Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Active Components and Targets of QLGFP
2.2. Identification of Disease Targets
2.3. PPI Network Construction and Core Gene Screening
2.4. GO and KEGG Pathway Enrichment Analysis
2.5. Preparation of QLGFP
2.6. Establishment of the Broiler Ascites Syndrome Model and Grouping
2.7. Sample Collection and Preparation
2.8. Pulmonary Artery Histopathological Observation
2.9. Immunofluorescence
2.10. Detection of Protein Content by ELISA
3. Results
3.1. Active Ingredient–Disease Intersection Target Network
3.2. Construction of the PPI Network and Screening of the Core Genes
3.3. Functional Enrichment Analysis
3.4. Effect of QLGFP on the Ascites Heart Index of Broilers
3.5. The Influence of QLGFP on Pulmonary Artery Pathology
3.6. Observation of PCNA Expression in the Pulmonary Artery by Immunofluorescence and Marker Proteins
3.7. Effects of QLGFP on the MAPK Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QLGFP | Qi Ling Gui Fu Prescription |
AS | broiler ascites syndrome |
PH | Pulmonary hypertension |
PASMC | Linear dichroism pulmonary artery smooth muscle cells |
TCM | Traditional Chinese Medicine |
OB | oral bioavailability |
KEGG | Encyclopedia of Genes and Genomes |
GO | Gene Ontology |
HE | Hematoxylin and eosin |
ELISA | Enzyme-linked immunosorbent assay |
References
- Kalmar, I.D.; Vanrompay, D.; Janssens, G.P.J. Broiler ascites syndrome: Collateral damage from efficient feed to meat conversion. Vet. J. 2013, 197, 169–174. [Google Scholar] [CrossRef]
- Wideman, R.F.; Rhoads, D.D.; Erf, G.F.; Anthony, N.B. Pulmonary arterial hypertension (ascites syndrome) in broilers: A review. Poult. Sci. 2013, 92, 64–83. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Luo, X.-J.; Wang, E.-L.; Li, N.-S.; Zhang, X.-J.; Song, F.-L.; Yang, J.-F.; Liu, B.; Peng, J. Magnesium lithospermate B prevents phenotypic transformation of pulmonary arteries in rats with hypoxic pulmonary hypertension through suppression of NADPH oxidase. Eur. J. Pharmacol. 2019, 847, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, H.; Da, X.; He, Z.; Tang, B.; Li, Y.; Hu, C.; Xu, C.; Chen, Q.; Wang, Q.K. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension. Pulm. Pharmacol. Ther. 2019, 55, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, Y.; Peng, G.; Liu, N.; Tian, H.; Pan, D.; Liu, L.; Yang, X.; Li, C.; Li, W.; et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1α and TRPC channels. Int. J. Biochem. Cell Biol. 2018, 104, 161–170. [Google Scholar] [CrossRef]
- Yap, C.; Mieremet, A.; de Vries, C.J.; Micha, D.; de Waard, V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arter. Thromb. Vasc. Biol. 2021, 41, 2693–2707. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, X.; Tang, W.; Min, L.; Yang, J. Rab6A GTPase contributes to phenotypic modulation in pulmonary artery smooth muscle cells under hypoxia. J. Cell. Biochem. 2019, 120, 7858–7867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, T.; Wu, W.; Ge, X.; Xiong, X.; Zhang, Z.; Hu, C. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension. Eur. J. Pharmacol. 2018, 818, 84–95. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, X.; Zheng, Z.; Quan, J.; Liu, Y.; Wang, Y.; Liu, T.B.; Liu, X.; Wang, M.; Zhang, Z. ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. J. Cardiovasc. Pharmacol. 2021, 79, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Bauer, R.; Hendry, B.M.; Fan, T.-P.; Zhao, Z.; Duez, P.; Simmonds, M.S.; Witt, C.M.; Lu, A.; Robinson, N.; et al. The quest for modernisation of traditional Chinese medicine. BMC Complement. Altern. Med. 2013, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.-Y.; Zheng, J.-H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.J. The effect of increased sodium in the drinking water on right ventricular hypertrophy, right ventricular failure and ascites in broiler chickens. Avian Pathol. 1987, 16, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.; McMillan, I.; Quinton, M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens. Avian Pathol. 1989, 18, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Zhou, M.; Yu, M.; Li, X.; Zhang, L.; Xie, J. Mechanism Study of Shijue Muli Decoction in Improving Vascular Remodeling of Spontaneously Hypertensive Rat Through p38MAPK Signaling Pathway. J. Guangzhou Univ. Tradit. Chin. Med. 2016, 33, 7. [Google Scholar]
