Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition
Abstract
:1. Summary
Name of Database | Location of Body | Availability | No. of Subjects | Number of Sessions | Average Interval | Total Records | Duration of a Record |
---|---|---|---|---|---|---|---|
UofTDB [19] | Fingers | Upon Request | <100 | 6 | 6 Months | - | 2–5 min |
ECG-ID [20] | Hands | Public | 90 | 1–20 | 6 Months | 310 | 20 s |
CYBHi [21] (Long-term) | Fingers | Public | 63 | 2 | 3 Months | 126 | 2 min |
Heartprint (Our database) | Fingers | Public | 199 | 4 | 1572.2 days (S1–S3L) | 1539 | 15 s |
2. Data Collection Process
2.1. Registration
2.2. Signal Acquisition
2.3. Database Organization
3. Data Description
3.1. Metadata
3.2. Raw ECG Signal
4. Technical Validation Method
4.1. Biometric Authentication
4.2. Biometric Identification
5. User Notes
5.1. Mixed-Session Validation
5.2. Cross-Session Validation
5.3. Code for Interfacing the database
6. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theofanos, M.; Stanton, B.; Wolfson, C.A. Usability & Biometrics Ensuring Successful Biometric Systems; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2008. [Google Scholar]
- ISO/IEC 30107-1:2016; Information Technology—Biometric Presentation Attack Detection—Part 1: Framework. ANSI: Washington, DC, USA, 2016. Available online: https://webstore.ansi.org/Standards/ISO/ISOIEC301072016 (accessed on 12 June 2022).
- Wu, S.; Hung, P.; Swindlehurst, A.L. ECG biometric recognition: Unlinkability, irreversibility and security. IEEE Internet Things J. 2020, 8, 487–500. [Google Scholar] [CrossRef]
- Islam, M.S.; Alajlan, N.; Bazi, Y.; Hichri, H.S. HBS: A novel biometric feature based on heartbeat morphology. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Uwaechia, A.N.; Ramli, D.A. A comprehensive survey on ECG signals as new biometric modality for human authentication: Recent advances and future challenges. IEEE Access 2021, 9, 97760–97802. [Google Scholar] [CrossRef]
- Srivastva, R.; Singh, Y.N.; Singh, A. Statistical independence of ECG for biometric authentication. Pattern Recognit. 2022, 127, 108640. [Google Scholar] [CrossRef]
- Islam, M.S.; Alajlan, N. Biometric template extraction from a heartbeat signal captured from fingers. Multimed. Tools Appl. 2016, 76, 12709–12733. [Google Scholar] [CrossRef]
- Lourenço, A.; Silva, H.; Fred, A. Unveiling the biometric potential of finger-based ECG signals. Comput. Intell. Neurosci. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H.; Al-Ahmadi, S. A multilayer system to boost the robustness of fingerprint authentication against presentation attacks by fusion with heart-signal. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5132–5143. [Google Scholar] [CrossRef]
- Jomaa, R.M.; Mathkour, H.; Bazi, Y.; Islam, M.S. End-to-end deep learning fusion of fingerprint and electrocardiogram signals for presentation attack detection. Sensor 2020, 20, 2085. [Google Scholar] [CrossRef] [Green Version]
- Rathore, A.S.; Li, Z.; Zhu, W.; Jin, Z.; Xu, W. A survey on heart biometrics. ACM Comput. Surv. 2021, 53, 1–38. [Google Scholar] [CrossRef]
- Islam, M.S.; AlHichri, H.; Bazi, Y.; Ammour, N.; Alajlan, N.; Jomaa, R.M. Heartprint: A Multisession ECG Dataset for Biometric Recognition. Available online: https://figshare.com/articles/dataset/Heartprint_A_Multisession_ECG_Dataset_for_Biometric_Recognition/20105354/3 (accessed on 18 October 2022).
