Indoor Temperature and Relative Humidity Dataset of Controlled and Uncontrolled Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition Devices
2.2. Description of the Measurement Areas
2.3. Description of the Dataset Organization
3. Temperature and Relative Humidity Dataset
3.1. Sampling Times
3.2. Examples of Temperature and Humidity Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Liu, W.; Sha, D.; Kumar, S.; Chang, E.; Arora, V.; Lan, H.; Li, Y.; Wang, Z.; Zhang, Y.; et al. An environmental data collection for COVID-19 pandemic research. Data 2020, 5, 68. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, H.; Huang, H.; Yi, N.; Shi, X.; Xie, S.; Li, Y.; Ye, Z.; Feng, P.; Lin, T.; et al. Wearable circuits sintered at room temperature directly on the skin surface for health monitoring. ACS Appl. Mater. Interfaces 2020, 12, 45504–45515. [Google Scholar] [CrossRef] [PubMed]
- Marques, G.C.; von Seggern, F.; Dehm, S.; Breitung, B.; Hahn, H.; Dasgupta, S.; Tahoori, M.B.; Aghassi-Hagmann, J. Influence of humidity on the performance of composite polymer electrolyte-gated field-effect transistors and circuits. IEEE Trans. Electron Devices 2019, 66, 2202–2207. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Parra, M.; Lloret, J.; Mauri, P.V.; Lorenz, P. Deployment strategies of soil monitoring WSN for precision agriculture irrigation scheduling in rural areas. Sensors 2021, 21, 1693. [Google Scholar] [CrossRef]
- Mylostyvyi, R.; Chernenko, O. Correlations between Environmental Factors and Milk Production of Holstein Cows. Data 2019, 4, 103. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Lacasse, M.; Armstrong, M. Climate Data to Undertake Hygrothermal and Whole Building Simulations Under Projected Climate Change Influences for 11 Canadian Cities. Data 2019, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor air humidity, air quality, and health–An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Tham, S.; Thompson, R.; Landeg, O.; Murray, K.A.; Waite, T. Indoor temperature and health: A global systematic review. Public Health 2020, 179, 9–17. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Z.; Deng, S.; Zhang, X. A review on temperature and humidity control methods focusing on air-conditioning equipment and control algorithms applied in small-to-medium-sized buildings. Energy Build. 2018, 162, 163–176. [Google Scholar] [CrossRef]
- Vela, A.; Alvarado-Uribe, J.; Ceballos, H.G. Indoor Environment Dataset to Estimate Room Occupancy. Data 2021, 6, 133. [Google Scholar] [CrossRef]
- Monika, F.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Abhijeet, G.G.; Sinha, S.L.; Verma, T.N.; Dewangan, S.K. Investigation of indoor environment quality and factors affecting human comfort: A critical review. Build. Environ. 2021, 204, 108146. [Google Scholar] [CrossRef]
- Kong, D.; Liu, H.; Wu, Y.; Li, B.; Wei, S.; Yuan, M. Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation. Build. Environ. 2019, 155, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Wang, F.; Carpenter, M.; Weller, R.B.; Tabor, D.; Payne, S.R. The effect of indoor thermal and humidity condition on the oldest-old people’s comfort and skin condition in winter. Build. Environ. 2020, 174, 106790. [Google Scholar] [CrossRef]
- Marková, I.; Tureková, I.; Jaďuďová, J.; Hroncová, E. Analysis of Hygrothermal Microclimatic (HTM) Parameters in Specific Food Storage Environments in Slovakia. Int. J. Environ. Res. Public Health 2020, 17, 2092. [Google Scholar] [CrossRef] [Green Version]
- Kramer, R.; Schellen, L.; Schellen, H. Adaptive temperature limits for air-conditioned museums in temperate climates. Build. Res. Inf. 2017, 46, 686–697. [Google Scholar] [CrossRef]
- Kramer, R.P.; van Schijndel, A.W.M.; Schellen, H.L. The importance of integrally simulating the building, HVAC and control systems, and occupants’ impact for energy predictions of buildings including temperature and humidity control: Validated case study museum Hermitage Amsterdam. J. Build. Perform. Simul. 2017, 10, 272–293. [Google Scholar] [CrossRef] [Green Version]
- Magdalena, N.; Krzysztof, T.P. Conditions of the Internal Microclimate in the Museum. J. Ecol. Eng. 2020, 21, 205–209. [Google Scholar]
- Yu, M.; Zhang, X.; Zhao, Y.; Zhang, X. A novel passive method for regulating both air temperature and relative humidity of the microenvironment in museum display cases. Energies 2019, 12, 3768. [Google Scholar] [CrossRef] [Green Version]
- Shuang, X.; Dongyang, Z.; Zhen, L.; Hui, Z. A Combined Control Method of Temperature and Humidity Inside the Museum Cabinet. In Proceedings of the IEEE ICMTMA 2019, Qiqihar, China, 28–29 April 2019; pp. 322–326. [Google Scholar]
- Sensor Data from Intel Berkeley Research Lab. Available online: http://db.csail.mit.edu/labdata/labdata.html (accessed on 6 May 2022).
