Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Organosulfur Compounds
2.2. Bacterial Strains Used for the Study
2.3. Determination of Minimal Inhibitory Concentrations (MIC)
2.4. Determination of Minimal Bactericidal Concentrations (MBC)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kylie, J.; Brash, M.; Whiteman, A.; Tapscott, B.; Slavic, D.; Weese, J.S.; Turner, P.V. Biosecurity practices and causes of enteritis on Ontario meat rabbit farms. Can. Vet. J. 2017, 58, 571–578. [Google Scholar]
- Milon, A.; Oswald, E.; De Rycke, J. Rabbit EPEC: A model for the study of enteropathogenic Escherichia coli. Vet. Res. 1999, 30, 203–219. [Google Scholar] [PubMed]
- Camguilhem, R.; Milon, A. Biotypes and O serogroups of Escherichia coli involved in intestinal infections of weaned rabbits: Clues to diagnosis of pathogenic strains. J. Clin. Microbiol. 1989, 27, 743–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamed, A.M.; Eid, A.A.; El-Bakrey, R.M. A review of rabbit diseases in Egypt. Wartazoa 2013, 23, 185–194. [Google Scholar]
- Zhu, C.; Agin, T.S.; Elliott, S.J.; Johnson, L.A.; Thate, T.E.; Kaper, J.B.; Boedeker, E.C. Complete nucleotide sequence and analysis of the locus of enterocyte Effacement from rabbit diarrheagenic Escherichia coli RDEC-1. Infect. Immun. 2001, 69, 2107–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchés, O.; Ledger, T.N.; Boury, M.; Ohara, M.; Tu, X.; Goffaux, F.; Mainil, J.; Rosenshine, I.; Sugai, M.; De Rycke, J.; et al. Enteropathogenic and enterohemorrhagic Escherichia coli deliver a novel effector called Cif, which bocks cell cycle G2/M transition. Mol. Microbiol. 2003, 50, 1553–1567. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 2004, 17, 14–56. [Google Scholar] [CrossRef] [Green Version]
- Bertin, Y.; Boukhors, K.; Livrelli, V.; Martin, C. Localization of the insertion site and pathotype determination of the locus of enterocyte effacement of shiga toxin-producing Escherichia coli strains. Appl. Environ. Microbiol. 2004, 70, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.A.; Deng, W.; Puente, J.L.; Frey, E.A.; Yip, C.K.; Strynadka, C.J.; Finlay, B.B. CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 2005, 57, 1762–1779. [Google Scholar] [CrossRef]
- Garrido, P.; Blanco, M.; Moreno-Paz, M.; Briones, C.; Dahbi, G.; Blanco, J.; Blanco, J.; Parro, V. STEC-EPEC oligonucleotide microarray: A new tool for typing genetic variants of the LEE pathogenicity island of human and animal Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPC) strains. Clin. Chem. 2006, 52, 192–201. [Google Scholar] [CrossRef]
- Luo, W.; Donnenberg, M.S. Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB. J. Bacteriol. 2011, 193, 2972–2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartland, E.L.; Leong, J.M. Enteropathogenic and enterohemorrhagic E. coli: Ecology, pathogenesis, and evolution. Front. Cell. Infect. Microbiol. 2013, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, M.; Blanco, J.E.; Alonso, M.P.; Blanco, J. Virulence Factors and O Groups of Escherichia Coli Isolates from Patients with Acute Pyelonephritis, Cystitis and Asymptomatic Bacteriuria. Eur. J. Epidemiol. 1996, 12, 191–198. [Google Scholar] [CrossRef]
- Pearson, J.S.; Giogha, C.; Wong Fok Lung, T.; Hartland, E.L. The Genetics of Enteropathogenic Escherichia coli Virulence. Annu. Rev. Genet. 2016, 50, 493–513. [Google Scholar] [CrossRef]
