Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review
Simple Summary
Abstract
1. Introduction
2. Properties of Stem Cells
2.1. Self-Renewal Property
2.2. Differentiation
2.3. Homing
3. Classification of Stem Cells
- (a)
- Based on origin
- #
- Embryonic stem cells:
- #
- Adult stem cells:These cells are adult-derived stem cells, which are multipotent in nature and are derived from various body tissues and organs. These are mainly used in regenerative medicine due to their availability from multiple sources. The main sources of these cells are umbilical cord blood, dental pulp, adipose tissue, bone marrow, and other organs. They help overcome the risks of immune rejection when the cells are isolated from a patient and are used for the treatment of the same patient [16,17]. The adult stem cells can be further classified into two sub-types:
- Hematopoietic stem cells: These are found in abundant quantities in bone marrow and can differentiate into various immune cells, including leukocytes, erythrocytes, and platelets [18].
- Non-hematopoietic stem cells: Commonly known as mesenchymal stem cells, these cells have a strong immunomodulatory response. These cells from different organs of the body can develop into distinct cell types such as connective tissue, bone, cartilage, muscle, and fat [19].
- #
- Induced pluripotent stem (iPS) cells:
- (b)
- Based on Differentiation Ability
- #
- Totipotent stem cells:
- #
- Pluripotent stem cells:
- #
- Multipotent stem cells:
- #
- Oligopotent stem cells:
- #
- Unipotent stem cells:
4. Application of Stem Cells in Animal Treatment
5. Immunomodulatory Role of MSCs Through Paracrine Signaling
6. Development of Disease Models
6.1. Laminitis
6.2. Equine Recurrent Uveitis (ERU)
6.3. Endometriosis
6.4. Persistent Breeding-Induced Endometritis (PBIE)
6.5. Equine Metabolic Syndrome (EMS)
6.6. Cutaneous Wound
6.7. Osteoarthritis
7. Introduction to iPS Cells
8. Applications of Induced Pluripotent Stem Cells
8.1. Disease Modeling
8.2. Unlimited Stem Cell Source
8.3. Recapitulation of Human Development
8.4. Ophthalmology
8.5. Inherited Skin Diseases
8.6. Liver Failure
8.7. Pig as a Model for iPS Cell Study
9. Mechanism Involved in the Differentiation of Stem Cells
10. Challenges in Using Stem Cells for Livestock Diseases
11. Requirement of Standardized Guidelines for Stem Cell Use
12. Current Trends of Stem Cells in Veterinary Science
13. Ethical Considerations in Stem Cell Therapy
14. The iPSCs and Regulatory Concerns
15. Future Perspectives
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lendahl, U. 100 plus years of stem cell research—20 years of ISSCR. Stem Cell Rep. 2022, 17, 1248–1267. [Google Scholar] [CrossRef] [PubMed]
- NIH. Stem Cell Information Home Page in Stem Cell Information; National Institutes of Health, U.S. Department of Health and Human Services: Bethesda, MD, USA, 2016. [Google Scholar]
- Evans, M.; Kaufman, M. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292, 154–156. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef]
- Khan, F.A.; Almohazey, D.; Alomari, M.; Almofty, S.A. Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges. Stem Cells Int. 2018, 2018, 1429351. [Google Scholar] [CrossRef]
- Xu, X. 5.38—Cryopreservation of Stem Cells. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: New York, NY, USA, 2011; pp. 481–488. ISBN 9780080885049. [Google Scholar] [CrossRef]
- Zhuge, Y.; Liu, Z.J.; Velazquez, O.C. Adult stem cel differentiation and trafficking and their implications in disease. Adv. Exp. Med. Biol. 2010, 695, 169–183. [Google Scholar] [PubMed]
- Peralta, O.A. Mesenchymal Stem Cells: A Novel Therapy for the Treatment of Bovine Mastitis. In Stem Cells in Veterinary Science; Springer Nature: Singapore, 2022; pp. 223–239. [Google Scholar]
- Rajabzadeh, N.; Fathi, E.; Farahzadi, R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019, 6, 19. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Kerr, C.L. Stem cells. In Tissue Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2023; pp. 13–69. [Google Scholar] [CrossRef]
- Jin, Y.; Li, S.; Yu, Q.; Chen, T.; Liu, D. Application of stem cells in regeneration medicine. Medcomm 2023, 4, e291. [Google Scholar] [CrossRef]
- Liesveld, J.L.; Sharma, N.; Aljitawi, O.S. Stem cell homing: From physiology to therapeutics. Stem Cells 2020, 38, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Denker, H.W. Potentiality of embryonic stem cells: An ethical problem even with alternative stem cell sources. J. Med. Ethics 2006, 32, 665–671. [Google Scholar] [CrossRef]
- Bongso, A.; Fong, C.Y. Human embryonic stem cells: Their nature, properties, and uses. In Trends in Stem Cell Biology and Technology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–17. [Google Scholar]
