Biological Characteristics and Whole-Genome Analysis of a Porcine E. coli Phage
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Sample Collection
2.2. Main Reagents and Instruments
2.3. Enrichment of Phages
2.4. Isolation and Purification of Phages
2.5. Concentration of Phages and Observation by Electron Microscopy
2.6. Study of the Biological Characteristics of Phages
2.6.1. Determination of Phage Lysis Profile
2.6.2. Optimal Multiplicity of Infection and One-Step Growth Curve
2.6.3. Thermostability and pH Sensitivity
2.7. In Vitro Phage Inhibition Test
2.8. Sequencing and Bioinformatics Analysis of Phage Genome
2.9. Statistical Analysis
3. Results
3.1. Isolation and Purification of Phage and Morphological Observation Under an Electron Microscope
3.2. Biological Characteristics of Phage Psq-1
3.2.1. Host Range of Phage Psq-1
3.2.2. Optimal Multiplicity of Infection and One-Step Growth Curve of Phage Psq-1
3.2.3. Thermostability and pH Sensitivity of Phage Psq-1
3.3. In Vitro Phage Psq-1 Inhibition Test
3.4. Whole-Genomic Analysis of Phage Psq-1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, F.; Wang, J.; Li, D.; Gao, S.; Ren, J.; Ma, L.; Liu, F.; Zhuge, X.; Yan, G.; Lu, Y.; et al. Comparative genomic analysis of 127 Escherichia coli strains isolated from domestic animals with diarrhea in China. BMC Genom. 2019, 20, 212. [Google Scholar] [CrossRef]
- Liu, X.S.; Zhang, Y.; Wang, S.; Yang, X.D.; Zhu, X.X.; Chen, X.; Wang, G.Y.; Mu, Y.C.; Luo, T.Y.; Shi, T.R. Detection of virulence genes and drug susceptibility testing of pathogenic Escherichia coli from pigs. Mod. Livest. Technol. 2021, 9, 25–26+28. [Google Scholar]
- Yang, H.; Paruch, L.; Chen, X.; van Eerde, A.; Skomedal, H.; Wang, Y.; Liu, D.; Liu Clarke, J. Antibiotic Application and Resistance in Swine Production in China: Current Situation and Future Perspectives. Front Vet. Sci. 2019, 6, 136. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Chang, L.L.; Pei, S.L.; Li, H.K.; Sun, P.; Wang, H.J.; Wang, Y.Y. Serotype investigation and drug resistance detection of Escherichia coli from pigs in Xuzhou area. Anim. Husb. Vet. Med. 2020, 52, 116–120. [Google Scholar]
- Wang, B.; Li, Y.; Huang, A.Q.; Liu, L.; Li, Y.B.; Wang, L. Research progress on bacteriophage control of foodborne pathogens in food. Food Res. Dev. 2024, 45, 204–209. [Google Scholar]
- Reardon, S. Phage therapy gets revitalized. Nature 2014, 510, 15–16. [Google Scholar] [CrossRef]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212–213, 38–58. [Google Scholar] [CrossRef]
- D’Herelle, F. Sur le role du microbe bacteriophage dans la typhose aviare. C. R. Acad. Sci. 1919, 169, 932–934. [Google Scholar]
- Fiorentin, L.; Vieira, N.D.; Barioni, W., Jr. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol. 2005, 34, 258–263. [Google Scholar] [CrossRef]
- Nikkhahi, F.; Dallal, M.M.S.; Alimohammadi, M.; Foroushani, A.R.; Rajabi, Z.; Fardsanei, F.; Imeni, S.M.; Bonab, P.T. Phage therapy: Assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice. Gastroenterol. Hepatol Bed Bench 2017, 10, 131–136. [Google Scholar]
- Chang, H.C.; Chen, C.R.; Lin, J.W.; Shen, G.H.; Chang, K.M.; Tseng, Y.H.; Weng, S.F. Isolation and characterization of novel giant Stenotrophomonas maltophilia phage phiSMA5. Appl. Environ. Microbiol. 2005, 71, 1387–1393. [Google Scholar] [CrossRef]
- Hougong, M.Z.; Zhou, H.Q.; Yu, X.Y.; Li, N.N.; Li, Y.; Qu, Y.G.; Li, Y.F.; Liang, Y.; Yan, D.; Yang, S.H.; et al. Biological characteristics and whole genome analysis of a sheep derived multidrug-resistant Klebsiella pneumoniae bacteriophage Chinese. Anim. Husb. Vet. Med. 2024, 51, 2047–2057. [Google Scholar]
- Li, F.; Xing, S.; Fu, K.; Zhao, S.; Liu, J.; Tong, Y.; Zhou, L. Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271. Virus Genes 2019, 55, 218–226. [Google Scholar]
- Han, P.; Pu, M.; Li, Y.; Fan, H.; Tong, Y. Characterization of bacteriophage BUCT631 lytic for K1 Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae. Virol. Sin. 2023, 38, 801–812. [Google Scholar] [CrossRef]
- ICTV. “Taxonomy of Viruses: 2023 Update”. International Committee on Taxonomy of Viruses. 2023. Available online: https://www.ictvonline.org/taxonomy/past-reports/2023-report/ (accessed on 10 October 2024).
