Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Data Handling and Statistical Analysis
3. Results
3.1. Demographic Features
3.2. Trends in Colistin Use
3.3. Administration Route of Colistin
3.4. Indications for Colistin Use
3.5. Restrictions on the Colistin Use
3.6. Individual Comments
- Usage is dramatically decreasing. Extremely sporadic use and only after laboratory data
- It is essential in a variety of indications, but use has been reduced.
- Laying hens: slightly reduced use, fattening poultry: greatly reduced use of colistin
- Most colistin use in laying poultry and turkey, but decreasing due to awareness of the need for reduction and due to even more attention for management in all areas
- In laying poultry in Spain, the use of colistin has greatly decreased. Alternative available therapies such as vaccines and phytotherapeutics have helped, as well as improvements in other aspects such as nutrition, pro and prebiotics, and management.
- Overall reduction in the use of oral colistin on neonatal enteritis in calves by increasing the awareness of breeders about the vaccination of mothers
- Very clear reduction with the introduction of E. coli autovaccines in layers
- I only use colistin in metaphylaxis after an antibiogram
- As a last resort, it is still necessary
- Colistin is essential for managing Enterobacteriaceae septicaemia in calves.
- We see no reduction in the use of colistin in the laying hens because we have started keeping the animals under more difficult conditions imposed by market developments (free range chickens, no more beak treatment).
- Antibiotic treatments in birds are almost non-existent, but when they are carried out, metaphylaxis and colistin are needed
- I prefer a clearer framework for this molecule
- It would be nice if the feed industry also cooperates in stopping colistin that no longer advises
4. Discussion
4.1. Colistin Use Decreases
4.2. Indications to Use Colistin
4.3. Routes of Administration
4.4. Restrictions of Use and the Effect of Colistin Reduction in Animals on Human AMR Burden
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landman, D.; Georgescu, C.; Martin, D.A.; Quale, J. Polymyxins Revisited. Clin. Microbiol. Rev. 2008, 21, 449–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed Ahmed, M.A.E.-G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance; World Health Organization. Critically Important Antimicrobials for Human Medicine; World Health Organization: Geneva, Switzerland, 2012; ISBN 978-92-4-150448-5.
- OIE. OIE List Of Antimicrobial Agents of Veterinary Importance. Available online: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf (accessed on 18 May 2021).
- ECDC; EFSA; EMA. Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA: JIACRA III 2016–2018. EFSA J. 2021, 19, e06712. [Google Scholar]
- EMA. Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health; European Medicines Agency: London, UK, 2013.
- Kempf, I.; Fleury, M.A.; Drider, D.; Bruneau, M.; Sanders, P.; Chauvin, C.; Madec, J.-Y.; Jouy, E. What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int. J. Antimicrob. Agents 2013, 42, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Kempf, I.; Jouy, E.; Chauvin, C. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents 2016, 48, 598–606. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Nang, S.C.; Li, J.; Velkov, T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit. Rev. Microbiol. 2019, 45, 131–161. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Yi, L.; Liu, J.-H.; Yang, Q. Emergent polymyxin resistance: End of an era? Oxford University Press: Cary, NC, USA, 2019; Volume 6, p. ofz368. [Google Scholar]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- EMA Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020; European Medicines Agency: Amsterdam, The Netherlands, 2021.
- Binsker, U.; Käsbohrer, A.; Hammerl, J.A. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol. Rev. 2022, 46, fuab049. [Google Scholar] [CrossRef]
- EC. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition (Text with EEA Relevance); European Commission: Brussels, Belgium, 2003.
- EMA. Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health; European Medicines Agency, Committee for Medicinal Products for Veterinary Use (CVMP): London, UK, 2016.
- EC. Commission Implementing Decision of 14.7.2016 concerning, in the Framework of Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the Marketing Authorisations for all Veterinary Medicinal Products Containing “Colistin” in Combination with Other Antimicrobial Substances to be Administered Orally; European Commission: Brussels, Belgium, 2016.
