | 27.47 | G |
Subject24 | 17 | M | 14.76 | G |
Subject25 | 17 | M | 30.53 | G |
Subject26 | 17 | F | 13.59 | G |
Subject27 | 19 | F | 34.59 | G |
Subject28 | 19 | F | 27 | G |
Subject29 | 19 | M | 16.59 | G |
Subject30 | 17 | M | 10 | B |
Subject31 | 19 | F | 19.88 | G |
Subject32 | 20 | F | 13 | G |
Subject33 | 17 | M | 21.47 | G |
Subject34 | 18 | F | 31 | G |
Subject35 | 17 | F | 12.18 | G |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyma, I.; Tukaev, S.; Seleznov, I.; Kiyono, K.; Popov, A.; Chernykh, M.; Shpenkov, O. Electroencephalograms during Mental Arithmetic Task Performance. Data 2019, 4, 14. https://doi.org/10.3390/data4010014
Zyma I, Tukaev S, Seleznov I, Kiyono K, Popov A, Chernykh M, Shpenkov O. Electroencephalograms during Mental Arithmetic Task Performance. Data. 2019; 4(1):14. https://doi.org/10.3390/data4010014
Chicago/Turabian StyleZyma, Igor, Sergii Tukaev, Ivan Seleznov, Ken Kiyono, Anton Popov, Mariia Chernykh, and Oleksii Shpenkov. 2019. "Electroencephalograms during Mental Arithmetic Task Performance" Data 4, no. 1: 14. https://doi.org/10.3390/data4010014
APA StyleZyma, I., Tukaev, S., Seleznov, I., Kiyono, K., Popov, A., Chernykh, M., & Shpenkov, O. (2019). Electroencephalograms during Mental Arithmetic Task Performance. Data, 4(1), 14. https://doi.org/10.3390/data4010014