Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters
Abstract
:1. Introduction and Object Details
2. Observational Details and Results
3. Calculations of the System Parameters and Observational Effects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Podsiadlowski, P.; Han, Z.; Rappaport, S. Cataclysmic variables with evolved secondaries and the progenitors of AM CVn stars. Mon. Not. R. Astron. Soc. 2003, 340, 1214–1228. [Google Scholar] [CrossRef] [Green Version]
- Solheim, J.-E. AM CVn Stars: Status and Challenges. Publ. Astron. Soc. Pac. 2010, 122, 1133–1163. [Google Scholar] [CrossRef]
- Green, R.F.; Schmidt, M.; Liebert, J. The Palomar-Green catalog of ultraviolet-excess stellar objects. Astrophys. J. Suppl. Ser. 1986, 61, 305–352. [Google Scholar] [CrossRef]
- Wood, M.A.; Winget, D.E.; Nather, R.E.; Hessman, F.V.; Liebert, J.; Kurtz, D.W.; Wesemael, F.; Wegner, G. The exotic helium variable PG 1346 + 082. Astrophys. J. 1987, 313, 757. [Google Scholar] [CrossRef]
- Provencal, J.L.; Winget, D.E.; Nather, R.E.; Robinson, E.L.; Clemens, J.C.; Bradley, P.A.; Claver, C.F.; Kleinman, S.J.; Grauer, A.D.; Hine, B.P.; et al. Whole Earth Telescope Observations of the Helium Interacting Binary PG 1346+082 (CR Bootis). Astrophys. J. 1997, 480, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Isogai, K.; Kato, T.; Ohshima, T.; Kasai, K.; Oksanen, A.; Masumoto, K.; Fukushima, D.; Maeda, K.; Kawabata, M.; Matsuda, R.; et al. Superoutburst of CR Bootis: Estimation of mass ratio of a typical AM CVn star by stage A superhumps. Publ. Astron. Soc. Jpn. 2016, 68, 64. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, G.H.A.; Groot, P.J.; Benedict, G.F.; McArthur, B.E.; Steeghs, D.; Morales-Rueda, L.; Marsh, T.R.; Nelemans, G. Hubble Space TelescopeParallaxes of AM CVn Stars and Astrophysical Consequences. Astrophys. J. 2007, 666, 1174–1188. [Google Scholar] [CrossRef] [Green Version]
- Nelemans, G.; Zwart, S.F.P.; Verbunt, F.; Yungelson, L.R. Population synthesis for double white dwarfs. Astron. Astrophys. 2001, 368, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Paczy’nski, B. Gravitational Waves and the Evolution of Close Binaries. Acta Astron. 1967, 17, 287. [Google Scholar]
- Faulkner, J.; Flannery, B.P.; Warner, B. Ultrashort-Period Binaries. II. HZ 29 (=AM CVn): A Double-White-Dwarf Semidetached Postcataclysmic Nova? Astrophys. J. 1972, 175, L79–L83. [Google Scholar] [CrossRef]
- Kato, T.; Nogami, D.; Baba, H.; Hanson, G.; Poyner, G. CR Boo: The ’helium ER UMa star’ with a 46.3-d supercycle. Mon. Not. R. Astron. Soc. 2000, 315, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Baba, H.; Masuda, S.; Matsumoto, K.; Kunjaya, C. Disk Instabilities in Close Binary Systems; Universal Academy Press: Tokyo, Japan, 1999; p. 45. [Google Scholar]
- Kato, T.; Imada, A.; Uemura, M.; Nogami, D.; Maehara, H.; Ishioka, R.; Baba, H.; Matsumoto, K.; Iwamatsu, H.; Kubota, K.; et al. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. Publ. Astron. Soc. Jpn. 2009, 61, S395–S616. [Google Scholar] [CrossRef] [Green Version]
- Groot, P.J.; Nelemans, G.; Steeghs, D.; Marsh, T.R. The Quiescent Spectrum of the AM Canum Venaticorum Star CP Eridani. Astrophys. J. 2001, 558, L123–L127. [Google Scholar] [CrossRef]
- Kato, T.; Hambsch, F.J.; Maehara, H.; Masi, G.; Miller, I.; Noguchi, R.; Aakasaka, C.; Aoki, T.; Kobayashi, H.; Matsumoto, K.; et al. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. IV. The Fourth Year (2011–2012). Publ. Astron. Soc. Jpn. 2013, 65, 76. [Google Scholar] [CrossRef] [Green Version]
- Honeycutt, R.K.; Adams, B.R.; Turner, G.W.; Robertson, J.W.; Ost, E.M.; Maxwell, J.E. Light Curve of CR Bootis 1990–2012 from the Indiana Long-Term Monitoring Program. Publ. Astron. Soc. Pac. 2013, 125, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Kunjaya, C. Discovery of a Peculiar SU UMa-Type Dwarf Nova ER Ursae Majoris. Publ. Astron. Soc. Jpn. 1995, 47, 163–168. [Google Scholar]
- Warner, B. The AM canum venaticorum stars. Astrophys. Space Sci. 1995, 225, 249–270. [Google Scholar] [CrossRef]
- Osaki, Y.; Meyer, F. Early humps in WZ Sge stars. Astron. Astrophys. 2002, 383, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Tody, D. IRAF in the Nineties. ASP Conf. 1993, 52, 173. [Google Scholar]
- Stone, G.; Smolka, M.; Smagin, V. AAVSO Observers and Contributors 2019. 2020. Available online: www.aavso.org (accessed on 13 June 2020).