- Penteado, A.; Ugrinovich, L.; Blanco, J.; Blanco, M.; Blanco, J.; Mora, A.; Andrade, S.S.; Correa, A.F.; Pestana de Castro, A. Serobiotypes and virulence genes of Escherichia coli strains isolated from diarrheic and healthy rabbits in Brazil. Vet. Microbiol. 2002, 89, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Oglesbee, B.L.; Lord, B. Ferrets, Rabbits, and Rodents: Clinical Medicine and Surgery, 4th ed.; Saunders: Philadelphia, PA, USA, 2020; pp. 174–187. [Google Scholar]
- Truong, W.R.; Hidayat, L.; Bolaris, M.A.; Nguyen, L.; Yamaki, J. The antibiogram: Key considerations for its development and utilization. JAC Antimicrob. Resist. 2021, 3, dlab060. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, J.; Ju, Z.; Chang, W.; Sun, S. Molecular characterization of antimicrobial resistance in Escherichia coli from rabbit farms in Tai’an, China. Biomed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, F. Update on rabbit enteric diseases: Despite improved diagnostic capacity, where does disease control and prevention stand. In Proceedings of the 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3–6 September 2012. [Google Scholar]
- Lavazza, A.; Grilli, G. Impiego dei vaccini nell’allevamento del coniglio. Attualità e nuove problematiche. In Proceedings of the Giornate di Coniglicoltura ASIC, Forlì, Italy, 9 April 2011. [Google Scholar]
- Agnoletti, F.; Brunetta, R.; Bano, L.; Drigo, I.; Mazzolini, E. Longitudinal study on antimicrobial consumption and resistance in rabbit farming. Int. J. Antimicrob. Agents. 2018, 51, 197–205. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Dharmavavaram, S.R.; Seo, C.W.; Shahbazi, G. Antimicrobial activity of Bididobacterium Longum (NCFB2259) as influenced by spices. Internet J. Food Saf. 2004, 2, 6–8. [Google Scholar]
- Chen, J.; Wang, F.; Yin, Y.; Ma, X. The nutritional applications of garlic (Allium sativum) as natural feed additives in animals. PeerJ 2021, 9, 11934. [Google Scholar] [CrossRef]
- Cullen, S.P.; Monahan, F.J.; Callan, J.J.; O’Doherty, J.V. The effect of dietary garlic and rosemary on grower-finisher pig performance and sensory characteristics of pork. IJAFR 2005, 44, 57–67. [Google Scholar]
- Kim, H.K. Garlic Supplementation Ameliorates UV-Induced Photoaging in Hairless Mice by Regulating Antioxidative Activity and MMPs Expression. Molecules 2016, 21, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Circella, E.; Casalino, G.; D’Amico, F.; Pugliese, N.; Dimuccio, M.M.; Camarda, A.; Bozzo, G. In Vitro Antimicrobial effectiveness tests using Garlic (Allium sativum) against Salmonella enterica Subspecies enterica Serovar Enteritidis. Antibiotics 2022, 11, 1481. [Google Scholar] [CrossRef] [PubMed]
- Mouffok, A.; Bellouche, D.; Debbous, I.; Anane, A.; Khoualdia, Y.; Boublia, A.; Ahmad, S.D.; Lemaoui, T.; Benguerba, Y. Synergy of garlic extract and deep eutectic solvents as promising natural antibiotics: Experimental and COSMO-RS. J. Mol. Liq. 2023, 375, 121321. [Google Scholar] [CrossRef]
- Sallam, K.; Raslan, M.T.; Sabala, R.F.; Abd-Elghany, S.; Mahros, M.A.; Elshebrawy, H. Antimicrobial Effect of Garlic Against Foodborne Pathogens in Ground Mutton; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt. SSRN 2023. Available online: https://ssrn.com/abstract=4332276 (accessed on 20 June 2023).