- Cuenca-López, M.D.; Zamora-Navas, P.; García-Herrera, J.M.; Godino, M.; López-Puertas, J.M.; Guerado, E.; Becerra, J.; Andrades, J.A. Adult stem cells applied to tissue engineering and regenerative medicine. Cell. Mol. Biol. 2008, 54, 40–51. [Google Scholar] [PubMed]
- Tögel, F.; Westenfelder, C. Adult bone marrow–derived stem cells for organ regeneration and repair. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2007, 236, 3321–3331. [Google Scholar] [CrossRef] [PubMed]
- Gunsilius, E.; Gastl, G.; Petzer, A.L. Hematopoietic stem cells. Biomed. Pharmacother. 2001, 55, 186–194. [Google Scholar] [CrossRef]
- Gregory, C.A.; Prockop, D.J.; Spees, J.L. Non-hematopoietic bone marrow stem cells: Molecular control of expansion and differentiation. Exp. Cell Res. 2005, 306, 330–335. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induced pluripotent stem cells. In Regenerative Medicine; Springer: Dordrecht, The Netherlands, 2010; pp. 187–205. [Google Scholar]
- Aasen, T.; Raya, A.; Barrero, M.J.; Garreta, E.; Consiglio, A.; Gonzalez, F.; Vassena, R.; Bilić, J.; Pekarik, V.; Tiscornia, G.; et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 2008, 26, 1276–1284. [Google Scholar] [CrossRef]
- Gao, C.; Gao, X.; Gao, F.; Du, X.; Wu, S. A CRISPR/Cas9 screen in embryonic stem cells reveals that Mdm2 regulates totipotency exit. Commun. Biol. 2024, 7, 809. [Google Scholar] [CrossRef] [PubMed]
- Ghazimoradi, M.H.; Khalafizadeh, A.; Babashah, S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res. 2022, 63, 102857. [Google Scholar] [CrossRef]
- Okita, K.; Yamanaka, S. Induced pluripotent stem cells: Opportunities and challenges. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2198–2207. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, A.; Khanlarkhani, N.; Baazm, M.; Mohammadzadeh, F.; Najafi, A.; Mehdinejadiani, S.; Aval, F.S. Multipotent stem cell and current application. Acta Medica Iran. 2017, 55, 6–23. [Google Scholar]
- Mirzaei, H.; Sahebkar, A.; Sichani, L.S.; Moridikia, A.; Nazari, S.; Sadri Nahand, J.; Salehi, H.; Stenvang, J.; Masoudifar, A.; Mirzaei, H.R.; et al. Therapeutic application of multipotent stem cells. J. Cell. Physiol. 2018, 233, 2815–2823. [Google Scholar] [CrossRef]
- Majo, F.; Rochat, A.; Nicolas, M.; Jaoudé, G.A.; Barrandon, Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 2008, 456, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Tapia, N.; Wu, G.; Kim, J.B.; Bravo, M.J.A.; Sasse, P.; Glaser, T.; Ruau, D.; Han, D.W.; Greber, B.; et al. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 2009, 5, 87–96. [Google Scholar] [CrossRef]
- Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem cells in veterinary medicine—Current state and treatment options. Front. Vet. Sci. 2020, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, J.; Szóstek-Mioduchowska, A.Z.; Kopcewicz, M.; Walendzik, K.; Machcińska, S.; Gawrońska-Kozak, B. Adipose-derived stromal/stem cells from large animal models: From basic to applied science. Stem Cell Rev. Rep. 2021, 17, 719–738. [Google Scholar] [CrossRef]
- Mushahary, D.; Spittler, A.; Kasper, C.; Weber, V.; Charwat, V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytom. Part A 2018, 93, 19–31. [Google Scholar] [CrossRef]
- Mocchi, M.; Dotti, S.; Del Bue, M.; Villa, R.; Bari, E.; Perteghella, S.; Torre, M.L.; Grolli, S. Veterinary regenerative medicine for musculoskeletal disorders: Can mesenchymal stem/stromal cells and their secretome be the new frontier? Cells 2020, 9, 1453. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B.; Amarpal Fazili MU, R.; Gayas, M.A.; Ahmad, R.A.; Dhama, K. Animal mesenchymal stem cell research in cartilage regenerative medicine—A review. Vet. Q. 2019, 39, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin. Res. 2018, 169, 46–56. [Google Scholar] [CrossRef]
- Sensebe, L.; Krampera, M.; Schrezenmeier, H.; Bourin, P.; Giordano, R. Mesenchymal stem cells for clinical application. Vox Sang. 2010, 98, 93–107. [Google Scholar] [CrossRef]
- Le, H.; Xu, W.; Zhuang, X.; Chang, F.; Wang, Y.; Ding, J. Mesenchymal stem cells for cartilage regeneration. J. Tissue Eng. 2020, 11, 2041731420943839. [Google Scholar] [CrossRef]
