Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Routine Blood Tests
2.4. Blood Gas and Electrolyte Analysis
2.5. Flow Cytometry Analysis
2.6. ELISA, Colorimetric and Hydroxylamine Method Detection
2.7. Statistical Analysis
3. Results
3.1. Effect of Central Venous Catheters on Blood Routines in Sheep
3.2. Effect of EDTA Injection on Blood Gas and Electrolytes in Sheep
3.3. Mineral Element Homeostasis Imbalance Affects Neutrophil Respiratory Burst Function
3.4. Effects of Mineral Element Homeostatic Imbalance on Serum IL-6, IL-1β and TNF-α
3.5. Effects of Mineral Element Homeostatic Imbalance on Serum MMP7 and TIMP1
3.6. Effects of Mineral Element Homeostatic Imbalance on Serum CuZn-SOD, GH-PX, iNOS, TNOS, T-SOD and CP Vitality
3.7. Effects of Mineral Element Homeostatic Imbalance on Serum Blood Urea Nitrogen (BUN) and Creatinine (Crea)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinaldi, M.; Moroni, P.; Paape, M.J.; Bannerman, D.D. Differential alterations in the ability of bovine neutrophils to generate extracellular and intracellular reactive oxygen species during the periparturient period. Vet. J. 2008, 178, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Salvador, B.; Arranz, A.; Francisco, S.; Córdoba, L.; Punzón, C.; Llamas, M.; Fresno, M. Modulation of endothelial function by Toll like receptors. Pharmacol. Res. 2016, 108, 46–56. [Google Scholar] [CrossRef] [PubMed]
- DeLeo, F.R.; Allen, L.H. Phagocytosis and neutrophil extracellular traps. Fac. Rev. 2020, 9, 25. [Google Scholar] [CrossRef]
- Ezzat Alnakip, M.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J. Vet. Med. 2014, 2014, 659801. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Overton, T.R.; Yasui, T. Practical applications of trace minerals for dairy cattle. J. Anim. Sci. 2014, 92, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Warken, A.C.; Lopes, L.S.; Bottari, N.B.; Glombowsky, P.; Galli, G.M.; Morsch, V.M.; Schetinger, M.R.C.; Silva, A.S.D. Mineral supplementation stimulates the immune system and antioxidant responses of dairy cows and reduces somatic cell counts in milk. An. Acad. Bras. Cienc. 2018, 90, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Batistel, F.; Osorio, J.S.; Tariq, M.R.; Li, C.; Caputo, J.; Socha, M.T.; Loor, J.J. Peripheral leukocyte and endometrium molecular biomarkers of inflammation and oxidative stress are altered in peripartal dairy cows supplemented with Zn, Mn, and Cu from amino acid complexes and Co from Co glucoheptonate. J. Anim. Sci. Biotechnol. 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Wahab, A.; Mushtaq, K.; Borak, S.G.; Bellam, N. Zinc-induced copper deficiency, sideroblastic anemia, and neutropenia: A perplexing facet of zinc excess. Clin. Case Rep. 2020, 8, 1666–1671. [Google Scholar] [CrossRef]
- Bai, S.; Huang, L.; Luo, Y.; Wang, L.; Ding, X.; Wang, J.; Zeng, Q.; Zhang, K. Dietary manganese supplementation influences the expression of transporters involved in iron metabolism in chickens. Biol. Trace Elem. Res. 2014, 160, 352–360. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Q.; Ji, M.; Zhou, X.; Wang, J.; Lian, S. Effects of imbalance of mineral elements on peripheral neutrophil metabolism in sheep. Metallomics 2022, 14, mfac049. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ji, M.; Zhou, Q.; Su, C.; Lian, S.; Wang, J.; Zheng, J.; Wu, R. Transcriptomic Analysis of Circulating Neutrophils in Sheep with Mineral Element Imbalance. Biol. Trace Elem. Res. 2022, 200, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Day, T.K. Blood gas analysis. Vet. Clin. N. Am. Small Anim. Pract. 2002, 32, 1031–1048. [Google Scholar] [CrossRef]
- Combs, M.D.; Rendell, D.; Reed, K.F.; Mace, W.J.; Quinn, J.C. Evidence of dehydration and electrolyte disturbances in cases of perennial ryegrass toxicosis in Australian sheep. Aust. Vet. J. 2014, 92, 107–113. [Google Scholar] [CrossRef]
- Desmecht, D.J.; Linden, A.S.; Godeau, J.M.; Lekeux, P.M. Experimental production of hypocalcemia by EDTA infusion in calves: A critical appraisal assessed from the profile of blood chemicals and enzymes. Comp. Biochem. Physiol. A Physiol. 1995, 110, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Mellau, L.S.; Jørgensen, R.J.; Enemark, J.M. Plasma calcium, inorganic phosphate and magnesium during hypocalcaemia induced by a standardized EDTA infusion in cows. Acta Vet. Scand. 2001, 42, 251–260. [Google Scholar] [CrossRef]