- He, J.; Li, Y.; Zhang, X.; Li, J. Missing and Corrupted Data Recovery in Wireless Sensor Networks Based on Weighted Robust Principal Component Analysis. Sensors 2022, 22, 1992. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.K.; Marghescu, I.; Alduais, N.A. Performance of Data Reduction Algorithms for Wireless Sensor Network (WSN) using Different Real-Time Datasets: Analysis Study. Int. J. Adv. Comput. Sci. Appl. 2022, 13. [Google Scholar] [CrossRef]
- Al-Shabi, M.; Abuhamdah, A. Using deep learning to detecting abnormal behavior in internet of things. Int. J. Electr. Comput. Eng. 2022, 12, 2088–8708. [Google Scholar] [CrossRef]
- Esmaeili, H.; Bidgoli, B.M.; Hakami, V. CMML: Combined metaheuristic-machine learning for adaptable routing in clustered wireless sensor networks. Appl. Soft Comput. 2022, 118, 108477. [Google Scholar] [CrossRef]
- Alghanmi, N.; Alotaibi, R.; Buhari, S.M. Machine Learning Approaches for Anomaly Detection in IoT: An Overview and Future Research Directions. Wirel. Pers. Commun. 2021, 122, 2309–2324. [Google Scholar] [CrossRef]
- Dash, L.; Pattanayak, B.K.; Mishra, S.K.; Sahoo, K.S.; Jhanjhi, N.Z.; Baz, M.; Masud, M. A Data Aggregation Approach Exploiting Spatial and Temporal Correlation among Sensor Data in Wireless Sensor Networks. Electronics 2022, 11, 989. [Google Scholar] [CrossRef]
- Ramadan, L.; Shahrour, I.; Mroueh, H.; Chehade, F.H. Use of Machine Learning Methods for Indoor Temperature Forecasting. Future Internet 2021, 13, 242. [Google Scholar] [CrossRef]
- Attoue, N.; Shahrour, I.; Younes, R. Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting. Energies 2018, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Sadi, A.; Mera, D.; Fernández-Delgado, M.; Alkhabbas, F.; Olsson, C.M.; Davidsson, P. A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings. In Proceedings of the 2018 4th International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Baronti, P.; Barsocchi, P.; Chessa, S.; Mavilia, F.; Palumbo, F. Indoor Bluetooth Low Energy Dataset for Localization, Tracking, Occupancy, and Social Interaction. Sensors 2018, 18, 4462. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Atoche, A.; Vázquez-Castillo, J.; Osorio-De-La-Rosa, E.; Heredia-Lozano, J.C.; Viñas, J.A.; Cetina, R.Q.; Estrada-López, J.J. An energy-saving data statistics-driven management technique for bio-powered indoor wireless sensor nodes. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Longo, E.; Redondi, A.E.C.; Cesana, M. Accurate occupancy estimation with WiFi and bluetooth/BLE packet capture. Comput. Netw. 2019, 163, 106876. [Google Scholar] [CrossRef]