- Blahnova, V.H.; Dankova, J.; Rampichova, M.; Filova, E. Combinations of growth factors for human mesenchymal stem cell proliferation and osteogenic differentiation. Bone Jt. Res. 2020, 9, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Dar, E.R.; Gugjoo, M.B.; Shah, S.A.; Ahmad, S.M.; Shah, R.A.; Ahmad, S.R. Cryopreserved allogeneic mesenchymal stem cells enhance wound repair in full thickness skin wound model and cattle clinical teat injuries. Curr. Res. Transl. Med. 2022, 70, 103356. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B.; Amarpal Abdelbaset-Ismail, A.; Aithal, H.P.; Kinjavdekar, P.; Kumar, G.S.; Sharma, G.T. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regen. Med. 2020, 15, 1261–1275. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Junior OC, M.; Rahal, S.C.; Lima-Neto, J.F.; Landim-Alvarenga FD, C.; Monteiro, F.O.B. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells. Acta Cirúrgica Bras. 2013, 28, 353–360. [Google Scholar] [CrossRef]
- Humenik, F.; Cizkova, D.; Cikos, S.; Luptakova, L.; Madari, A.; Mudronova, D.; Kuricova, M.; Farbakova, J.; Spirkova, A.; Petrovova, E.; et al. Canine Bone Marrow-Derived Mesenchymal Stem Cells: Genomics, Proteomics and Functional Analyses of Paracrine Factors*[S]. Mol. Cell. Proteom. 2019, 18, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; Scrivani, P.V.; Divers, T.J.; Furr, M.; Mayhew, I.J.; Reed, S.; Levine, G.J.; Foreman, J.H.; Boudreau, C.; Credille, B.C.; et al. Multicenter case-control study of signalment, diagnostic features, and outcome associated with cervical vertebral malformation-malarticulation in horses. J. Am. Vet. Med. Assoc. 2010, 237, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Martinez, H.R.; Gómez-Almaguer, D.; Jaime-Pérez, J.C.; Olguín-Ramírez, L.A.; Sarquis RN, G.; Salazar-Riojas, R.; Leon AG, D.; Ocañas, C.E.E.; Marioni, S.S. Intrathecal delivery of bone marrow stem cells in ALS: A preliminary report. Trends Transplant. 2017, 10, 20. [Google Scholar] [CrossRef]
- Barberini, D.J.; Aleman, M.; Aristizabal, F.; Spriet, M.; Clark, K.C.; Walker, N.J.; Galuppo, L.D.; Amorim, R.M.; Woolard, K.D.; Borjesson, D.L. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res. Ther. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cequier, A.; Sanz, C.; Rodellar, C.; Barrachina, L. The usefulness of mesenchymal stem cells beyond the musculoskeletal system in horses. Animals 2021, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Pokorska, J.; Sawicki, S.; Gabryś, J.; Kułaj, D.; Bauer, E.A.; Lenart-Boroń, A.; Bulanda, K.; Kuchta-Gładysz, M.; Grzesiakowska, A.; Kemilew, J.; et al. The use of stem cells in the treatment of mastitis in dairy cows. Sci. Rep. 2024, 14, 10349. [Google Scholar] [CrossRef] [PubMed]
- Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022, 13, 366. [Google Scholar] [CrossRef]
- González-González, A.; García-Sánchez, D.; Dotta, M.; Rodríguez-Rey, J.C.; Pérez-Campo, F.M. Mesenchymal stem cells secretome: The cornerstone of cell-free regenerative medicine. World J. Stem Cells 2020, 12, 1529–1552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Dai, H.; Li, J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J. Adv. Res. 2023, 45, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Ivosevic, Z.; Ljujic, B.; Pavlovic, D.; Matovic, V.; Gazdic Jankovic, M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant. 2023, 32, 9636897231207194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williamson, J.; Callaway, T.; Rollin, E.; Ryman, V. Association of milk somatic cell count with bacteriological cure of intramammary infection—A review. Agriculture 2022, 12, 1437. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; Helal, M.A.Y.; Tanaka, R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet. Sci. 2022, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Markoski, M.M. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica 2016, 2016, 4516920. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009, 5, 584–595. [Google Scholar] [CrossRef]
- Angelone, M.; Conti, V.; Biacca, C.; Battaglia, B.; Pecorari, L.; Piana, F.; Gnudi, G.; Leonardi, F.; Ramoni, R.; Basini, G.; et al. The contribution of adipose tissue-derived mesenchymal stem cells and platelet-rich plasma to the treatment of chronic equine laminitis: A proof of concept. Int. J. Mol. Sci. 2017, 18, 2122. [Google Scholar] [CrossRef]
- Godwin, E.E.; Young, N.J.; Dudhia, J.; Beamish, I.C.; Smith, R.K. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet. J. 2012, 44, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tobita, M.; Tajima, S.; Mizuno, H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: Stem cell transplantation methods that enhance stemness. Stem Cell Res. Ther. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Degroote, R.L.; Uhl, P.B.; Amann, B.; Krackhardt, A.M.; Ueffing, M.; Hauck, S.M.; Deeg, C.A. Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis. J. Proteom. 2017, 154, 102–108. [Google Scholar] [CrossRef]