- EMA. Reflection Paper on the Prophylactic Use of Antimicrobials in Animals in the Context of Article 107(3) of Regulation (EU) 2019/6; European Medicines Agency: Amsterdam, The Netherlands, 2022.
- EMA. Advice on the Designation of Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans—In Relation to Implementing Measures under Article 37(5) of Regulation (EU) 2019/6 on Veterinary Medicinal Products; European Medicines Agency, Committee for Medicinal Products for Veterinary Use (CVMP): Amsterdam, The Netherlands, 2022.
- EC. Commission Implementing Regulation (EU) 2022/1255 of 19 July 2022 Designating Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans, in Accordance with Regulation (EU) 2019/6 of the European Parliament and of the Council (Text with EEA relevance); European Commission: Brussels, Belgium, 2022; p. 60.
- Jerab, J.; Jansen, W.; Blackwell, J.; van Hout, J.; Palzer, A.; Lister, S.; Chantziaras, I.; Dewulf, J.; De Briyne, N. Real-World Data on Antibiotic Group Treatment in European Livestock: Drivers, Conditions, and Alternatives. Antibiotics 2022, 11, 1046. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Eysenbach, G. Improving the Quality of Web Surveys: The Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34. [Google Scholar] [CrossRef] [PubMed]
- Lopes Antunes, A.C.; Jensen, V.F. Close to a Decade of Decrease in Antimicrobial Usage in Danish Pig Production-Evaluating the Effect of the Yellow Card Scheme. Front. Vet. Sci. 2020, 7, 109. [Google Scholar] [CrossRef]
- Speksnijder, D.C.; Sanders, P.; Bens, D.L.A.; Meijboom, F.L.B.; Verheij, T.J.M. Onderzoek naar Kritische Succesfactoren Voor een laag Antibiotica Voorschrijfpatroon van Dierenartsen—Rapport van het Project Kritische Succesfactoren Dierenartsen (KSF Dierenartsen); Universiteit Utrecht: Utrecht, The Netherlands, 2020. [Google Scholar]
- Hommerich, K.; Ruddat, I.; Hartmann, M.; Werner, N.; Käsbohrer, A.; Kreienbrock, L. Monitoring Antibiotic Usage in German Dairy and Beef Cattle Farms—A Longitudinal Analysis. Front. Vet. Sci. 2019, 6, 244. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.; Muurinen, J.; Nykäsenoja, S.; Seppä-Lassila, L.; Sali, V.; Suomi, J.; Tuominen, P.; Joutsen, S.; Hämäläinen, M.; Olkkola, S.; et al. Antimicrobial use, biosecurity, herd characteristics, and antimicrobial resistance in indicator Escherichia coli in ten Finnish pig farms. Prev. Vet. Med. 2021, 193, 105408. [Google Scholar] [CrossRef] [PubMed]
- Gallin-Anliker, T.; Wiedemann, S.; Bähler, C.; Kaske, M. Usage of antimicrobials on seven farms of beef producers in Switzerland. Schweiz. Arch. Tierheilkd. 2021, 163, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Scali, F.; Santucci, G.; Maisano, A.M.; Giudici, F.; Guadagno, F.; Tonni, M.; Amicabile, A.; Formenti, N.; Giacomini, E.; Lazzaro, M.; et al. The Use of Antimicrobials in Italian Heavy Pig Fattening Farms. Antibiotics 2020, 9, 892. [Google Scholar] [CrossRef]
- Skjølstrup, N.K.; Vaarst, M.; Jensen, C.S.; Lastein, D.B. Danish cattle veterinarians’ perspectives on antimicrobial use: Contextual and individual influencing factors. J. Dairy Sci. 2022, 105, 3377–3393. [Google Scholar] [CrossRef] [PubMed]
- Speksnijder, D.C.; Jaarsma, D.A.C.; Verheij, T.J.M.; Wagenaar, J.A. Attitudes and perceptions of Dutch veterinarians on their role in the reduction of antimicrobial use in farm animals. Prev. Vet. Med. 2015, 121, 365–373. [Google Scholar] [CrossRef]
- Espinosa-Gongora, C.; Jessen, L.R.; Dyar, O.J.; Bousquet-Melou, A.; González-Zorn, B.; Pulcini, C.; Re, G.; Schwarz, S.; Timofte, D.; Toutain, P.-L.; et al. Towards a Better and Harmonized Education in Antimicrobial Stewardship in European Veterinary Curricula. Antibiotics 2021, 10, 364. [Google Scholar] [CrossRef]
