No-z Model for Magnetic Fields of Different Astrophysical Objects and Stability of the Solutions
Abstract
:1. Introduction
2. Basic Equations of the No-z Approximation
3. Stable Solutions of the Equations
4. Stability for the Kepler Rotation Curve
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, R.; Brandenburg, A.; Moss, D.; Shukurov, A.; Sokoloff, D. Galactic Magnetism: Recent Developments and Perspectives. Annu. Rev. Astron. Astrophys. 1996, 34, 155–206. [Google Scholar] [CrossRef] [Green Version]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. 1949, 75, 1169–1174. [Google Scholar] [CrossRef]
- Kitchatinov, L.L.; Olemskoy, S.V. Differential rotation of main-sequence dwarfs and its dynamo efficiency. Mon. Not. R. Astron. Soc. 2011, 411, 1059. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Zeldovich, I.B.; Ruzmaikin, A.A.; Sokolov, D.D. Magnetic Fields in Astrophysics; Gordon and Breach Science Publishers: New York, NY, USA, 1983. [Google Scholar]
- Fender, R.P.; Pooley, G.G.; Brocksopp, C.; Newell, S.J. Rapid infrared flares in GRS 1915+105: Evidence for infrared synchrotron emission. Mon. Not. R. Astron. Soc. 1997, 290, L65–L69. [Google Scholar] [CrossRef] [Green Version]
- Terral, P.; Ferriere, K. Constraints from Faraday rotation on the magnetic field structure in the Galactic halo. Astron. Astrophys. 2017, 600, A29. [Google Scholar] [CrossRef] [Green Version]
- Manchester, R.N. Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. Astrophys. J. 1972, 172, 43. [Google Scholar] [CrossRef]
- Krause, M.; Irwin, J.; Wiegert, T.; Miskolczi, A.; Damas-Segovia, A.; Beck, R.; Li, J.T.; Heald, G.; Müller, P.; Stein, Y.; et al. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations. Astron. Astrophys. 2018, 611, A72. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, S.A.; Ruzmaikin, A.A.; Sokolov, D.D. Kinematic dynamo in random flow. Sov. Phys. Usp. 1985, 28, 307–327. [Google Scholar] [CrossRef]
- Yankova, K.D. Structure of accretion disk in the presence of Magnetic field. Publ. Astron. Soc. Rudjer Bošković 2012, 11, 375–383. [Google Scholar]
- Krause, F.; Raedler, K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Moss, D. On the generation of bisymmetric magnetic field structures in spiral galaxies by tidal interactions. Mon. Not. R. Astron. Soc. 1995, 275, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, A.; Nordlund, A.; Stein, R.F.; Torkelsson, U. Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow. Astrophys. J. 1995, 446, 741. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, K.; Mestel, L. Galactic dynamos and density wave theory—II. An alternative treatment for strong non-axisymmetry. Mon. Not. R. Astron. Soc. 1993, 265, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Arshakian, T.; Beck, R.; Krause, M.; Sokoloff, D. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array. Astron. Astrophys. 2009, 494, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Yankova, K.D. Generation and development of the disk corona. Publ. Astron. Soc. Rudjer Bošković 2013, 12, 375–381. [Google Scholar]
- Mikhailov, E.A. Wavefronts of the magnetic field in galaxies: Asymptotic and numerical approaches. Magnetohydrodynamics 2016, 52, 117–125. [Google Scholar] [CrossRef]
- Andreasyan, R.R.; Mikhailov, E.A.; Andreasyan, H.R. Structure and Features of the Galactic Magnetic-Field Reversals Formation. Astron. Rep. 2020, 64, 189–198. [Google Scholar] [CrossRef]
- Phillips, A. A comparison of the asymptotic and no-z approximations for galactic dynamos. Geophys. Astrophys. Fluid Dyn. 2001, 94, 135–150. [Google Scholar] [CrossRef]
- Woodfinden, A.; Henriksen, R.N.; Irwin, J.; Mora-Partiarroyo, S.C. Evolving galactic dynamos and fits to the reversing rotation measures in the halo of NGC 4631. Astron. Astrophys. 2019, 487, 1498–1516. [Google Scholar] [CrossRef]