- Saldinger, L.K.; Nelson, S.G.; Bellone, R.R.; Lassaline, M.; Mack, M.; Walker, N.J.; Borjesson, D.L. Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro. Vet. Ophthalmol. 2020, 23, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Mambelli, L.I.; Winter GH, Z.; Kerkis, A.; Malschitzky, E.; Mattos, R.C.; Kerkis, I. A novel strategy of mesenchymal stem cells delivery in the uterus of mares with endometrosis. Theriogenology 2013, 79, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Mambelli, L.I.; Mattos, R.C.; Winter, G.H.; Madeiro, D.S.; Morais, B.P.; Malschitzky, E.; Miglino, M.A.; Kerkis, A.; Kerkis, I. Changes in expression pattern of selected endometrial proteins following mesenchymal stem cells infusion in mares with endometrosis. PLoS ONE 2014, 9, e97889. [Google Scholar] [CrossRef]
- Cabezas, J.; Rojas, D.; Navarrete, F.; Ortiz, R.; Rivera, G.; Saravia, F.; Rodriguez-Alvarez, L.; Castro, F. Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology 2018, 106, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Marycz, K.; Szłapka-Kosarzewska, J.; Geburek, F.; Kornicka-Garbowska, K. Systemic Administration of Rejuvenated Adipose-Derived Mesenchymal Stem Cells Improves Liver Metabolism in Equine Metabolic Syndrome (EMS)-New Approach in Veterinary Regenerative Medicine. Stem Cell Rev Rep. 2019, 15, 842–850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mund SJ, K.; Kawamura, E.; Awang-Junaidi, A.H.; Campbell, J.; Wobeser, B.; MacPhee, D.J.; Honaramooz, A.; Barber, S. Homing and Engraftment of Intravenously Administered Equine Cord Blood-Derived Multipotent Mesenchymal Stromal Cells to Surgically Created Cutaneous Wound in Horses: A Pilot Project. Cells 2020, 9, 1162. [Google Scholar] [CrossRef]
- Lanci, A.; Merlo, B.; Mariella, J.; Castagnetti, C.; Iacono, E. Heterologous Wharton’s Jelly Derived Mesenchymal Stem Cells Application on a Large Chronic Skin Wound in a 6-Month-Old Filly. Front. Vet. Sci. 2019, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Vilar, J.M.; Batista, M.; Morales, M.; Santana, A.; Cuervo, B.; Rubio, M.; Cugat, R.; Sopena, J.; Carrillo, J.M. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet. Res. 2014, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wang, X. SOCS3/JAK2/STAT3 pathway in iPSCs. In Molecular Players in iPSC Technology; Academic Press: New York, NY, USA, 2022; pp. 303–317. [Google Scholar]
- Lo, B.; Parham, L. Ethical issues in stem cell research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef]
- Nambisan, P. An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology; Academic Press: New York, NY, USA, 2017. [Google Scholar]
- Shi, G.; Jin, Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 2010, 1, 1–9. [Google Scholar] [CrossRef]
- Rizzino, A. Concise review: The Sox2-Oct4 connection: Critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 2013, 31, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cui, W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 2014, 6, 305. [Google Scholar] [CrossRef] [PubMed]
- Varlakhanova, N.V.; Cotterman, R.F.; Devries, W.N.; Morgan, J.; Donahue, L.R.; Murray, S.; Knowles, B.B.; Knoepfler, P.S. Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010, 80, 9–19. [Google Scholar] [CrossRef]
- Smith, K.; Dalton, S. Myc transcription factors: Key regulators behind establishment and maintenance of pluripotency. Regen. Med. 2010, 5, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Shivapathasundram, G.; Wickremesekera, A.C.; Tan, S.T.; Itinteang, T. Tumour stem cells in meningioma: A review. J. Clin. Neurosci. 2018, 47, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Shyh-Chang, N.; Daley, G.Q. Lin28: Primal regulator of growth and metabolism in stem cells. Cell Stem Cell 2013, 12, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.T.; Yamaguchi, S.; Hirano, K.; Ichisaka, T.; Kuroda, T.; Tada, T. Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast. Dev. Biol. 2014, 392, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Thomson, J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007, 17, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Son, M.Y.; Choi, H.; Han, Y.M.; Sook Cho, Y. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Stem Cells 2013, 31, 2374–2387. [Google Scholar] [CrossRef] [PubMed]
- Lapasset, L.; Milhavet, O.; Prieur, A.; Besnard, E.; Babled, A.; Aït-Hamou, N.; Leschik, J.; Pellestor, F.; Ramirez, J.-M.; De Vos, J.; et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011, 25, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K. Cellular reprogramming–lowering gravity on Waddington’s epigenetic landscape. J. Cell Sci. 2012, 125, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Kimbrel, E.A.; Lanza, R. Pluripotent stem cells: The last 10 years. Regen. Med. 2016, 11, 831–847. [Google Scholar] [CrossRef]
