Multi-Resolution Discrete Cosine Transform Fusion Technique Face Recognition Model
Abstract
:1. Introduction
2. Literature Review
3. Proposed Model (FFLFRM)
3.1. Face Detection with Haar-Cascade
3.2. Global Facial Feature Extraction with Principal Component Analysis (PCA)
3.3. Local Facial Feature Extraction with LBP
3.4. Feature Fusion with Multi-Resolution Discrete Cosine Transform (MRDCT)
3.5. Face Recognition with Artificial Neural Network (ANN)
4. Experimental Results and Discussion
4.1. Pose Change
4.2. Illumination Change
4.3. Expression Change
4.4. Low-Resolution Images
4.5. Occlusion Challenge
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Yuen, P.C.; Lai, J.-H.; Li, C.-H. Face Recognition Using Local and Global Features. EURASIP J. Adv. Signal Process. 2004, 2004, 870582. [Google Scholar] [CrossRef] [Green Version]
- de Carrera, P.; Marques, I. Face Recognition Algorithms. Master’s Thesis, Universidad Euskal Herriko, Leioa-Biscay, Spain, 2010. [Google Scholar]
- Taskiran, M.; Kahraman, N.; Erdem, C.E. Face recognition: Past, Present, And Future (A Review). Digit. Signal Process. 2020, 106, 102809. [Google Scholar] [CrossRef]
- Pavlović, M.; Stojanović, B.; Petrović, R.; Stanković, S. Fusion of visual and thermal imagery for illumination invariant face recognition system. In Proceedings of the 2018 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20 November 2018. [Google Scholar] [CrossRef]
- Al-Allaf, O. Review of face detection systems based artificial neural networks algorithms. arXiv 2014, arXiv:1404.1292. [Google Scholar] [CrossRef]
- Ding, H. Combining 2D Facial Texture and 3D Face Morphology for Estimating People’s Soft Biometrics and Recognizing Facial Expressions. Ph.D. Thesis, Université de Lyon, Lyon, France, 2016. [Google Scholar]
- Nguyen, H. Contributions to Facial Feature Extraction for Face Recognition. Ph.D. Thesis, Université de Grenoble, Saint-Martin-d’Hères, France, 2014. [Google Scholar]
- Dhriti, M.; Kaur, M. K-nearest neighbor classification approach for face and fingerprint at feature level fusion. Int. J. Comput. Appl. 2012, 60, 13–17. [Google Scholar] [CrossRef]
- Le, T.H. Applying Artificial Neural Networks for Face Recognition. Adv. Artif. Neural Syst. 2011, 2011, 673016. [Google Scholar] [CrossRef] [Green Version]
- Štruc, V.; Gros, J.; Dobrišek, S.; Pavešic, N. Exploiting representation plurality for robust and efficient face recognition. In Proceedings of the 22nd Intenational Electrotechnical and Computer Science Conference (ERK’13), Portoroz, Slovenia, 16–19 September 2013; pp. 121–124. [Google Scholar]
- Tan, X.; Triggs, B. Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition. In International Workshop on Analysis and Modeling of Faces and Gestures; Springer: Berlin/Heidelberg, Germany, 2007; pp. 235–249. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Chellappa, R.; Phillips, P.; Rosenfeld, A. Face recognition: A literature survey. ACM Comput. Surv. (CSUR) 2003, 35, 399–458. [Google Scholar] [CrossRef]
- Jagalingam, P.; Hegde, A. Pixel level image fusion—A review on various techniques. In Proceedings of the 3rd World Conference on Applied Sciences, Engineering and Technology, Kathmandu, Nepal, 27–29 September 2014. [Google Scholar]
- Wang, H.; Hu, J.; Deng, W. Face Feature Extraction: A Complete Review. IEEE Access 2017, 6, 6001–6039. [Google Scholar] [CrossRef]
- Kittler, J.; Hatef, M.; Duin, R.; Matas, J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Singh, R.; Ross, A. A comprehensive overview of biometric fusion. Inf. Fusion 2019, 52, 187–205. [Google Scholar] [CrossRef]
- Naidu, V.P.S. Novel image fusion techniques using DCT. Int. J. Comput. Sci. Bus. Inform. 2013, 5, 1–18. [Google Scholar]
- Nusir, M. Face Recognition using Local Binary Pattern and Principle Component Analysis. Master’s Thesis, Al al-Bayt University, Al-Mafraq, Jordan, 2018. [Google Scholar]
- AL-Shatnawi, A.; Al-Saqqar, F.; El-Bashir, M.; Nusir, M. Face Recognition Model based on the Laplacian Pyramid Fusion Technique. Int. J. Adv. Soft Comput. Its Appl. 2021, 13, 27–46. [Google Scholar]
- El-Bashir, M.S.; AL-Shatnawi, A.M.; Al-Saqqar, F.; Nusir, M.I. Face Recognition Model Based on Covariance Intersection Fusion for Interactive devices. World Comput. Sci. Inf. Technol. J. 2021, 11, 5–12. [Google Scholar]
- Haghighat, M.; Aghagolzadeh, A.; Seyedarabi, H. Multi-focus image fusion for visual sensor networks in DCT domain. Comput. Electr. Eng. 2011, 37, 789–797. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, C. Robust Face Recognition Using Color Information. International Conference on Biometrics; Springer: New York, NY, USA, 2009; pp. 122–131. [Google Scholar] [CrossRef]