- Stellingwerf, R.F. Period determination using phase dispersion minimization. Astrophys. J. 1978, 224, 953–960. [Google Scholar] [CrossRef]
- Gullbring, E.; Hartmann, L.; Briceno, C.; Calvet, N. Disk Accretion Rates for T Tauri Stars. Astrophys. J. 1998, 492, 323–341. [Google Scholar] [CrossRef]
- Herczeg, G.J.; Hillenbrand, L.A. UV Excess Measures of Accretion onto Young Very Low Mass Stars and Brown Dwarfs. Astrophys. J. 2008, 681, 594–625. [Google Scholar] [CrossRef]
- Patterson, J.; Kemp, J.; Shambrook, A.; Thomas, E.; Halpern, J.P.; Skillmand, D.R.; Harvey, D.A.; Vanmunster, T.; Retter, A.; Fried, R.; et al. Superhumps in Cataclysmic Binaries. XII. CR Bootis, a Helium Dwarf Nova. Publ. Astron. Soc. Pac. 1997, 109, 1100. [Google Scholar] [CrossRef]
- Marsh, T.R.; Nelemans, G.; Steeghs, D. Mass transfer between double white dwarfs. Mon. Not. R. Astron. Soc. 2004, 350, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Verbunt, F.; Rappaport, S. Mass transfer instabilities due to angular momentum flows in close binaries. Astrophys. J. 1988, 332, 193–198. [Google Scholar] [CrossRef]
- Eggleton, P.P. Approximations to the radii of Roche lobes. Astrophys. J. 1983, 268, 368. [Google Scholar] [CrossRef]
- Zapolsky, H.S.; Salpeter, E.E. The mass-radius relation for cold spheres of low mass. Astrophys. J. 1969, 158, 809. [Google Scholar] [CrossRef] [Green Version]
- Savonije, G.J.; de Kool, M.; van den Heuvel, E.P.J. The minimum orbital period for ultra-compact binaries with helium burning secondaries. Astron. Astrophys. 1986, 155, 51–57. [Google Scholar]
- Nasser, M.R.; Solheim, J.-E.; Semionoff, D.A. NLTE accretion disc models for the AM Canum Venaticorum systems. Astron. Astrophys. 2001, 373, 222–235. [Google Scholar] [CrossRef]
- Nelemans, G. The Astrophysics of Cataclysmic Variables and Related Objects; ASP: San Francisco, CA, USA, 2005; p. 330. [Google Scholar]
- Sion, E.M.; Linnell, A.P.; Godon, P.; Ballouz, R.-L. The Hot Components of AM CVn Helium Cataclysmics. Astrophys. J. 2011, 741, 63. [Google Scholar] [CrossRef]
- Patterson, J.; McGraw, J.T.; Coleman, L.; Africano, J.L. A photometric study of the dwarf nova WZ Sagittae in outburst. Astrophys. J. 1981, 248, 1067–1075. [Google Scholar] [CrossRef]
- Camenzind, M. Compact Objects in Astrophysics White Dwarfs, Neutron Stars and Black Holes; Springer: Berlin/Heidelberg, Germany, 2007; ISSN 0941–7834. [Google Scholar]
- Provencal, L.; HLShipman EHog, P. Thejll: Testing the white dwarf mass–radius relation with Hipparcos. Astrophys. J. 1998, 494, 759. [Google Scholar] [CrossRef] [Green Version]
- Provencal, J.L.; Shipman, H.L.; Koester, D.; Wesemael, F.; Bergeron, P. Bergeron: Procyon B: Outside the iron box. Astrophys. J. 2002, 568, 324. [Google Scholar] [CrossRef] [Green Version]
- Frank, J.; King, A.; Raine, D. Accretion Power in Astrophysics, 3rd ed.; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
M1 (M⊙) | M2 (M⊙) | q | M (M1 + M2) | P (min) | τ (d) | R1 (R⊙) | R2 (R⊙) | a (R⊙) |
---|---|---|---|---|---|---|---|---|
0.80 | 0.07 | 0.087 | 0.87 | 24.5 | ~46 | 0.012 | 0.0526 | 0.266 |
Date\Band | V1 | V2 | U | B_sh | B_vid |
---|---|---|---|---|---|
1 July 2019 | 0.0279 0.0318 0.0352 | ||||
5 July 2019 | 0.0154 0.0171 0.0194 | 0.0372 0.0406 0.0461 | 0.0143 0.0161 0.0184 | 0.0138 0.0166 0.0196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boneva, D.; Boeva, S.; Nikolov, Y.; Cvetković, Z.; Zamanov, R. Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters. Data 2020, 5, 113. https://doi.org/10.3390/data5040113
Boneva D, Boeva S, Nikolov Y, Cvetković Z, Zamanov R. Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters. Data. 2020; 5(4):113. https://doi.org/10.3390/data5040113
Chicago/Turabian StyleBoneva, Daniela, Svetlana Boeva, Yanko Nikolov, Zorica Cvetković, and Radoslav Zamanov. 2020. "Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters" Data 5, no. 4: 113. https://doi.org/10.3390/data5040113
APA StyleBoneva, D., Boeva, S., Nikolov, Y., Cvetković, Z., & Zamanov, R. (2020). Mid-Cycle Observations of CR Boo and Estimation of the System’s Parameters. Data, 5(4), 113. https://doi.org/10.3390/data5040113