- Loring, J.F. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson’s disease. Stem Cells Dev. 2018, 27, 958–959. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, S.; Balasubramanian, S.; Babai, N.; Qiu, F.; Eudy, J.D.; Thoreson, W.B.; Ahmad, I. Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: Therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 2010, 28, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Junnuthula, V.; Dyawanapelly, S. Ocular therapeutics and molecular delivery strategies for neovascular age-related macular degeneration (Namd). Int. J. Mol. Sci. 2021, 22, 10594. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.; Murrell, D.F. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp. Dermatol. 2008, 17, 553–568. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, L.; Li, L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther. 2019, 10, 199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, J.; Yu, L.; Guo, J.; Xiang, J.; Zheng, Z.; Gao, D.; Shi, B.; Hao, H.; Jiao, D.; Zhong, L.; et al. Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system. Stem Cell Res Ther. 2019, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Mumaw, J.L.; Liu, Y.; Stice, S.L.; West, F.D. SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplant. 2013, 22, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, V.A. How do cells talk to each other? Paracrine factors secreted by mesenchymal stromal cells. J. Thorac. Cardiovasc. Surg. 2016, 151, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Gwam, C.; Mohammed, N.; Ma, X. Stem cell secretome, regeneration, and clinical translation: A narrative review. Ann. Transl. Med. 2021, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Daneshmandi, L.; Shah, S.; Jafari, T.; Bhattacharjee, M.; Momah, D.; Saveh-Shemshaki, N.; Lo, K.W.-H.; Laurencin, C.T. Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol. 2020, 38, 1373–1384. [Google Scholar] [CrossRef]
- Fan, G.C. Role of heat shock proteins in stem cell behavior. Prog. Mol. Biol. Transl. Sci. 2012, 111, 305–322. [Google Scholar]
- Naeim, F. Atlas of Hematopathology: Morphology, Immunophenotype, Cytogenetics, and Molecular Approaches; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Kumar, D.; Gupta, D.; Shankar, S.; Srivastava, R.K. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget 2015, 6, 3280–3291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saito, R.F.; Machado, C.M.L.; Lomba, A.L.O.; Otake, A.H.; Rangel, M.C. Heat Shock Proteins Mediate Intercellular Communications Within the Tumor Microenvironment Through Extracellular Vesicles. Appl. Biosci. 2024, 3, 45–58. [Google Scholar] [CrossRef]
- Tahmasebi, F.; Asl, E.R.; Vahidinia, Z.; Barati, S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell. Mol. Neurobiol. 2024, 44, 44. [Google Scholar] [CrossRef]
- Tschuschke, M.; Kocherova, I.; Bryja, A.; Mozdziak, P.; Angelova Volponi, A.; Janowicz, K.; Sibiak, R.; Piotrowska-Kempisty, H.; Iżycki, D.; Bukowska, D.; et al. Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes. J. Clin Med. 2020, 9, 436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, R.; Liu, Y.; Lu, M.; Ding, Q.; Wang, P.; Zhang, H.; Tian, X.; Lu, P.; Meng, D.; Sun, N.; et al. ALIX increases protein content and protective function of iPSC-derived exosomes. J. Mol. Med. 2019, 97, 829–844. [Google Scholar] [CrossRef] [PubMed]
- Baraniak, P.R.; McDevitt, T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010, 5, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Hu, X.; Yao, L.; Jiang, Y.; Li, L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022, 13, 179. [Google Scholar] [CrossRef]
- Harrell, C.R.; Popovska Jovicic, B.; Djonov, V.; Volarevic, V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Treatment of Viral Diseases. Pathogens 2021, 10, 409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdulmalek, O.A.A.Y.; Husain, K.H.; AlKhalifa, H.K.A.A.; Alturani, M.M.A.B.; Butler, A.E.; Moin, A.S.M. Therapeutic Applications of Stem Cell-Derived Exosomes. Int. J. Mol. Sci. 2024, 25, 3562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.; Kang, G.H.; Lim, K.M.; Shin, Y.; Song, K.; Park, S.; An, J.; Kim, D.Y.; Shin, H.C.; Cho, S.G. Thermostable Human Basic Fibroblast Growth Factor (TS-bFGF) Engineered with a Disulfide Bond Demonstrates Superior Culture Outcomes in Human Pluripotent Stem Cell. Biology 2023, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Watabe, T.; Miyazono, K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Sulzbacher, S.; Schroeder, I.S.; Truong, T.T.; Wobus, A.M. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors—The influence of differentiation factors and culture conditions. Stem Cell Rev. Rep. 2009, 5, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, A.M.; Kamarudin, T.A.; Abd Ghafar, N. The role of BMP4 in adipose-derived stem cell differentiation: A minireview. Front. Cell Dev. Biol. 2022, 10, 1045103. [Google Scholar] [CrossRef]