- Kovacevic, Z.; Blagojevic, B.; Suran, J.; Horvat, O. Mapping knowledge and comprehension of antimicrobial stewardship and biosecurity among veterinary students. PLoS ONE 2020, 15, e0235866. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, Z.; Vidović, J.; Erdeljan, M.; Cincović, M.; Ružić, Z.; Galić, I.; Kukurić, T.; Stojanac, N.; Horvat, O. Veterinary Practitioners’ Standpoints and Comprehension towards Antimicrobial Use—Are There Opportunities for Antimicrobial Stewardship Improvement? Antibiotics 2022, 11, 867. [Google Scholar] [CrossRef] [PubMed]
- More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; de Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K.; Deprez, P. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef] [Green Version]
- Kolenda, R.; Burdukiewicz, M.; Schierack, P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front. Cell. Infect. Microbiol. 2015, 5, 23. [Google Scholar] [CrossRef]
- Luppi, A. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef]
- VanderWaal, K.; Deen, J. Global trends in infectious diseases of swine. Proc. Natl. Acad. Sci. USA 2018, 115, 11495–11500. [Google Scholar] [CrossRef] [PubMed]
- EMA. Opinion following an Article 35 Referral for Veterinary Medicinal Products Containing Colistin to be Administered Orally; European Medicines Agency, Committee for Medicinal Products for Veterinary Use (CVMP): London, UK, 2015.
- EC. Summary of European Union decisions on marketing authorisations in respect of medicinal products from 1 March 2015 to 31 March 2015. (Published pursuant to Article 13 or Article 38 of Regulation (EC) No 726/2004 of the European Parliament and of the Council). Off. J. C 2021, 478, 1–7. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021XC1126(04) (accessed on 18 May 2021).
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; et al. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Cattle. EFSA J. 2021, 19, e06955. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; et al. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Poultry. EFSA J. 2021, 19, e07114. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; et al. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Swine. EFSA J. 2021, 19, e07113. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; et al. Assessment of animal diseases caused by bacteria resistant to antimicrobials: Sheep and goats. EFSA J. 2021, 19, e06956. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, E.Ø.; Kudirkiene, E.; Christensen, A.E.; Agerlin, M.V.; Weber, N.R.; Nødtvedt, A.; Nielsen, J.P.; Hartmann, K.T.; Skade, L.; Larsen, L.E.; et al. Post-weaning diarrhea in pigs weaned without medicinal zinc: Risk factors, pathogen dynamics, and association to growth rate. Porc. Health Manag. 2021, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.L.; Kongsted, H.; Sørensen, J.T.; Krogh, M.A. Antibiotic and medical zinc oxide usage in Danish conventional and welfare-label pig herds in 2016–2018. Prev. Vet. Med. 2021, 189, 105283. [Google Scholar] [CrossRef] [PubMed]
- EC. Commission Implementing Decision of 26.6.2017 concerning, in the Framework of Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the Marketing Authorisations for Veterinary Medicinal Products Containing “Zinc Oxide” to be Administered Orally to Food Producing Species; European Commission: Brussels, Belgium, 2017.
- Lhermie, G.; La Ragione, R.M.; Weese, J.S.; Olsen, J.E.; Christensen, J.P.; Guardabassi, L. Indications for the use of highest priority critically important antimicrobials in the veterinary sector. J. Antimicrob. Chemother. 2020, 75, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- EMA. Union Product Database. Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/veterinary-medicines-regulation/union-product-database (accessed on 29 August 2022).