- Islam, M.S.; Alajlan, N. An Efficient QRS Detection Method for ECG Signal Captured from Fingers. In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW, San Jose, CA, USA, 15–19 July 2013. [Google Scholar]
- Islam, M.S.; Alajlan, N. Model-based alignment of heartbeat morphology for enhancing human recognition capability. Comput. J. 2015, 58, 2622–2635. [Google Scholar] [CrossRef]
- Islam, S.; Ammour, N.; Alajlan, N.; Abdullah-Al-Wadud, M. Selection of heart-biometric templates for fusion. IEEE Access 2017, 5, 1753–1761. [Google Scholar] [CrossRef]
- Islam, M.S. Using ECG signal as an entropy source for efficient generation of long random bit sequences. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5144–5155. [Google Scholar] [CrossRef]
- Alharbi, S.; Islam, M.S.; Alahmadi, S. Time-invariant cryptographic key generation from cardiac signals. Proc. Future Technol. Conf. 2019, 1070, 338–352. [Google Scholar] [CrossRef]
- Hamad, N.; Rahman, S.M.M.; Islam, M.S. Novel Remote Authentication Protocol Using Heart-Signals with Chaos Cryptography. In Proceedings of the 2017 International Conference on Informatics, Health and Technology, ICIHT, Riyadh, Saudi Arabia, 21–23 February 2017. [Google Scholar]
- Pouryayevali, S.; Wahabi, S.; Hari, S.; Hatzinakos, D. On Establishing Evaluation Standards for ECG Biometrics. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3774–3778. [Google Scholar] [CrossRef]
- ECG-ID Database v1.0.0. Available online: https://physionet.org/content/ecgiddb/1.0.0/ (accessed on 30 May 2022).
- Da Silva, H.P.; Lourenço, A.; Fred, A.; Raposo, N.; Aires-de-Sousa, M. Check your biosignals here: A new dataset for off-the-person ECG biometrics. Comput. Methods Programs Biomed. 2014, 113, 503–514. [Google Scholar] [CrossRef]
- Goshvarpour, A. Gender and age classification using a new poincare section-based feature set of ECG. Signal Image Video Process. 2019, 13, 531–539. [Google Scholar] [CrossRef]
- Attia, Z.I.; Friedman, P.A.; Noseworthy, P.A.; Lopez-Jimenez, F.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Munger, T.M.; Asirvatham, S.J.; Scott, C.G.; et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ. Arrhythmia Electrophysiol. 2019, 12, e007284. [Google Scholar] [CrossRef]
- Islam, M.S.; Alajlan, N. Augmented-Hilbert Transform for Detecting Peaks of a Finger-ECG Signal. In Proceedings of the Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 8–10 December 2014; pp. 864–867. [Google Scholar]
- Jomaa, R.M.; Islam, M.S.; Mathkour, H. Enhancing the information content of fingerprint biometrics with heartbeat signal. In Proceedings of the 2015 World Symposium on Computer Networks and Information Security (WSCNIS), Hammamet, Tunisia, 19–21 September 2015. [Google Scholar] [CrossRef]
- Alduwaile, D.; Islam, M.S. Single Heartbeat ECG Biometric Recognition Using Convolutional Neural Network. In Proceedings of the 3rd International Conference on Advanced Science and Engineering, ICOASE 2020, Virtual Conference, 23–24 December 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 145–150. [Google Scholar]
- AlDuwaile, D.A.; Islam, M.S. Using convolutional neural network and a single heartbeat for ECG biometric recognition. Entropy 2021, 23, 733. [Google Scholar] [CrossRef]
- Chan, A.D.C.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253. [Google Scholar] [CrossRef]
- Unar, J.A.; Seng, W.C.; Abbasi, A. A review of biometric technology along with trends and prospects. Pattern Recognit. 2014, 47, 2673–2688. [Google Scholar] [CrossRef]