- Cao, Z.; Xie, Y.; Yu, L.; Li, Y.; Wang, Y. Hepatocyte growth factor (HGF) and stem cell factor (SCF) maintained the stemness of human bone marrow mesenchymal stem cells (hBMSCs) during long-term expansion by preserving mitochondrial function via the PI3K/AKT, ERK1/2, and STAT3 signaling pathways. Stem Cell Res. Ther. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mossahebi-Mohammadi, M.; Quan, M.; Zhang, J.S.; Li, X. FGF signaling pathway: A key regulator of stem cell pluripotency. Front. Cell Dev. Biol. 2020, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Mou, D.; Yu, Q.; Zhang, J.; Xiong, Y.; Zhang, Z.; Xing, S. Nerve growth factor promotes osteogenic differentiation of MC3T3-E1 cells via BMP-2/Smads pathway. Ann. Anat. -Anat. Anz. 2022, 239, 151819. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.T.; Parrotta, E.I.; Santamaria, G.; Cuda, G. Short-term retinoic acid treatment sustains pluripotency and suppresses differentiation of human induced pluripotent stem cells. Cell Death Dis. 2018, 9, 6. [Google Scholar] [CrossRef]
- da Silva Meirelles, L.; Fontes, A.M.; Covas, D.T.; Caplan, A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009, 20, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.D.; Olsen, B.R. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J. Histochem. Cytochem. 2014, 62, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Chopp, M.; Shen, L.H.; Zhang, R.L.; Zhang, L.; Zhang, Z.G.; Li, Y. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke. Neurosci. Lett. 2013, 542, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, I.; Silva, Á.P.D.; Araldi, R.P. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front. Immunol. 2024, 15, 1400533. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.Y.; Orwig, K.E.; Oatley, J.M.; Avarbock, M.R.; Brinster, R.L. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 2006, 24, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.S.; Lin, C.Y.; Chiu, Y.H.; Chen, C.P.; Tsai, P.J.; Wang, H.S. IL-1β-induced matrix metalloprotease-1 promotes mesenchymal stem cell migration via PAR1 and G-protein-coupled signaling pathway. Stem Cells Int. 2018, 2018, 3524759. [Google Scholar] [CrossRef] [PubMed]
- Dubie, T.; Admassu, B.; Sisay, T.; Shiferaw, H. Basic biology and therapeutic application of stem cells in various human and animal diseases. J. Cell Biol. Genet. 2014, 4, 40–52. [Google Scholar]
- Goel, S.; Gandhi, S.; Dubey, S.; Shah, M.; Saini, S.; Arora, P.; Prakashan, D.; Shukla, S.; Taru Sharma, G. Stem Cell Therapy: Promises and Challenges in Treating Animal Diseases. In Biotechnological Interventions Augmenting Livestock Health and Production; Springer Nature: Singapore, 2023; pp. 13–38. [Google Scholar]
- Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Maiti, S.K.; Kumar, M.U.; Srivastava, L.; Ninu, A.R.; Kumar, N. Isolation, Proliferation and Morphological Characteristics of Bone-Marrow Derived Mesenchymal Stem Cells (BM-MSC) from Different Animal Species. Trends Biomater. Artif. Organs 2013, 27, 1–7. [Google Scholar]
- Pilgrim, C.R.; McCahill, K.A.; Rops, J.G.; Dufour, J.M.; Russell, K.A.; Koch, T.G. A review of fetal bovine serum in the culture of mesenchymal stromal cells and potential alternatives for veterinary medicine. Front. Vet. Sci. 2022, 9, 859025. [Google Scholar] [CrossRef]
- Fu, X.; Xu, Y. Challenges to the clinical application of pluripotent stem cells: Towards genomic and functional stability. Genome Med. 2012, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hmadcha, A.; Domínguez-Bendala, J.; Wakeman, J.; Arredouani, M.; Soria, B. The immune boundaries for stem cell based therapies: Problems and prospective solutions. J. Cell. Mol. Med. 2009, 13, 1464–1475, Erratum in J. Cell. Mol. Med. 2009, 13, 2754. [Google Scholar] [PubMed] [PubMed Central]
- Lee, A.S.; Tang, C.; Rao, M.S.; Weissman, I.L.; Wu, J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013, 19, 998–1004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madrid, M.; Lakshmipathy, U.; Zhang, X.; Bharti, K.; Wall, D.M.; Sato, Y.; Muschler, G.; Ting, A.; Smith, N.; Deguchi, S.; et al. Considerations for the development of iPSC-derived cell therapies: A review of key challenges by the JSRM-ISCT iPSC Committee. Cytotherapy 2024, 26, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