- Wu, J.N.; Li, Z.H.; Li, F.X.; Zhang, Z.X.; Zhang, Y.F.; Song, J.L. Isolation, identification, and biological characteristics analysis of a multidrug-resistant Escherichia coli bacteriophage BP32 Chinese. Anim. Husb. Vet. Med. 2024, 51, 3540–3551. [Google Scholar]
- Chang, J.S.; Yang, R.Y.; Dai, X.Z.; Qu, Y.G.; Liang, Y.; Li, N.; Zhao, Y.; Wang, Z.Y.; Zhang, X.Y. Isolation and biological characteristics analysis of Escherichia coli bacteriophages from bovine mastitis source. Prog. Vet. Med. 2022, 43, 25–29. [Google Scholar]
- Jia, X.C.; Xiao, T.S.; Zhu, X.L.; Hao, Z.H. Isolation, identification, and whole genome analysis of a lytic colistin resistant Escherichia coli bacteriophage. J. China Agric. Univ. 2024, 29, 131–140. [Google Scholar]
- Li, F.; Li, L.; Na, S.; Zhao, J.; Liu, F.; Liu, P.; Li, Y.; Li, M.; Lei, M.; Zhang, D.; et al. Isolation, characterization, and genomic analysis of a novel phage IME178 with lytic activity against Escherichia coli. Microb. Pathog. 2023, 179, 106099. [Google Scholar]
- Li, S.Y.; Zhao, T.T.; Chen, Y.X.; Liu, H.J. In front of the Chai family Phage therapy and its application in livestock and poultry breeding processes Shandong. Anim. Husb. Vet. Med. 2024, 45, 87–89. [Google Scholar]
- Zhao, Y.H. Isolation and Identification of Multidrug Resistant Escherichia coli Bacteriophages and Study on Cocktail Therapy. M.D Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar]
- Zhou, Y.Q.; Ma, D.X.; Wu, J.; Wang, X.Y. Isolation, Identification and Characterization of Broad-Spectrum Escherichia coli O157:H7 CVCC4050 Bacteriophage vB_EcoM_GXBP08. China Anim. Husb. Vet. Med. 2022, 49, 2735–2745. [Google Scholar]
- Liao, B.; Yu, C.Y.; Huang, Q.C.; Mo, Y.P.; Huang, W.Q.; Li, L.; Han, K.O.; Wang, L.P.; Li, X.; Wang, X.Y. Isolation, identification and characterization of a strain of Salmonella bacteriophage. China Anim. Husb. Vet. Med. 2023, 50, 4168–4178. [Google Scholar]
- Rong, R.F.; Guo, H.Y.; Hu, P.C.; Zuo, J.H.; Zhang, D.C.; Guo, Z.L.; Li, Y.; Zhang, Y.X.; Wang, X.R.; Zhao, R.; et al. Biological characteristics and genome-wide analysis of a strain of Klebsiella pneumoniae phage KP6. China Anim. Husb. Vet. Med. 2024, 51, 3990–4001. [Google Scholar]
- Man, C.; Xu, S.J.; Yuan, H.X.; Zhao, H.L.; Liu, W.B.; Zou, L.; Yi, Y.B.; Zhang, C. Biological characteristics and genome-wide sequence analysis of a canine Ackermannviridae bacteriophage LHE287. Chin. J. Biotechnol. 2024, 44, 27–35. [Google Scholar]
- Chen, L.Y.; Peng, Y.T.; Yan, H.Y.; Chen, P.F.; Xin, A.G.; Li, K. Evaluation of the control effect of virulent bacteriophage KM104 on Salmonella from chickens with different serotypes. China Anim. Husb. Vet. Med. 2024, 51, 278–291. [Google Scholar]