- Harris, J.C.; Cottrell, S.; Plummer, S.; Lloyd, D. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 2001, 57, 282–286. [Google Scholar] [CrossRef]
- Marefati, N.; Ghorani, V.; Shakeri, F.; Boskabady, M.; Kianian, F.; Rezaee, R.; Boskabady, M.H. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharm. Biol. 2021, 59, 287–302. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Organosulfur compounds from alliaceae in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 183–193. [Google Scholar] [CrossRef]
- Macpherson, L.J.; Geierstanger, B.H.; Viswanath, V.; Bandell, M.; Eid, S.R.; Hwang, S.; Patapoutian, A. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 2005, 15, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyung, K.H.; Lee, Y.C. Antimicrobial activities of sulfur compounds derived froms-alk(en)yl-l-cysteine sulfoxides in Allium and Brassica. Food Rev. Int. 2001, 17, 183–198. [Google Scholar] [CrossRef]
- Block, E.; Naganathan, S.; Putman, D.; Zhao, S.-H. Allium Chemistry: HPLC Analysis of Thiosulfinates from Onion, Garlic, Wild Garlic (Ramsons), Leek, Scallion, Shallot, Elephant (Great-Headed) Garlic, Chive, and Chinese Chive. J. Agric. Food Chem. 1992, 40, 2418–2430. [Google Scholar] [CrossRef]
- Chang, H.S.; Ko, M.; Ishizuka, M.; Fujita, S.; Yabuki, A.; Hossain, M.A.; Yamato, O. Sodium 2-propenyl thiosulfate derived from garlic induces phase II detoxification enzymes in rat hepatoma H4IIE cells. Nutr. Res. 2010, 30, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.D. The Science and Therapeutic Application of Allium sativum L. and Related Species, 2nd ed.; William and Wilkins: Baltimore, Maryland, 1996; pp. 37–107. [Google Scholar]
- Casella, S.; Leonardi, M.; Melai, B.; Fratini, F.; Pistelli, L. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of the essential oil of Garlic, Allium sativum L., and Leek, Allium porrum L. Phytother. Res. 2012, 27, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Ogasawara, Y. Sulfur Atom in its obund state is a unique element involved in physiological functions in mammals. Molecules 2016, 21, 1753. [Google Scholar] [CrossRef] [Green Version]
- Tsao, S.M.; Yin, M.C. In vitro activity of garlic oil and four diallyl sulphides against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemother. 2001, 47, 665–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, Z.M.; O’Gara, E.A.; Hill, D.J.; Sleightholme, H.V.; Maslin, D.J. Antimicrobial properties of garlic oil against human enteric bacteria: Evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl. Environ. Microbiol. 2001, 67, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Iciek, M.; Wlodek, L. Biosynthesis and biological properties of compounds containing highly reactive, reduced sulfane sulfur. Pol. J. Pharmacol. 2001, 53, 215–225. [Google Scholar]
- Chang, H.S.; Yamato, O.; Yamasaki, M.; Maede, Y. Modulatory influence of sodium 2-propenyl thiosulfate from garlic on cyclooxygenase activity in canine platelets: Possible mechanism for the anti-aggregatory effect. Prostaglandins Leukot. Essent. Fatty Acids 2005, 72, 351–355. [Google Scholar] [CrossRef]