- Li, J.; Nation, R.L.; Milne, R.W.; Turnidge, J.D.; Coulthard, K. Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2005, 25, 11–25. [Google Scholar] [CrossRef]
- Liao, F.-H.; Wu, T.-H.; Yao, C.-N.; Kuo, S.-C.; Su, C.-J.; Jeng, U.-S.; Lin, S.-Y. A Supramolecular Trap to Increase the Antibacterial Activity of Colistin. Angew. Chem. Int. Ed. 2020, 59, 1430–1434. [Google Scholar] [CrossRef]
- Renard, L.; Sanders, P.; Laurentie, M. Pharmacokinetics of colistin sulfate administered by intravenous and intramuscular routes in the calf. Ann. Rech. Veterinaires Ann. Vet. Res. 1991, 22, 387–394. [Google Scholar]
- Shen, Y.; Zhang, R.; Schwarz, S.; Wu, C.; Shen, J.; Walsh, T.R.; Wang, Y. Farm animals and aquaculture: Significant reservoirs of mobile colistin resistance genes. Environ. Microbiol. 2020, 22, 2469–2484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Zhang, R.; Chen, Y.; Shen, Y.; Hu, F.; Liu, D.; Lu, J.; Guo, Y.; Xia, X. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: An epidemiological comparative study. Lancet Infect. Dis. 2020, 20, 1161–1171. [Google Scholar] [CrossRef]
- British Poultry Council. Antibiotic Stewardship—Report 2018; British Poultry Council: London, UK, 2018. [Google Scholar]
- Ezadi, F.; Ardebili, A.; Mirnejad, R. Antimicrobial susceptibility testing for polymyxins: Challenges, issues, and recommendations. J. Clin. Microbiol. 2019, 57, e01390-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasoo, S. Susceptibility testing for the polymyxins: Two steps back, three steps forward? J. Clin. Microbiol. 2017, 55, 2573–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satlin, M.J.; Lewis, J.S.; Weinstein, M.P.; Patel, J.; Humphries, R.M.; Kahlmeter, G.; Giske, C.G.; Turnidge, J. Clinical and laboratory standards institute and European committee on antimicrobial susceptibility testing position statements on polymyxin B and colistin clinical breakpoints. Clin. Infect. Dis. 2020, 71, e523–e529. [Google Scholar] [CrossRef]
- EC. Avant Consortiuum Avant—Alternatives to Veterinary Antimicrobials; European Commission: Brussels, Belgium, 2020.
- Sammul, M.; Mõtus, K.; Kalmus, P. The Use of Colistin in Food-Producing Animals in Estonia—Vaccination as an Effective Alternative to Consumption of Critically Important Antimicrobials in Pigs. Antibiotics 2021, 10, 499. [Google Scholar] [CrossRef]
- Temtem, C.; Kruse, A.B.; Nielsen, L.R.; Pedersen, K.S.; Alban, L. Comparison of the antimicrobial consumption in weaning pigs in Danish sow herds with different vaccine purchase patterns during 2013. Porc. Health Manag. 2016, 2, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudan Sudhanshu; Zhan Xiaoshu; Li Julang A Novel Probiotic Bacillus subtilis Strain Confers Cytoprotection to Host Pig Intestinal Epithelial Cells during Enterotoxic Escherichia coli Infection. Microbiol. Spectr. 2022, 10, e01257-21. [CrossRef]
- Haller, S.; Kramer, R.; Becker, K.; Bohnert, J.A.; Eckmanns, T.; Hans, J.B.; Hecht, J.; Heidecke, C.-D.; Hübner, N.-O.; Kramer, A. Extensively drug-resistant Klebsiella pneumoniae ST307 outbreak, north-eastern Germany, June to October 2019. Eurosurveillance 2019, 24, 1900734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayol, A.; Poirel, L.; Dortet, L.; Nordmann, P. National survey of colistin resistance among carbapenemase-producing Enterobacteriaceae and outbreak caused by colistin-resistant OXA-48-producing Klebsiella pneumoniae, France, 2014. Eurosurveillance 2016, 21, 30339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galani, I.; Karaiskos, I.; Karantani, I.; Papoutsaki, V.; Maraki, S.; Papaioannou, V.; Kazila, P.; Tsorlini, H.; Charalampaki, N.; Toutouza, M.; et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Eurosurveillance 2018, 23, 1700775. [Google Scholar] [CrossRef] [PubMed]