- Krug, S.; O’Nils, M. Modeling and comparison of delay and energy cost of IoT data transfers. IEEE Access 2019, 7, 58654–58675. [Google Scholar] [CrossRef]
- Rondón, R.; Mahmood, A.; Grimaldi, S.; Gidlund, M. Understanding the performance of bluetooth mesh: Reliability, delay, and scalability analysis. IEEE Internet Things J. 2019, 7, 2089–2101. [Google Scholar] [CrossRef] [Green Version]
- Botero-Valencia, J.; Castano-Londono, L.; Marquez-Viloria, D. Indoor Temperature and Relative Humidity dataset. Mendeley Data 2022, V2. [Google Scholar] [CrossRef]
ID | Control | Standard Indication [°C] | Sensor Measurement [°C] | Correction [°C] | Coverage Factor k | Expanded Uncertainty [°C] |
---|---|---|---|---|---|---|
1 | 15 | 15.30 | 15.45 | −0.15 | 2 | ±0.49 |
1 | 20 | 20.03 | 20.00 | 0.03 | 2 | ±0.49 |
1 | 30 | 29.59 | 29.45 | 0.14 | 2 | ±0.49 |
1 | 40 | 38.75 | 37.85 | 0.90 | 2 | ±0.78 |
2 | 15 | 15.30 | 15.60 | −0.30 | 2 | ±0.49 |
2 | 20 | 20.03 | 20.00 | 0.03 | 2 | ±0.49 |
2 | 30 | 29.59 | 29.35 | 0.24 | 2 | ±0.49 |
2 | 40 | 38.75 | 37.75 | 1.00 | 2 | ±0.77 |
3 | 15 | 15.30 | 15.45 | −0.15 | 2 | ±0.49 |
3 | 20 | 20.03 | 19.90 | 0.13 | 2 | ±0.49 |
3 | 30 | 29.59 | 29.25 | 0.34 | 2 | ±0.49 |
3 | 40 | 38.75 | 37.50 | 1.25 | 2 | ±0.76 |
4 | 15 | 15.30 | 15.35 | −0.05 | 2 | ±0.49 |
4 | 20 | 20.03 | 19.90 | 0.13 | 2 | ±0.49 |
4 | 30 | 29.59 | 29.70 | −0.11 | 2 | ±0.49 |
4 | 40 | 38.75 | 38.45 | 0.30 | 2 | ±0.77 |
5 | 15 | 15.30 | 15.35 | −0.05 | 2 | ±0.49 |
5 | 20 | 20.03 | 20.00 | 0.03 | 2 | ±0.49 |
5 | 30 | 29.59 | 29.70 | −0.11 | 2 | ±0.49 |
5 | 40 | 38.75 | 38.30 | 0.45 | 2 | ±0.76 |
6 | 15 | 15.30 | 15.35 | −0.05 | 2 | ±0.49 |
6 | 20 | 20.03 | 19.95 | 0.08 | 2 | ±0.49 |
6 | 30 | 29.59 | 29.55 | 0.04 | 2 | ±0.49 |
6 | 40 | 38.75 | 38.30 | 0.45 | 2 | ±0.77 |
7 | 15 | 15.30 | 15.50 | −0.20 | 2 | ±0.49 |
7 | 20 | 20.03 | 20.10 | −0.07 | 2 | ±0.49 |
7 | 30 | 29.59 | 29.50 | 0.09 | 2 | ±0.49 |
7 | 40 | 38.75 | 38.40 | 0.35 | 2 | ±0.76 |
8 | 15 | 15.30 | 15.55 | −0.25 | 2 | ±0.49 |
8 | 20 | 20.03 | 20.10 | −0.07 | 2 | ±0.49 |
8 | 30 | 29.59 | 29.50 | 0.09 | 2 | ±0.49 |
8 | 40 | 38.75 | 38.55 | 0.20 | 2 | ±0.76 |
9 | 15 | 15.30 | 15.30 | 0.00 | 2 | ±0.49 |
9 | 20 | 20.03 | 19.90 | 0.13 | 2 | ±0.49 |
9 | 30 | 29.59 | 29.35 | 0.24 | 2 | ±0.49 |
9 | 40 | 38.75 | 38.55 | 0.20 | 2 | ±0.76 |
10 | 15 | 15.30 | 14.85 | 0.45 | 2 | ±0.49 |
10 | 20 | 20.03 | 19.60 | 0.43 | 2 | ±0.49 |
10 | 30 | 29.59 | 29.30 | 0.29 | 2 | ±0.49 |