- Wysoczynski, M.; Khan, A.; Bolli, R. New Paradigms in Cell Therapy: Repeated Dosing, Intravenous Delivery, Immunomodulatory Actions, and New Cell Types. Circ. Res. 2018, 123, 138–158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buil, B.A.; Rentsch, N.H.; Weber, R.Z.; Rickenbach, C.; Halliday, S.J.; Hotta, A.; Tackenberg, C.; Rust, R. Beneath the radar: Immune-evasive cell sources for stroke therapy. Trends Mol. Med. 2024, 30, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Flamant, S.; Loinard, C.; Tamarat, R. MSC beneficial effects and limitations, and MSC-derived extracellular vesicles as a new cell-free therapy for tissue regeneration in irradiated condition. Environ. Adv. 2023, 13, 100408. [Google Scholar] [CrossRef]
- Goldring, C.E.; Duffy, P.A.; Benvenisty, N.; Andrews, P.W.; Ben-David, U.; Eakins, R.; French, N.; Hanley, N.A.; Kelly, L.; Kitteringham, N.R.; et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell 2011, 8, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Iacono, E.; Merlo, B. Stem Cells in Domestic Animals: Applications in Health and Production. Animals 2022, 12, 2753. [Google Scholar] [CrossRef] [PubMed]
- Lovell-Badge, R.; Anthony, E.; Barker, R.A.; Bubela, T.; Brivanlou, A.H.; Carpenter, M.; Charo, R.A.; Clark, A.; Clayton, E.; Cong, Y.; et al. ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Rep. 2021, 16, 1398–1408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lappin, T.; Cheng, T. An urgent need for standardization of stem cells and stem cell-derived products toward clinical applications. Stem Cells Transl. Med. 2021, 10, S1–S3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arzi, B.; Webb, T.L.; Koch, T.G.; Volk, S.W.; Betts, D.H.; Watts, A.; Goodrich, L.; Kallos, M.S.; Kol, A. Cell Therapy in Veterinary Medicine as a Proof-of-Concept for Human Therapies: Perspectives from the North American Veterinary Regenerative Medicine Association. Front. Vet. Sci. 2021, 8, 779109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Callaway, E. Could stem cells rescue an endangered species? Nature 2011. [Google Scholar] [CrossRef]
- Musiał-Wysocka, A.; Kot, M.; Majka, M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant. 2019, 28, 801–812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Kim, G.B.; Shon, O.J. Current perspectives in stem cell therapies for osteoarthritis of the knee. Yeungnam Univ. J. Med. 2020, 37, 149–158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assen, L.S.; Jongsma, K.R.; Isasi, R.; Tryfonidou, M.A.; Bredenoord, A.L. Recognizing the ethical implications of stem cell research: A call for broadening the scope. Stem Cell Rep. 2021, 16, 1656–1661. [Google Scholar] [CrossRef]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B., IV. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019, 10, 341. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Dehkordi, F.B.; Chehelgerdi, M.; Kabiri, H.; Salehian-Dehkordi, H.; Abdolvand, M.; Salmanizadeh, S.; Rashidi, M.; Niazmand, A.; Ahmadi, S.; et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol. Cancer 2023, 22, 189. [Google Scholar] [CrossRef]
- Nath, S.C.; Menendez, L.; Friedrich Ben-Nun, I. Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies. Int. J. Mol. Sci. 2023, 24, 16929. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhang, Y.; Geng, X.; Chi, K.; Liu, C.; Song, C.; Cai, G.; Chen, X.; Hong, Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res. Ther. 2023, 14, 116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harding, J.; Roberts, R.M.; Mirochnitchenko, O. Large animal models for stem cell therapy. Stem Cell Res. Ther. 2013, 4, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scarfone, R.A.; Pena, S.M.; Russell, K.A.; Betts, D.H.; Koch, T.G. The use of induced pluripotent stem cells in domestic animals: A narrative review. BMC Vet. Res. 2020, 16, 477. [Google Scholar] [CrossRef]
- Ansori, A.N.; Antonius, Y.; Susilo, R.J.; Hayaza, S.; Kharisma, V.D.; Parikesit, A.A.; Zainul, R.; Jakhmola, V.; Saklani, T.; Rebezov, M.; et al. Application of CRISPR-Cas9 genome editing technology in various fields: A review. Narra J. 2023, 3, e184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Sl. No. | Genes | Role/Function | References |
---|---|---|---|
1 | OCT4 (Octamer-binding transcription factor 4) |
| [73] |
2 | SOX2 (SRY-box transcription factor 2) |
| [73,74,75] |
3 | c-MYC (Cellular myelocytomatosis oncogene) |
| [76,77] |
4 | KLF4 (Kruppel-like factor 4) |
| [78] |
5 | LIN28 (Lin-28 Homolog A) |
| [79] |
6 | Nanog |
| [80,81] |
7 | REX1 (Reduced expression 1) |
| [82] |
SL. No. | Signaling Molecules | Role | References |