- Mader, R.; Damborg, P.; Amat, J.-P.; Bengtsson, B.; Bourély, C.; Broens, E.M.; Busani, L.; Crespo-Robledo, P.; Filippitzi, M.-E.; Fitzgerald, W.; et al. Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet). Eurosurveillance 2021, 26, 2001359. [Google Scholar] [CrossRef] [PubMed]
Year | Decision/Advice |
---|---|
2006 | European-Union-wide ban on antibiotic use for growth promotion, including colistin [14,15]. |
2013 | European Medicines Agency’s advice on colistin [6]:
|
2014 | European-Union-wide mandatory antimicrobial susceptibility testing of commensal, indicator, and zoonotic bacteria for colistin isolated from food-producing animals covered by the national monitoring programmes, as laid down in Regulation 2013/652/EU, was implemented. |
2016 | European Medicines Agency updated advice on colistin following the discovery of the plasmid-borne mcr-1 gene in 2015 [16]:
|
2016 | Based on European Medicines Agency advice, the Commission Implementing Decision laid down the withdrawal of all marketing authorisations for all veterinary medicinal products for oral use containing colistin in combination with other antimicrobial substances [17]. |
2019 | Regulation (EU) 2019/6 laying down authorisation, marketing, and use of medicines in the European Union adopted:
|
2020 | Mandatory diagnostic and antimicrobial susceptibility testing before prescription of colistin in animals in the European Union. European Medicines Agency Categorisation of Antimicrobials for animal use classified colistin as Category B “Restrict”, meaning they can only be used if no antibiotics in the lower categories C or D are effective. The use should be based on the results of antimicrobial susceptibility testing whenever possible [18]. |
2022 | European Medicines Agency advice published on the designation of antimicrobials reserved for treatment of certain infections in humans excluded colistin:
|
Administration Route | Parenteral | Per os | Total | ||||
---|---|---|---|---|---|---|---|
Practice Type | Intra-Muscular | Intra- Venous | Drinking Water | Feed Top Dressing | Premixed Feed | ||
Mixed practice | 11 | 2 | 62 | 14 | 24 | 113 | |
Practice specialised in cattle | 7 | 8 | 4 | 4 | 23 | ||
Practice specialised in pigs | 3 | 40 | 10 | 7 | 60 | ||
Practice specialised in poultry | 1 | 48 | 1 | 1 | 51 | ||
Practice specialised in sheep and goats | 1 | 2 | 3 | ||||
Cuniculture | 3 | 1 | 4 | ||||
Grand Total | 23 | 2 | 160 | 29 | 39 | 254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansen, W.; van Hout, J.; Wiegel, J.; Iatridou, D.; Chantziaras, I.; De Briyne, N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet. Sci. 2022, 9, 650. https://doi.org/10.3390/vetsci9110650
Jansen W, van Hout J, Wiegel J, Iatridou D, Chantziaras I, De Briyne N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Veterinary Sciences. 2022; 9(11):650. https://doi.org/10.3390/vetsci9110650
Chicago/Turabian StyleJansen, Wiebke, Jobke van Hout, Jeanine Wiegel, Despoina Iatridou, Ilias Chantziaras, and Nancy De Briyne. 2022. "Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction" Veterinary Sciences 9, no. 11: 650. https://doi.org/10.3390/vetsci9110650
APA StyleJansen, W., van Hout, J., Wiegel, J., Iatridou, D., Chantziaras, I., & De Briyne, N. (2022). Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Veterinary Sciences, 9(11), 650. https://doi.org/10.3390/vetsci9110650