- Pinto, N.; DiCarlo, J.; Cox, D. How far can you get with a modern face recognition test set using only simple features. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2591–2598. [Google Scholar]
- Chan, C.-H.; Kittler, J.; Tahir, M.A. Kernel Fusion of Multiple Histogram Descriptors for Robust Face Recognition. In Proceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Izmir, Turkey, 18–20 August 2010; Springer: New York, NY, USA, 2010; Volume 6218, pp. 718–727. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.H.; Tahir, M.A.; Kittler, J.; Pietikainen, M. Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1164–1177. [Google Scholar] [CrossRef]
- Arashloo, S.; Kittler, J. Class-specific kernel fusion of multiple descriptors for face verification using multi scale bi-narised statistical image features. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2100–2109. [Google Scholar] [CrossRef]
- Hu, J.; Lu, J.; Tan, Y.-P. Discriminative Deep Metric Learning for Face Verification in the Wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1875–1882. [Google Scholar] [CrossRef]
- Ding, C.; Xu, C.; Tao, D. Multi-Task Pose-Invariant Face Recognition. IEEE Trans. Image Process. 2015, 24, 980–993. [Google Scholar] [CrossRef]
- Nikan, S.; Ahmadi, M. Local gradient-based illumination invariant face recognition using local phase quantization and multi-resolution local binary pattern fusion. IET Image Process. 2015, 9, 12–21. [Google Scholar] [CrossRef]
- Zhang, X.; Mahoor, M.; Mavadati, S. Facial expression recognition using lp-norm MKL multiclass SVM. Mach. Vis. Appl. 2015, 26, 467–483. [Google Scholar] [CrossRef]
- Taigman, Y.; Wolf, L.; Hassner, T. Multiple One-Shots for Utilizing Class Label Information. In Proceedings of the British Machine Conference Rama Chellappa, College Park, MD, USA, 7–10 September 2009. [Google Scholar] [CrossRef] [Green Version]
- Wolf, L.; Hassner, T.; Taigman, Y. Similarity Scores Based on Background Samples. In Asian Conference on Computer Vision; Springer: New York, NY, USA, 2010; pp. 88–97. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P. Extended local binary patterns for texture classification. Image Vis. Comput. 2012, 30, 86–99. [Google Scholar] [CrossRef]
- Sanderson, C.; Harandi, M.T.; Wong, Y.; Lovell, B.C. Combined Learning of Salient Local Descriptors and Distance Metrics for Image Set Face Verification. In Proceedings of the 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, Beijing, China, 18–21 September 2012; pp. 294–299. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Su, Y.; Jurie, F. Local Descriptors Encoded by Fisher Vectors for Person Re-identification. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 413–422. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Cao, H.; Chu, J. Combining Local Binary Pattern and Local Phase Quantization for Face Recognition. In Proceedings of the 2012 International Symposium on Biometrics and Security Technologies, Taipei, Taiwan, 26–29 March 2012; pp. 51–53. [Google Scholar] [CrossRef]
- Tran, C.K.; Lee, T.F.; Chang, L.; Chao, P.J. Face Description with Local Binary Patterns and Local Ternary Patterns: Improving Face Recognition Performance Using Similarity Feature-Based Selection and Classification Algorithm. In Proceedings of the 2014 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 10–12 June 2014; pp. 520–524. [Google Scholar] [CrossRef]
- Gu, J.; Liu, C. Feature local binary patterns with application to eye detection. Neurocomputing 2013, 113, 138–152. [Google Scholar] [CrossRef]
- Li, H.; Hua, G.; Lin, Z.; Brandt, J.; Yang, J. Probabilistic Elastic Matching for Pose Variant Face Verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3499–3506. [Google Scholar] [CrossRef]
- Vu, N.-S. Exploring Patterns of Gradient Orientations and Magnitudes for Face Recognition. IEEE Trans. Inf. Forensics Secur. 2012, 8, 295–304. [Google Scholar] [CrossRef]
- Mirza, A.M.; Hussain, M.; Almuzaini, H.; Muhammad, G.; Aboalsamh, H.; Bebis, G. Gender Recognition Using Fusion of Local and Global Facial Features. In International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8034, pp. 493–502. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Gong, B.; Wei, Y.; Gao, Y. Deep Multi-View Enhancement Hashing for Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 1445–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Li, Z.; Zhang, Y.; Liu, Y.; Ji, X.; Zhang, Y. Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–17. [Google Scholar] [CrossRef]