---|---|---|---|
1 | bFGF (Basic fibroblast growth factor) | bFGF is a multifunctional growth factor that controls the proliferation and differentiation of stem cells, also promoting the preservation of their stemness, making this an essential factor of regenerative medicine and stem cell biology. | [108] |
2 | TGF-β1 (Transforming growth factor β1) | TGF-β1 is pivotal in regulating stem cell differentiation, influencing both the maintenance of pluripotency and the commitment to specific lineages through its complex signaling pathways and stem cell niche interactions. | [109] |
3 | Activin-A | A key regulator of stem cell development, Activin-A affects the ratio of pluripotency to lineage commitment in a context-dependent way. Understanding its signaling pathways is crucial for developing stem-cell-based therapies and regenerative medicine applications. | [110] |
4 | BMP-4 (Bone morphogenic protein 4) | BMP-4 is a pivotal factor in stem cell differentiation, influencing lineage commitment across various stem cell types and contributing to processes such as hematopoiesis and neuronal differentiation. Its versatile role underscores its importance in developmental biology and regenerative medicine. | [111] |
5 | HGF (Hepatocyte growth factor) | HGF is a crucial factor in the differentiation of stem cells, influencing their maintenance, lineage commitment, and regenerative capabilities. Its multifaceted roles make it a valuable target for therapeutic strategies in various diseases, particularly those involving tissue damage and regeneration. | [112] |
6 | EGF (Epidermal growth factor) | EGF is a flexible growth factor that affects the ability of different stem cell types to maintain their stemness and induce lineage commitment. Its specific effects depend on the cellular context and the interplay with other signaling pathways. Understanding EGF’s role in stem cell differentiation is crucial for developing targeted therapies and regenerative medicine. | [113] |
7 | βNGF (β nerve growth factor) | βNGF plays a critical role in stem cell differentiation, especially in neuronal and osteogenic lineages. Its significance in stem cell biology and therapeutic uses in regenerative medicine are highlighted by its capacity to control proliferation, survival, and lineage commitment. | [114] |
8 | Retinoic acid | Retinoic acid is a crucial regulator of stem cell differentiation, with the ability to both induce lineage commitment and sustain pluripotency depending on the cellular context. Understanding its complex signaling mechanisms is important for directing stem cell fate in regenerative medicine applications. | [115] |
9 | VEGF (Vascular Endothelial Growth factor) | Involved in angiogenesis, this factor is upregulated in spinal cord injuries after the administration of MSCs. In bone-marrow-derived mesenchymal stem cells, it helps in controlling the balance between osteoblast and adipocyte differentiation. | [116,117] |
10 | Interleukin-6 | This has both anti-inflammatory and pro-inflammatory properties. It contributes to the growth of T helper cells and encourages hematopoietic stem cells to differentiate into different types of blood cells. | [118,119] |
11 | Interleukin-1 beta | This is involved in the therapeutic effects of MSC-associated cardiac repair. It also plays a role in the production of GDNF by Sertoli cells. It enhances cell migration and activates protein kinase cascades. | [120,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narasimha, R.B.; Shreya, S.; Jayabal, V.A.; Yadav, V.; Rath, P.K.; Mishra, B.P.; Kancharla, S.; Kolli, P.; Mandadapu, G.; Kumar, S.; et al. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet. Sci. 2025, 12, 67. https://doi.org/10.3390/vetsci12010067
Narasimha RB, Shreya S, Jayabal VA, Yadav V, Rath PK, Mishra BP, Kancharla S, Kolli P, Mandadapu G, Kumar S, et al. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Veterinary Sciences. 2025; 12(1):67. https://doi.org/10.3390/vetsci12010067
Chicago/Turabian StyleNarasimha, Raghavendra B., Singireddy Shreya, Vijay Anand Jayabal, Vikas Yadav, Prasana Kumar Rath, Bidyut Prava Mishra, Sudhakar Kancharla, Prachetha Kolli, Gowtham Mandadapu, Sudarshan Kumar, and et al. 2025. "Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review" Veterinary Sciences 12, no. 1: 67. https://doi.org/10.3390/vetsci12010067
APA StyleNarasimha, R. B., Shreya, S., Jayabal, V. A., Yadav, V., Rath, P. K., Mishra, B. P., Kancharla, S., Kolli, P., Mandadapu, G., Kumar, S., Mohanty, A. K., & Jena, M. K. (2025). Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Veterinary Sciences, 12(1), 67. https://doi.org/10.3390/vetsci12010067