- Chang, H.S.; Endoh, D.; Ishida, Y.; Takahashi, H.; Ozawa, S.; Hayashi, M.; Yabuki, A.; Yamato, O. Radioprotective effect of alk(en)yl thiosulfates derived from Allium vegetables against Dna damage caused by x-ray irradiation in cultured cells: Antiradiation potential of onions and garlic. Sci. World J. 2012, 2012, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.T.; Chen, H.W.; Sheen, L.Y.; Kung, Y.L.; Chen, P.C.; Lii, C.K. Analytical methods-effect of garlic oil oh hepatic arachidonic acid content and immune response in rats. J. Agric. Food Chem. 1998, 46, 4642–4647. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, Y.; Liu, H.; Liu, H.; Xun, L. The Mechanisms of Thiosulfate Toxicity against Saccharomyces cerevisiae. Antioxidants 2021, 10, 646. [Google Scholar] [CrossRef]
- Lu, X.; Samuelson, D.R.; Rasco, B.A.; Konkel, M.E. Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. J. Antimicrob. Chemother. 2012, 67, 1915–1926. [Google Scholar] [CrossRef]
- O’Gara, E.A.; Hill, D.J.; Maslin, D.J. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Appl. Environ. Microbiol. 2000, 66, 2269–2273. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.W.; Chung, J.G.; Ho, H.C.; Lin, J.G. Effects of the garlic compounds diallyl sulphide and diallyl disulphide on arylamine N-acetyltransferase activity in Klebsiella pneumoniae. J. Appl. Toxicol. 1999, 19, 75–81. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard, 7th ed.; Clinical Laboratory Standard Institute: Wayene, PA, USA, 2006. [Google Scholar]
- Adiguzel, A.H.; Ozer, H.; Sokmen, M.; Gulluce, M.E.; Sokmen, A.; Kilic, H.; Sahin, F.; Baris, O. Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Pol. J. Microbiol. 2009, 58, 69–76. [Google Scholar] [PubMed]
- Moghaddam, A.M.; Shayegh, J.; Mikaili, P.; Sharaf, J.D. Antimicrobial activity of essential oil extract of Ocimum basilicum L. leaves on a variety of pathogenic bacteria. J. Med. Plant. Res. 2011, 5, 3453–3456. [Google Scholar]
- Adigüzel, A.; Güllüce, M.; Şengül, M.; Öğütcü, H.; Şahin, F.; Karaman, İ. Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turk. J. Biol. 2005, 29, 155–160. [Google Scholar]
- NCCLS. Available online: file:///C:/Users/casal/Downloads/FDA-1975-N-0012-0317_attachment_192.pdf (accessed on 1 September 1999).
- Licois, D. Pathologie d’origine bactérienne et parasitaire chez le Lapin: Apports de la dernière décennie. Cunicult. Mag. 2010, 37, 35–49. [Google Scholar]
- Padilha, M.T.; Licois, D.; Coudert, P. Frequency of the carriage and enumeration of Escherichia coli in caecal content of 15 to 49-day-old rabbits. In Proceedings of the 6th World Rabbit Congress, Tolouse, France, 9–12 July 1996. [Google Scholar]
- Zhao, J.; Liu, Y.; Xiao, C.; He, S.; Yao, H.; Bao, G. Efficacy of phage therapy in controlling rabbit colibacillosis and changes in cecal microbiota. Front. Microbiol. 2017, 8, 957. [Google Scholar] [CrossRef] [Green Version]
- Peinado, M.J.; Ruiz, R.; Echavarri, A.; Rubio, L.A. Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poult. Sci. J. 2012, 91, 2148–2157. [Google Scholar] [CrossRef]
- García-Rubio, V.G.; Bautista-Gómez, L.G.; Martínez-Castañeda, J.S.; Romero-Núñez, C. Multicausal etiology of the enteric syndrome in rabbits from Mexico. Rev. Argent. Microbiol. 2017, 49, 132–138. [Google Scholar] [CrossRef]
- Shokradeh, M.; Ebadi, A.G. Antibacterial effect of Garlic (Allium sativum) on Staphylococcus. Pak. J. Biol. Sci. 2006, 9, 1577–1579. [Google Scholar] [CrossRef] [Green Version]