- Al Rahhal, M.M.; Bazi, Y.; Al Zuair, M.; Othman, E.; BenJdira, B. Convolutional neural networks for electrocardiogram classification. J. Med. Biol. Eng. 2018, 38, 1014–1025. [Google Scholar] [CrossRef]
- Ebrahimi, Z.; Loni, M.; Daneshtalab, M.; Gharehbaghi, A. A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 2020, 7, 100033. [Google Scholar] [CrossRef]
- Ammour, N.; Alhichri, H.; Bazi, Y.; Alajlan, N. LwF-ECG: Learning-without-forgetting approach for electrocardiogram heartbeat classification based on memory with task selector. Comput. Biol. Med. 2021, 137, 104807. [Google Scholar] [CrossRef]
- Bazi, Y.; Alajlan, N.; AlHichri, H.; Malek, S. Domain Adaptation Methods for ECG Classification. In Proceedings of the 2013 International Conference on Computer Medical Applications (ICCMA), Sousse, Tunisia, 20–22 January 2013. [Google Scholar] [CrossRef]
Session | Number of Subjects | Total Records for All Subjects | Maximum Number of Record pre Subject | Minimum Number of Record pre Subject |
---|---|---|---|---|
S1 | 199 | 476 | 6 | 2 |
S2 | 199 | 464 | 5 | 2 |
S3R | 109 | 365 | 6 | 3 |
S3L | 78 | 234 | 3 | 3 |
Session | Average Interval from S1 (in Days) | Max Interval from S1 (in Days) | Min Interval from S1 (in Days) |
---|---|---|---|
S2 | 47.5 | 241 | 5 |
S3R | 1054.7 | 3432 | 36 |
S3L | 1572.2 | 3432 | 71 |
Authentication Protocol | Gallery Set | Probe Set | Error (%) (EER) | Accuracy (%) (100–EER) |
---|---|---|---|---|
Same Session | S1 | S1 | 5.57 | 94.43 |
S2 | S2 | 4.65 | 95.35 | |
S3R | S3R | 6.02 | 93.98 | |
S3L | S3L | 5.12 | 94.88 | |
Cross Session | S1 | S2 | 16.42 | 83.58 |
S2 | S1 | 16.36 | 83.64 | |
S1 | S3R | 53.31 | 46.69 | |
S2 | S3R | 50.00 | 50.00 | |
S1 | S3L | 53.87 | 46.13 | |
S2 | S3L | 50.00 | 50.00 |
Identification Protocol | Train Set | Test Set | Accuracy | Error |
---|---|---|---|---|
Mixed Session | 80% of s1 + s2 | 20% of s1 + s2 | 100.00% | 0.00% |
Cross Session | 100% of s1 + s2 | 100% of S3R | 69.35% | 30.65% |
100% of s1 + s2 | 100% of S3L | 56.67% | 43.33% | |
100% of S1 | 100% of S2 | 54.15% | 45.85% | |
100% of S1 | 100% of S3R | 45.66% | 54.34% | |
100% of S1 | 100% of S3L | 38.22% | 61.78% | |
100% of S2 | 100% of S1 | 50.38% | 49.62% | |
100% of S2 | 100% of S3R | 52.99% | 47.01% | |
100% of S2 | 100% of S3L | 35.72% | 64.28% |
Validation Process | Training and Validation | Testing (Short Interval & Resting) | Testing (Reading Effect) | Testing (Long Interval Effect) | ||||
---|---|---|---|---|---|---|---|---|
Session | Data | Session | Data | Session | Data | Session | Data | |
Mixed Session | S1, S2 | (80–90%) | S1, S2 | (20–10%) | S3R | 100% | S3L | 100% |
Cross Session | S1 | 100% | S2 | 100% | S3R | 100% | S3L | 100% |
S2 | 100% | S1 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Alhichri, H.; Bazi, Y.; Ammour, N.; Alajlan, N.; Jomaa, R.M. Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition. Data 2022, 7, 141. https://doi.org/10.3390/data7100141
Islam MS, Alhichri H, Bazi Y, Ammour N, Alajlan N, Jomaa RM. Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition. Data. 2022; 7(10):141. https://doi.org/10.3390/data7100141
Chicago/Turabian StyleIslam, Md Saiful, Haikel Alhichri, Yakoub Bazi, Nassim Ammour, Naif Alajlan, and Rami M. Jomaa. 2022. "Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition" Data 7, no. 10: 141. https://doi.org/10.3390/data7100141
APA StyleIslam, M. S., Alhichri, H., Bazi, Y., Ammour, N., Alajlan, N., & Jomaa, R. M. (2022). Heartprint: A Dataset of Multisession ECG Signal with Long Interval Captured from Fingers for Biometric Recognition. Data, 7(10), 141. https://doi.org/10.3390/data7100141