10 | 40 | 38.75 | 39.10 | −0.35 | 2 | ±0.76 |
11 | 15 | 15.30 | 14.85 | 0.45 | 2 | ±0.49 |
11 | 20 | 20.03 | 19.70 | 0.33 | 2 | ±0.49 |
11 | 30 | 29.59 | 29.45 | 0.14 | 2 | ±0.49 |
11 | 40 | 38.75 | 39.45 | −0.70 | 2 | ±0.76 |
12 | 15 | 15.30 | 14.70 | 0.60 | 2 | ±0.49 |
12 | 20 | 20.03 | 19.70 | 0.33 | 2 | ±0.49 |
12 | 30 | 29.59 | 29.45 | 0.14 | 2 | ±0.49 |
12 | 40 | 38.75 | 39.25 | −0.50 | 2 | ±0.77 |
ID | Control | Standard Indication [%HR] | Sensor Measurement [%HR] | Correction [%HR] | Coverage Factor k | Expanded Uncertainty [%HR] |
---|---|---|---|---|---|---|
1 | 30 | 30.3 | 32.3 | −2.0 | 2 | ±1.6 |
1 | 50 | 49.7 | 52.1 | −2.4 | 2 | ±2.5 |
1 | 60 | 59.7 | 61.5 | −1.8 | 2 | ±2.1 |
1 | 70 | 69.8 | 70.8 | −1.0 | 2 | ±2.3 |
2 | 30 | 30.3 | 33.8 | −3.5 | 2 | ±1.6 |
2 | 50 | 49.7 | 53.4 | −3.7 | 2 | ±2.5 |
2 | 60 | 59.7 | 62.5 | −2.8 | 2 | ±2.1 |
2 | 70 | 69.8 | 71.1 | −1.3 | 2 | ±2.3 |
3 | 30 | 30.3 | 32.4 | −2.1 | 2 | ±1.6 |
3 | 50 | 49.7 | 52.4 | −2.7 | 2 | ±2.5 |
3 | 60 | 59.7 | 61.6 | −1.9 | 2 | ±2.1 |
3 | 70 | 69.8 | 71.0 | −1.2 | 2 | ±2.3 |
4 | 30 | 30.3 | 34.3 | −4.0 | 2 | ±1.6 |
4 | 50 | 49.7 | 53.3 | −3.6 | 2 | ±2.5 |
4 | 60 | 59.7 | 62.3 | −2.6 | 2 | ±2.1 |
4 | 70 | 69.8 | 71.2 | −1.4 | 2 | ±2.3 |
5 | 30 | 30.3 | 34.3 | −4.0 | 2 | ±1.6 |
5 | 50 | 49.7 | 53.7 | −4.0 | 2 | ±2.5 |
5 | 60 | 59.7 | 62.9 | −3.2 | 2 | ±2.1 |
5 | 70 | 69.8 | 71.4 | −1.6 | 2 | ±2.3 |
6 | 30 | 30.3 | 31.8 | −1.5 | 2 | ±1.6 |
6 | 50 | 49.7 | 51.8 | −2.1 | 2 | ±2.5 |
6 | 60 | 59.7 | 61.0 | −1.3 | 2 | ±2.1 |
6 | 70 | 69.8 | 70.4 | −0.6 | 2 | ±2.3 |
7 | 30 | 30.3 | 34.1 | −3.8 | 2 | ±1.6 |
7 | 50 | 49.7 | 53.6 | −3.9 | 2 | ±2.5 |
7 | 60 | 59.7 | 62.6 | −2.9 | 2 | ±2.1 |
7 | 70 | 69.8 | 71.8 | −2.0 | 2 | ±2.3 |
8 | 30 | 30.3 | 32.1 | −1.8 | 2 | ±1.6 |
8 | 50 | 49.7 | 51.9 | −2.2 | 2 | ±2.5 |
8 | 60 | 59.7 | 61.5 | −1.8 | 2 | ±2.1 |
8 | 70 | 69.8 | 70.7 | −0.9 | 2 | ±2.3 |
9 | 30 | 30.3 | 32.2 | −1.9 | 2 | ±1.6 |
9 | 50 | 49.7 | 52.4 | −2.7 | 2 | ±2.5 |
9 | 60 | 59.7 | 61.4 | −1.7 | 2 | ±2.1 |
9 | 70 | 69.8 | 71.6 | −1.8 | 2 | ±2.3 |
10 | 30 | 30.3 | 32.8 | −2.5 | 2 | ±1.7 |
10 | 50 | 49.7 | 52.6 | −2.9 | 2 | ±2.6 |
10 | 60 | 59.7 | 62.1 | −2.4 | 2 | ±2.1 |
10 | 70 | 69.8 | 70.7 | −0.9 | 2 | ±2.3 |
11 | 30 | 30.3 | 32.6 | −2.3 | 2 | ±1.6 |
11 | 50 | 49.7 | 52.2 | −2.5 | 2 | ±2.5 |
11 | 60 | 59.7 | 61.6 | −1.9 | 2 | ±2.1 |
11 | 70 | 69.8 | 70.3 | −0.5 | 2 | ±2.3 |
12 | 30 | 30.3 | 32.4 | −2.1 | 2 | ±1.6 |
12 | 50 | 49.7 | 52.3 | −2.6 | 2 | ±2.5 |
12 | 60 | 59.7 | 62.0 | −2.3 | 2 | ±2.1 |