- Sur, S.; Subramanian, K.; Brandenburg, A. Kinetic and magnetic α-effects in non-linear dynamo theory. Mon. Not. R. Astron. Soc. 2007, 376, 1238–1250. [Google Scholar] [CrossRef]
- Mikhailov, E.A. Galactic magnetic field reversals and vorticity of transition layers. Magnetohydrodynamics 2017, 53, 357–363. [Google Scholar] [CrossRef]
- Moss, D.; Sokoloff, D.; Suleimanov, V. Dynamo generated magnetic configurations in accretion discs and the nature of quasi-periodic oscillations in accreting binary systems. Astron. Astrophys. 2016, 588, A18. [Google Scholar] [CrossRef] [Green Version]
- Copperwheat, C.M.; Marsh, T.R.; Dhillon, V.S.; Littlefair, S.P.; Hickman, R.; Gänsicke, B.T.; Southworth, J. Physical properties of IP Pegasi: An eclipsing dwarf nova with an unusually cool white dwarf. Mon. Not. R. Astron. Soc. 2010, 402, 1824–1840. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B.; Dunham, M.M.; Pascucci, I.; Bourke, T.L.; Hirano, N.; Longmore, S.; Andrews, S.; Carrasco-González, C.; Forbrich, J.; Galván-Madrid, R.; et al. A 1.3 mm SMA survey of 29 variable young stellar objects. Astron. Astrophys. 2018, 612, A54. [Google Scholar] [CrossRef]
- Kotko, I.; Lasota, J.-P. The viscosity parameter α and the properties of accretion disc outbursts in close binaries. Astron. Astrophys. 2012, 545, A115. [Google Scholar] [CrossRef] [Green Version]
- Luna, G.J.; Mukai, K.; Sokoloski, J.L.; Nelson, T.; Kuin, P.; Segreto, A.L.; Cusumano, G.I.; Arancibia, M.J.; Nuñez, N.E. Dramatic change in the boundary layer in the symbiotic recurrent nova T Coronae Borealis. Astron. Astrophys. 2018, 619, A61. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, R.N.; Woodfinden, A.; Irwin, J.A. Exact axially symmetric galactic dynamos. Mon. Not. R. Astron. Soc. 2018, 476, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, R.N.; Woodfinden, A.; Irwin, J.A. Exact spirally symmetric galactic dynamos. arXiv 2018, arXiv:1802.07689. [Google Scholar]
- Henriksen, R.N. Steady Galactic Dynamos and Observational Consequences I: Halo Magnetic Fields. arXiv 2017, arXiv:1704.06954. [Google Scholar]
Mode | Growth Rate | Remarks | |||
---|---|---|---|---|---|
1 | 1 | −182.2 | Monotonous growth | 0.4608 | |
2 | 1 | −139.3 | Monotonous growth | 0.5079 | |
1 | 0,1 | −5.836 | Decay | −1.781 | |
0.2 | 1 | −16.65 | Decay | −1.804 | |
8 | 1 | −2.561 | Monotonous growth | 2.886 | |
9 | 1 | −2.120 | Monotonous growth | 3.215 | |
1 | 2 | −1901 | Monotonous growth | 0.529 | |
0.2 | 0.1 | −5.427 | Decay | −2.383 | |
0.02 | 0.1 | −5.342 | Decay | −2.494 | |
2 | 4 | −1092 | Monotonous growth | 3.067 | |
1 | 8 | −17670 | Monotonous growth | 3.098 | |
2 | 8 | −7453 | Monotonous growth | 5.606 | |
4 | 5 | −874.8 | Monotonous growth | 6.444 | |
0.575 | 5.171 | −10493 | Monotonous growth | 0.6405 | Corresponds to IP Peg [25] |
0.253 | 2.274 | −17.30 | Monotonous growth | 0.2378 | Corresponds to FU Ori [26] |
0.461 | 4.148 | −276.9 | Monotonous growth | 0.4079 | Corresponds to EX Dra [27] |
0.460 | 4.138 | −270.3 | Monotonous growth | 0.4037 | Corresponds to MU Cen [27] |
1.418 | 12.763 | −3666 | Monotonous growth | 6.051 | Corresponds to T CrB [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, E.; Boneva, D.; Pashentseva, M. No-z Model for Magnetic Fields of Different Astrophysical Objects and Stability of the Solutions. Data 2021, 6, 4. https://doi.org/10.3390/data6010004
Mikhailov E, Boneva D, Pashentseva M. No-z Model for Magnetic Fields of Different Astrophysical Objects and Stability of the Solutions. Data. 2021; 6(1):4. https://doi.org/10.3390/data6010004
Chicago/Turabian StyleMikhailov, Evgeny, Daniela Boneva, and Maria Pashentseva. 2021. "No-z Model for Magnetic Fields of Different Astrophysical Objects and Stability of the Solutions" Data 6, no. 1: 4. https://doi.org/10.3390/data6010004
APA StyleMikhailov, E., Boneva, D., & Pashentseva, M. (2021). No-z Model for Magnetic Fields of Different Astrophysical Objects and Stability of the Solutions. Data, 6(1), 4. https://doi.org/10.3390/data6010004