- Xu, R.; Chen, M.Y.; Liang, W.; Chen, Y.; Guo, M.Y. Zinc Deficiency Aggravation of ROS and Inflammatory Injury Leading to Renal Fibrosis in Mice. Biol. Trace Elem. Res. 2021, 199, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, K.; Marciniak, W.; Muszyńska, M.; Baszuk, P.; Gupta, S.; Jaworska-Bieniek, K.; Sukiennicki, G.; Durda, K.; Gromowski, T.; Lener, M.; et al. Polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13 and MT2A do not contribute to breast, lung and colon cancer risk in polish population. Hered. Cancer Clin. Pract. 2020, 18, 16. [Google Scholar] [CrossRef]
- Malemud, C.J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. 2006, 11, 1696–1701. [Google Scholar] [CrossRef]
- Banci, L.; Bertini, I.; Cantini, F.; Kozyreva, T.; Massagni, C.; Palumaa, P.; Rubino, J.T.; Zovo, K. Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc. Natl. Acad. Sci. USA 2012, 109, 13555–13560. [Google Scholar] [CrossRef] [Green Version]
- Gilston, B.A.; Skaar, E.P.; Chazin, W.J. Binding of transition metals to S100 proteins. Sci. China Life Sci. 2016, 59, 792–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zackular, J.P.; Chazin, W.J.; Skaar, E.P. Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface. J. Biol. Chem. 2015, 290, 18991–18998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedyk, M.; Sopalla, C.; Nacken, W.; Bode, G.; Melkonyan, H.; Banfi, B.; Kerkhoff, C. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities. J. Investig. Dermatol. 2007, 127, 2001–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sroussi, H.Y.; Lu, Y.; Zhang, Q.L.; Villines, D.; Marucha, P.T. S100A8 and S100A9 inhibit neutrophil oxidative metabolism in-vitro: Involvement of adenosine metabolites. Free Radic. Res. 2010, 44, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Sroussi, H.Y.; Lu, Y.; Villines, D.; Sun, Y. The down regulation of neutrophil oxidative metabolism by S100A8 and S100A9: Implication of the protease-activated receptor-2. Mol. Immunol. 2012, 50, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; St Clair, D.K. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- M, M.F.; Boyd, S.D.; Winkler, D.D.; Winge, D.R. Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. Metallomics 2017, 9, 1047–1059. [Google Scholar] [CrossRef]
- Lynch, S.M.; Colón, W. Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Biochem. Biophys. Res. Commun. 2006, 340, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Fridovich, I. On the stability of bovine superoxide dismutase. The effects of metals. J. Biol. Chem. 1973, 248, 2645–2649. [Google Scholar] [PubMed]
- Tian, M.; Li, N.; Liu, R.; Li, K.; Du, J.; Zou, D.; Ma, Y. The protective effect of licochalcone A against inflammation injury of primary dairy cow claw dermal cells induced by lipopolysaccharide. Sci. Rep. 2022, 12, 1593. [Google Scholar] [CrossRef]
Item | Pre-Operation | Post-Operation |
---|---|---|
HCT/% | 33.0 ± 1.0 | 31.0 ± 3.0 |
HGB/(g/dL) | 10.73 ± 0.15 | 10.53 ± 1.12 |
MCHC/(g/dL) | 32.60 ± 0.53 | 33.80 ± 0.10 |
WBC/(109/L) | 9.57 ± 1.04 | 10.33 ± 1.10 |
GRANS/(109/L) | 5.70 ± 1.25 | 7.70 ± 1.78 |
L/M | 9.59 ± 0.04 | 9.41 ± 0.12 |
Item | Control Group | EDTA Group |
---|---|---|
pH | 7.40 ± 0.42 | 7.44 ± 0.45 |
PCO2 | 36.00 ± 4.27 | 35.88 ± 4.89 |
HCO3− | 21.32 ± 2.77 | 22.70 ± 3.54 |
tCO2 | 22.31 ± 2.88 | 23.80 ± 3.64 |
Na+ | 143.60 ± 1.90 | 137.13 ± 3.64 ** |
K+ | 3.83 ± 0.35 | 2.35 ± 0.43 ** |
Cl− | 108.10 ± 2.42 | 103.50 ± 2.62 ** |
Ca2+ | 1.07 ± 0.09 | 1.36 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, D.; Zhou, Q.; Wang, J.; Lian, S. Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep. Vet. Sci. 2023, 10, 241. https://doi.org/10.3390/vetsci10040241
Liu W, Wang D, Zhou Q, Wang J, Lian S. Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep. Veterinary Sciences. 2023; 10(4):241. https://doi.org/10.3390/vetsci10040241
Chicago/Turabian StyleLiu, Weiqi, Di Wang, Qijun Zhou, Jianfa Wang, and Shuai Lian. 2023. "Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep" Veterinary Sciences 10, no. 4: 241. https://doi.org/10.3390/vetsci10040241
APA StyleLiu, W., Wang, D., Zhou, Q., Wang, J., & Lian, S. (2023). Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep. Veterinary Sciences, 10(4), 241. https://doi.org/10.3390/vetsci10040241