12 | 70 | 69.8 | 70.7 | −0.9 | 2 | ±2.3 |
ID | - | Filename |
---|---|---|
1 | 58:2D:34:32:3C:EA | ea3c32342d58 |
2 | 4C:65:A8:DA:08:16 | 1608daa8654c |
3 | 58:2D:34:32:3C:97 | 973c32342d58 |
4 | 4C:65:A8:DA:07:AC | ac07daa8654c |
5 | 4C:65:A8:DA:08:46 | 4608daa8654c |
6 | 58:2D:34:32:3C:BB | bb3c32342d58 |
7 | 4C:65:A8:DA:08:2E | 2e08daa8654c |
8 | 58:2D:34:32:41:23 | 234132342d58 |
9 | 58:2D:34:36:17:4D | 4d1736342d58 |
10 | 58:2D:34:36:18:E6 | e61836342d58 |
11 | 58:2D:34:36:16:D4 | d41636342d58 |
12 | 58:2D:34:36:14:D6 | d61436342d58 |
ID | LSCR | Museum | ||||||
---|---|---|---|---|---|---|---|---|
NS | NS | |||||||
[ms] | [ms] | [ms] | [ms] | [ms] | [ms] | |||
1 | 56,679 | 3133 | 746,917 | 47,199 | 57,854 | 3116 | 1,198,834 | 46,267 |
2 | 59,385 | 3126 | 623,010 | 45,050 | 56,019 | 3129 | 1,798,383 | 47,766 |
3 | 58,519 | 3101 | 618,195 | 45,718 | 42,931 | 3151 | 62,836,468 | 60,775 |
4 | 60,707 | 3162 | 638,357 | 44,070 | 75,982 | 3128 | 763,660 | 35,228 |
5 | 61,802 | 3144 | 688,769 | 43,289 | 73,195 | 3083 | 1,226,431 | 36,574 |
6 | 55,462 | 2451 | 725,660 | 48,236 | 48,053 | 3158 | 1,250,817 | 55,705 |
7 | 58,147 | 3160 | 698,166 | 46,009 | 67,127 | 3070 | 639,113 | 39,876 |
8 | 62,730 | 3139 | 643,523 | 42,648 | 57,893 | 3100 | 720,683 | 46,237 |
9 | 60,256 | 3077 | 782,862 | 44,399 | 72,080 | 3105 | 603,800 | 37,140 |
10 | 54,308 | 3117 | 669,049 | 49,263 | 62,108 | 3117 | 678,896 | 43,094 |
11 | 56,976 | 3134 | 685,116 | 46,957 | 33,267 | 3140 | 83,725,641 | 77,941 |
12 | 55,194 | 3053 | 844,396 | 48,472 | 41,415 | 3157 | 4,635,723 | 64,555 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botero-Valencia, J.; Castano-Londono, L.; Marquez-Viloria, D. Indoor Temperature and Relative Humidity Dataset of Controlled and Uncontrolled Environments. Data 2022, 7, 81. https://doi.org/10.3390/data7060081
Botero-Valencia J, Castano-Londono L, Marquez-Viloria D. Indoor Temperature and Relative Humidity Dataset of Controlled and Uncontrolled Environments. Data. 2022; 7(6):81. https://doi.org/10.3390/data7060081
Chicago/Turabian StyleBotero-Valencia, Juan, Luis Castano-Londono, and David Marquez-Viloria. 2022. "Indoor Temperature and Relative Humidity Dataset of Controlled and Uncontrolled Environments" Data 7, no. 6: 81. https://doi.org/10.3390/data7060081
APA StyleBotero-Valencia, J., Castano-Londono, L., & Marquez-Viloria, D. (2022). Indoor Temperature and Relative Humidity Dataset of Controlled and Uncontrolled Environments. Data, 7(6), 81. https://doi.org/10.3390/data7060081