- Mukai, F.; Streisinger, G.; Miller, B. The mechanism of lysis in phage T4-infected cells. Virology 1967, 33, 398–404. [Google Scholar] [CrossRef]
- Linden, S.B.; Alreja, A.B.; Nelson, D.C. Application of bacteriophage-derived endolysins to combat streptococcal disease: Current state and perspectives. Curr. Opin. Biotechnol. 2021, 68, 213–220. [Google Scholar] [CrossRef]
- Chen, P.; Sun, H.; Ren, H.; Liu, W.; Li, G.; Zhang, C. LamB, OmpC, and the Core Lipopolysaccharide of Escherichia coli K-12 Function as Receptors of Bacteriophage Bp7. J. Virol. 2020, 94, e00325-e20. [Google Scholar] [CrossRef]
- Mahichi, F.; Synnott, A.J.; Yamamichi, K.; Osada, T.; Tanji, Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett. 2009, 295, 211–217. [Google Scholar] [CrossRef]
Functional Module | ORF | Function | Identity/% | E Value | Accession Number |
---|---|---|---|---|---|
Lysis | 3 | holin-like class II protein | 98.28% | 2.00 × 10−139 | NC_073088.1 |
4 | holin-like class I protein | 97.55% | 1.00 × 10−112 | NC_016566.1 | |
5 | lysozyme | 95.53% | 0 | NC_016566.1 | |
Structural and packaging | 9 | terminase | 100.00% | 7.00 × 10−138 | YP_004957437.1 |
10 | terminase large subunit | 93.58% | 0 | NC_024783.1 | |
11 | minor tail protein | 99.80% | 0 | YP_010741994.1 | |
16 | major head protein | 99.73% | 0 | YP_008550148.1 | |
19 | tail protein | 94.94% | 0 | NC_024783.1 | |
21 | major tail protein | 97.52% | 0 | NC_073088.1 | |
25 | minor tail protein | 98.49% | 8.00 × 10−143 | YP_010741450.1 | |
26 | minor tail protein | 99.24% | 0 | YP_009291470.1 | |
27 | tail assembly protein | 98.37% | 0 | YP_009288147.1 | |
28 | tail assembly protein | 99.02% | 1.00 × 10−144 | YP_010742501.1 | |
29 | tail fiber tip protein | 98.52% | 0 | YP_010742348.1 | |
DNA replication and regulatory | 24 | tail-length tape-measure protein | 99.09% | 0 | YP_004957454.1 |
37 | DNA methylase | 97.52% | 9.00 × 10−115 | YP_010741570.1 | |
38 | DNA ligase | 81.58% | 8.00 × 10−81 | YP_009055311.1 | |
40 | DNA cytosine methyltransferase | 99.57% | 5.00 × 10−171 | YP_010741369.1 | |
41 | helicase | 99.37% | 0 | YP_010742490.1 | |
43 | holiday junction resolvase | 100.00% | 5.00 × 10−59 | XDN94337.1 | |
44 | DNA polymerase | 99.08% | 0 | YP_002720046.1 | |
48 | exonuclease | 97.69% | 0 | YP_010741426.1 | |
52 | DNA recombination nuclease inhibitor gamma | 100.00% | 4.00 × 10−72 | YP_010741422.1 | |
53 | helicase-primase | 99.20% | 0 | WRQ05368.1 | |
Metabolism | 7 | DNA repair exonuclease | 98.68% | 0.00 × 100 | WYA83814.1 |
39 | HNH endonuclease protein | 98.13% | 4.00 × 10−72 | YP_010741962.1 | |
Unknown functional protein | 12 | head morphogenesis protein | 96.74% | 0 | NC_016566.1 |
Hypothetical protein | 1 | hypothetical protein | 91.19% | 0 | NC_073067.1 |
2 | hypothetical protein | 97.25% | 4.00 × 10−153 | ON548431.1 | |