- Mohsenipour, Z.; Hassanshahian, M. The Effects of Allium sativum extracts on biofilm formation and activities of six pathogenic bacteria. J. Microbiol. 2015, 8, 18971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tynecka, Z.; Gos, Z.; Zajac, J. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 1981, 147, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leontiev, R.; Hohaus, N.; Jacob, C.; Gruhlke, M.C.; Slusarenko, A.J. A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci. Rep. 2018, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed. 2014, 4, 1. [Google Scholar]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.; Nwachukwu, D.; Slusarenko, A.J. Allicin: Chemistry and biological properties. Molecules 2014, 18, 12591–12618. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, H.; Watanabe, K.; Suma, K.; Origuchi, K.; Matsufuji, H.; Seki, T.; Ariga, T. Antibacterial potential of garlic-derived allicin and its cancellationby sulfhydryl compounds. Biosci. Biotechnol. Biochem. 2009, 73, 1948–1955. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Zucca, P.; Orhan, I.E.; Azzini, E.; Adetunji, C.O.; Mohammed, S.A.; Banerjee, S.K.; Sharopov, F.; Rigano, D.; Sharifi-Rad, J.; et al. Allicin and health: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 502–516. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Andualem, B. Combined antibacterial activity of stingless bee (Apis mellipodae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria. Asian Pac. J. Trop. Biomed. 2013, 3, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Jain, I.; Jain, P.; Bisht, D.; Sharma, A.; Srivastava, B.; Gupta, N. Comparative evaluation of antibacterial efficacy of six Indian plant extracts against Streptococcus mutans. J. Clin. Diagn. Res. 2015, 9, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Trivedi, N.A.; Bhatt, J.D. Antimicrobial activity of fresh garlic juice: An in vitro study. Ayu 2015, 36, 203. [Google Scholar] [PubMed] [Green Version]
- Gull, I.; Saeed, M.; Shaukat, H.; Aslam, S.M.; Samra, Z.Q.; Athar, A.M. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Belguith, H.; Kthiri, F.; Chati, A.; Abu Sofah, A.; Ben Hamida, J.; Landoulsi, A. Study of the effect of aqueous garlic extract (Allium sativum) on some Salmonella serovars isolates. Emir. J. Food Agric. 2010, 22, 189–206. [Google Scholar] [CrossRef]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Ariza-Romero, J.J.; Baños-Arjona, A.; Exposito-Ruiz, M.; Gutierrez-Fernandez, J. In vitro antibacterial activity of propyl-propane-thiosulfinate and propyl-propane-thiosulfonate derived from Allium spp. against gram-negative and gram-positive multidrug-resistant bacteria isolated from human samples. Biomed. Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Gil-Martinez, L.; Ariza-Romero, J.J.; Maroto-Tello, A.; Baños-Arjona, A.; Gutierrez-Fernandez, J. Antibacterial and antifungal activity of propyl-propane-thiosulfinate and propyl-propane-thiosulfonate, two organosulfur compounds from Allium cepa: In vitro antimicrobial effect via the gas phase. Pharmaceuticals 2020, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; García, M.P.; Lara, A.; Rubio, L.A. Garlic derivatives (PTS and PTS-O) differently affect the ecology of swine faecal microbiota in vitro. Vet. Microbiol. 2010, 144, 110–117. [Google Scholar] [CrossRef]
- Cabello-Gómez, J.F.; Aguinaga-Casañas, M.A.; Falcón-Piñeiro, A.; González-Gragera, E.; Márquez-Martín, R.; Agraso, M.D.; Bermúdez, L.; Baños, A.; Martínez-Bueno, M. Antibacterial and antiparasitic activity of propyl-propane-thiosulfinate (PTS) and propyl-propane-thiosulfonate (PTSO) from Allium cepa against gilthead sea bream pathogens in in vitro and in vivo studies. Molecules 2022, 27, 6900. [Google Scholar] [CrossRef]