- Yan, C.; Hao, Y.; Li, L.; Yin, J.; Liu, A.; Mao, Z.; Chen, Z.; Gao, X. Task-Adaptive Attention for Image Captioning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 43–51. [Google Scholar] [CrossRef]
- Yan, C.; Teng, T.; Liu, Y.; Zhang, Y.; Wang, H.; Ji, X. Precise No-Reference Image Quality Evaluation Based on Distortion Identification. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 17, 1–21. [Google Scholar] [CrossRef]
- Yan, C.; Meng, L.; Li, L.; Zhang, J.; Wang, Z.; Yin, J.; Zhang, J.; Sun, Y.; Zheng, B. Age-Invariant Face Recognition by Multi-Feature Fusion and Decomposition with Self-Attention. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 18, 1–18. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, S.; Leung, H.; Liu, S. Covariance intersection based image fusion technique with application to pansharpening in remote sensing. Inf. Sci. 2010, 180, 3434–3443. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Wang, Y.-Q. An Analysis of the Viola-Jones Face Detection Algorithm. Image Process. Line 2014, 4, 128–148. [Google Scholar] [CrossRef]
- Jafri, R.; Arabnia, H.R. A Survey of Face Recognition Techniques. J. Inf. Process. Syst. 2009, 5, 41–68. [Google Scholar] [CrossRef] [Green Version]
- Al-Saqqar, F.; AL-Shatnawi, A.M.; Al-Diabat, M.; Aloun, M. Handwritten Arabic Text Recognition using Principal Component Analysis and Support Vector Machines. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 1–6. [Google Scholar] [CrossRef]
- Bansal, A.; Mehta, K.; Arora, S. Face Recognition using PCA & LDA Algorithms. In Proceedings of the Second International Conference on ACCT, Rohtak, India, 7–8 January 2012; pp. 251–254. [Google Scholar]
- Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philos. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Balola, A.; Shaout, A. Hybrid Arabic Handwritten Character Recognition Using PCA and ANFIS. In Proceedings of the International Arab Conference on Information Technology, Beni-Mellal, Morocco, 6–8 December 2016. [Google Scholar]
- Tharwat, A. Principal component analysis—A tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 197–240. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Al-Shatnawi, A.; Al-Saqqar, F.; Alhusban, S. A Holistic Model for Recognition of Handwritten Arabic Text Based on the Local Binary Pattern Technique. Int. J. Interact. Mob. Technol. 2020, 14, 20–34. [Google Scholar] [CrossRef]
- Gardner, M.; Dorling, S. Artificial neural networks (the multilayer perceptron) a review of applications in the atmos-pheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Al-Shatnawi, A.M.; Al-Saqqar, F.; Souri, A. Arabic Handwritten Word Recognition Based on Stationary Wavelet Transform Technique using Machine Learning. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2022, 21, 43. [Google Scholar] [CrossRef]
- Prasetyo, M.L.; Wibowo, A.T.; Ridwan, M.; Milad, M.K.; Arifin, S.; Izzuddin, M.A.; Setyowati, R.D.N.; Ernawan, F. Face Recognition Using the Convolutional Neural Network for Barrier Gate System. Int. J. Interact. Mob. Technol. 2021, 15, 138–153. [Google Scholar] [CrossRef]
Pose Change | Illumination Change | Expression Change | Low-Resolution Images | Occlusion | |
---|---|---|---|---|---|
FRS based on FP fusion [18] | 97.02% | 96.47% | 97.73% | 96.99% | 96.18% |
FRS based on LP fusion [19] | 96.14% | 97.03% | 98.2% | 96.5% | 96.2% |
FRS based on CI fusion [20] | 96.23% | 96.89% | 97.68% | 96.1% | 96.84% |
FFLFRM based on MDCT | 96.66% | 97.07% | 97.70% | 97.11% | 96.87% |
Methods | MDCT | DFT | FFT | DWT |
---|---|---|---|---|
Recognition results | 97.7% | 96.8% | 96.3% | 97.5% |
Methods/Time | MDCT | DFT | FFT | DWT |
---|---|---|---|---|
Training | 2.7 × 10 −5 | 1.2 × 10−4 | 2.7 × 10−4 | 1.9 × 10−2 |
Testing | 3.4 × 10−6 | 4.3 × 10−4 | 3.9 × 10−4 | 2.00 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlFawwaz, B.M.; AL-Shatnawi, A.; Al-Saqqar, F.; Nusir, M. Multi-Resolution Discrete Cosine Transform Fusion Technique Face Recognition Model. Data 2022, 7, 80. https://doi.org/10.3390/data7060080
AlFawwaz BM, AL-Shatnawi A, Al-Saqqar F, Nusir M. Multi-Resolution Discrete Cosine Transform Fusion Technique Face Recognition Model. Data. 2022; 7(6):80. https://doi.org/10.3390/data7060080
Chicago/Turabian StyleAlFawwaz, Bader M., Atallah AL-Shatnawi, Faisal Al-Saqqar, and Mohammad Nusir. 2022. "Multi-Resolution Discrete Cosine Transform Fusion Technique Face Recognition Model" Data 7, no. 6: 80. https://doi.org/10.3390/data7060080
APA StyleAlFawwaz, B. M., AL-Shatnawi, A., Al-Saqqar, F., & Nusir, M. (2022). Multi-Resolution Discrete Cosine Transform Fusion Technique Face Recognition Model. Data, 7(6), 80. https://doi.org/10.3390/data7060080