6 | hypothetical protein | 98.26% | 0 | NC_019724.1 | |
8 | hypothetical protein | 98.12% | 2.00 × 10−98 | LN881730.1 | |
13 | hypothetical protein | 97.87% | 1.00 × 10−157 | NC_019419.2 | |
14 | hypothetical protein | 93.20% | 0 | NC_027383.1 | |
15 | hypothetical protein | 100% | 0 | YP_010741704.1 | |
17 | hypothetical protein | 99.27% | 0 | NC_073079.1 | |
18 | hypothetical protein | 97.18% | 2.00 × 10−166 | NC_024783.1 | |
20 | hypothetical protein | 89.34% | 8.00 × 10−146 | NC_016566.1 | |
22 | hypothetical protein | 100% | 2.00 × 10−83 | YP_010741944.1 | |
23 | hypothetical protein | 97.89% | 1.00 × 10−36 | NC_019724.1 | |
30 | hypothetical protein | 100% | 0 | YP_010742349.1 | |
31 | hypothetical protein | 97.26% | 2.00 × 10−44 | YP_010740694.1 | |
32 | hypothetical protein | 83.85% | 8.00 × 10−146 | XEN42225.1 | |
33 | hypothetical protein | 98.43% | 6.00 × 10−137 | YP_010742352.1 | |
34 | hypothetical protein | 97.10% | 6.00 × 10−123 | YP_010741505.1 | |
35 | hypothetical protein | 100% | 3.00 × 10−113 | YP_010741823.1 | |
36 | hypothetical protein | 94.00% | 2.00 × 10−24 | YP_010740538.1 | |
39 | hypothetical protein | 99.07% | 1.00 × 10−72 | YP_007112638.1 | |
42 | hypothetical protein | 97.30% | 5.00 × 10−47 | YP_010741367.1 | |
45 | hypothetical protein | 98.21% | 1.00 × 10−30 | YP_010740637.1 | |
46 | hypothetical protein | 89.43% | 2.00 × 10−166 | YP_010741971.1 | |
47 | hypothetical protein | 98.70% | 1.00 × 10−50 | WRQ05362.1 | |
49 | hypothetical protein | 98.39% | 2.00 × 10−38 | YP_002720051.1 | |
50 | hypothetical protein | 98.80% | 3.00 × 10−52 | YP_002720052.1 | |
51 | hypothetical protein | 98.24% | 1.00 × 10−105 | YP_010742534.1 | |
54 | hypothetical protein | 96.55% | 3.00 × 10−32 | YP_010741020.1 | |
55 | hypothetical protein | 96.04% | 2.00 × 10−64 | XEC67447.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, S.; Li, N.; Habib, S.; Zheng, P.; Li, Y.; Liang, Y.; Qu, Y. Biological Characteristics and Whole-Genome Analysis of a Porcine E. coli Phage. Vet. Sci. 2025, 12, 57. https://doi.org/10.3390/vetsci12010057
Wan S, Li N, Habib S, Zheng P, Li Y, Liang Y, Qu Y. Biological Characteristics and Whole-Genome Analysis of a Porcine E. coli Phage. Veterinary Sciences. 2025; 12(1):57. https://doi.org/10.3390/vetsci12010057
Chicago/Turabian StyleWan, Shenghui, Nana Li, Sajid Habib, Pei Zheng, Yanfang Li, Yan Liang, and Yonggang Qu. 2025. "Biological Characteristics and Whole-Genome Analysis of a Porcine E. coli Phage" Veterinary Sciences 12, no. 1: 57. https://doi.org/10.3390/vetsci12010057
APA StyleWan, S., Li, N., Habib, S., Zheng, P., Li, Y., Liang, Y., & Qu, Y. (2025). Biological Characteristics and Whole-Genome Analysis of a Porcine E. coli Phage. Veterinary Sciences, 12(1), 57. https://doi.org/10.3390/vetsci12010057