- Munir, M.T. Effect of garlic on the health and performance of broilers. Veterinaria 2015, 3, 32–39. [Google Scholar]
- Oladele, O.; Esan, O.; Akpan, I.; Enibe, F. Garlic feed inclusion and susceptibility of broiler chickens to infectious bursal disease. J. Adv. Vet. Anim. Res. 2018, 5, 275–281. [Google Scholar] [CrossRef]
- Hassanin, F.S.; Reham, A.A.; Shawky, N.A.; Gomaa, W.M. Incidence of Escherichia coli and Salmonella in Ready to eat Foods. Benha Vet. Med. J. 2014, 27, 84–91. [Google Scholar]
- Farag, V.M.; El-Shafei, R.A.; Elkenany, R.M.; Ali, H.S.; Eladl, A.H. Antimicrobial, immunological and biochemical effects of florfenicol and garlic (Allium sativum) on rabbits infected with Escherichia coli serotype O55: H7. Vet. Res. Commun. 2022, 46, 363–376. [Google Scholar] [CrossRef]
- Al-Turki, A.I. Antibacterial effect of thyme, peppermint, sage, black pepper and garlic hydrosols against Bacillus subtilis and Salmonella enteritidis. J. Food Agric. Environ. 2007, 5, 92–94. [Google Scholar]
- Parigi, M.; Massi, P.; Fiorentini, L.; Tosi, G.; Romboli, C.; Vandi, L.; Bocciero, R.; Fregnani, G. Valutazione dell’efficacia di una miscela di acidi organici e fitoterapici nel controllo dell’infezione da Escherichia coli nel tacchino. In Proceedings of the II Simposio Scientfico SIPA, Parma, Italy, 22 September 2017. [Google Scholar]
- Moulin, G.; Chevance, A. Suivi des Ventes de Médicaments Vétérinaires Contenant des Antibiotiques en France en 2014. Rapport Annuel [Rapport de Recherche] Anses 2015. Ph.D. Thesis, 2015; pp. 1–39. Available online: https://hal-anses.archives-ouvertes.fr/anses-01226391/document (accessed on 20 June 2023).
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra-Kumar, S.; Xavier, B.B.; Das, A.J.; Lammens, C.; Hoang, H.T.; Pham, N.T.; Goossens, H. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam. Lancet Infect. Dis. 2016, 16, 286–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union Regulation (EU) 2019/4 of the European Parliament. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF (accessed on 11 December 2018).
Phyto-L μL/mL (OSCs mg/mL) | MIC N° of Strains (%) | MBC N° of Strains (%) |
---|---|---|
>20 (>3.4) | 0 (0) | 10 (9.3) |
20 (3.4) | 0 (0) | 8 (7.4) |
10 (1.7) | 0 (0) | 20 (18.5) |
5 (0.85) | 1 (0.9) | 9 (8.3) |
2.5 (0.425) | 70 (64.8) | 46 (42.6) |
1.25 (0.2125) | 37 (34.3) | 15 (13.9) |
0.6 (0.102) | 0 (0) | N.D. * |
0.3 (0.051) | 0 (0) | N.D. |
0.15 (0.0255) | 0 (0) | N.D. |
MIC | MBC | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phyto-L Concentrations (μL/mL) | Phyto-L Concentrations (μL/mL) | |||||||||||
>20 | 20 | 10 | 5 | 2.5 | 1.25 | >20 | 20 | 10 | 5 | 2.5 | 1.25 | |
Farm (N° of Tested Strains) | N° of Strains (%) | N° of Strains (%) | ||||||||||
1 (25) | 0 (0) | 0 (0) | 0 (0) | 1 (4) | 9 (36) | 15 (60) | 9 (36) | 1 (4) | 0 (0) | 7 (28) | 5 (20) | 3 (12) |
2 (26) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 21 (80.8) | 5 (19.2) | 0 (0) | 0 (0) | 5 (19.2) | 0 (0) | 17 (65.4) | 4 (15.4) |
3 (3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 0 (0) |
4 (8) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 8 (100) | 0 (0) | 0 (0) | 1 (12.5) | 5 (62.5) | 0 (0) | 2 (25) | ND * |
5 (6) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 6 (100) | 0 (0) | 0 (0) | 0 (0) | 3 (50) | 0 (0) | 3 (50) | ND |
6 (7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 5 (71.4) | 2 (28.6) | 0 (0) | 2 (28.6) | 1 (14.3) | 0 (0) | 2 (28.6) | 2 (28.6) |
7 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | ND |
8 (13) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 11 (84.6) | 2 (15.4) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 11 (84.6) | 2 (15.4) |
10 (3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (100) | ND |
11 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (50) | 1 (50) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
13 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 1 (50) | 0 (0) | 1 (50) | 0 (0) | 0 (0) | 0 (0) |
14 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) |
16 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) |
17 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
MIC | MBC | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phyto-L Concentrations (μL/mL) | Phyto-L Concentrations (μL/mL) | |||||||||||
Strain | >20 | 20 | 10 | 5 | 2.5 | 1.25 | >20 | 20 | 10 | 5 | 2.5 | 1.25 |
1 | - | - | - | - | - | + | - | - | - | + | - | - |
2 | - | - | - | - | - | + | - | - | - | - | + | - |
3 | - | - | - | - | - | + | - | - | - | - | - | + |
4 | - | - | - | - | - | + | - | - | - | - | - | + |
5 | - | - | - | - | - | + | - | - | - | - | - | + |
6 | - | - | - | - | - | + | - | - | - | + | - | - |
7 | - | - | - | - | - | + | - | - | - | - | + | - |
8 | - | - | - | - | + | - | + | - | - | - | - | - |
9 | - | - | - | - | + | - | + | - | - | - | - | - |
10 | - | - | - | - | - | + | + | - | - | - | - | - |
11 | - | - | - | - | + | - | - | - | - | + | - | - |
12 | - | - | - | - | + | - | + | - | - | - | - | - |
13 | - | - | - | - | - | + | - | - | - | - | + | - |
14 | - | - | - | - | - | + | - | - | - | + | - | - |
15 | - | - | - | - | + | - | - | - | - | + | - | - |
16 | - | - | - | - | + | - | - | - | - | - | + | - |
17 | - | - | - | + | - | - | + | - | - | - | - | - |
18 | - | - | - | - | + | - | - | + | - | - | - | - |
19 | - | - | - | - | - | + | - | - | - | + | - | - |
20 | - | - | - | - | + | - | + | - | - | - | - | - |
21 | - | - | - | - | - | + | + | - | - | - | - | - |
22 | - | - | - | - | - | + | - | - | - | - | + | - |
23 | - | - | - | - | - | + | + | - | - | - | - | - |
24 | - | - | - | - | - | + | + | - | - | - | - | - |
25 | - | - | - | - | + | - | - | - | - | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, F.; Casalino, G.; Dinardo, F.R.; Schiavitto, M.; Camarda, A.; Romito, D.; Bove, A.; Circella, E. Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits. Vet. Sci. 2023, 10, 411. https://doi.org/10.3390/vetsci10070411
D’Amico F, Casalino G, Dinardo FR, Schiavitto M, Camarda A, Romito D, Bove A, Circella E. Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits. Veterinary Sciences. 2023; 10(7):411. https://doi.org/10.3390/vetsci10070411
Chicago/Turabian StyleD’Amico, Francesco, Gaia Casalino, Francesca Rita Dinardo, Michele Schiavitto, Antonio Camarda, Diana Romito, Antonella Bove, and Elena Circella. 2023. "Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits" Veterinary Sciences 10, no. 7: 411. https://doi.org/10.3390/vetsci10070411
APA StyleD’Amico, F., Casalino, G., Dinardo, F. R., Schiavitto, M., Camarda, A., Romito, D., Bove, A., & Circella, E. (2023). Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits. Veterinary Sciences, 10(7), 411. https://doi.org/10.3390/vetsci10070411