- Baghbanzadeh, A.; Decuypere, E. Ascites syndrome in broilers: Physiological and nutritional perspectives. Avian Pathol. 2008, 37, 117–126. [Google Scholar] [CrossRef]
- Varmaghany, S.; Torshizi, M.A.K.; Rahimi, S.; Lotfollahian, H.; Hassanzadeh, M. The effects of increasing levels of dietary garlic bulb on growth performance, systolic blood pressure, hematology, and ascites syndrome in broiler chickens. Poult. Sci. 2015, 94, 1812–1820. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J. Interactions between clopidogrel and traditional Chinese medicine. J. Thromb. Thrombolysis 2019, 48, 491–499. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wang, Y.; Cui, H.; Zhao, G.; Guo, Y.; Wen, J. Effect of myristic acid supplementation on triglyceride synthesis and related genes in the pectoral muscles of broiler chickens. Poult. Sci. 2024, 103, 104038. [Google Scholar] [CrossRef]
- Hong, T.M.; Chen, W.M.; Ren, Y.-T.M.; Wang, Y.-H.; Lu, D.-Q.; Zhang, K.-Y.M.; Yao, X.-Y.M.; Wang, X.-C. Network pharmacology identifies the inhibitory effect of Yiqiyangyinquyu prescription on salivary gland inflammation in Sjögren’s syndrome. Medicine 2023, 102, e36144. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, R.; Michelakis, E.D.; Archer, S.L. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: Implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 2006, 13, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-F.; Chiang, C.-W.; Wu, C.-C.; Cheng, C.-C.; Hsieh, S.-J.; Chen, J.-C.; Hsieh, Y.-C.; Hsu, S.-L. Gypenosides induce apoptosis in human hepatoma Huh-7 cells through a calcium/reactive oxygen species-dependent mitochondrial pathway. Planta Medica 2007, 73, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.J. Physiological, management and environmental triggers of the ascites syndrome: A review. Avian Pathol. 2000, 29, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Dong, L.-H.; Zheng, B.; Shi, J.-H.; Wen, J.-K.; Cheng, Y. Smooth muscle 22 alpha maintains the differentiated phenotype of vascular smooth muscle cells by inducing filamentous actin bundling. Life Sci. 2009, 84, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, M.; Jiang, H.; Ju, D.; Zheng, J.-P.; Xu, Z.; Liao, T.-D.; Li, L. Arterial injury promotes medial chondrogenesis in Sm22 knockout mice. Cardiovasc. Res. 2010, 90, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Han, M.; Wen, J. Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 2010, 62, 132–139. [Google Scholar] [CrossRef]
- Shen, J.; Yang, M.; Ju, D.; Jiang, H.; Zheng, J.-P.; Xu, Z.; Li, L. Disruption of SM22 Promotes Inflammation After Artery Injury via Nuclear Factor κB Activation. Circ. Res. 2010, 106, 1351–1362. [Google Scholar] [CrossRef]
- Zhang, D.-D.; Song, Y.; Kong, P.; Xu, X.; Gao, Y.-K.; Dou, Y.-Q.; Weng, L.; Wang, X.-W.; Lin, Y.-L.; Zhang, F.; et al. Smooth muscle 22 alpha protein inhibits VSMC foam cell formation by supporting normal LXRα signaling, ameliorating atherosclerosis. Cell Death Dis. 2021, 12, 982. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Mao, M.; Zhao, M.; Xiao, X.; Sun, W.; Guo, J.; Liu, C.; Yang, D.; Qiao, J.; et al. Velvet Antler Mobilizes Endothelial Progenitor Cells to Promote Angiogenesis and Repair Vascular Endothelial Injury in Rats Following Myocardial Infarction. Front. Physiol. 2018, 9, 1940. [Google Scholar] [CrossRef]
- Hu, Y.-W.; Li, H.-T.; Liu, K.; Yan, M.-T.; Zhang, Y.; Ren, L.-Q. Effects of icariin on proliferation of vascular smooth muscle cell induced by ox-LDL via impacting MAPK signaling pathway. China J. Chin. Mater. Medica 2016, 41, 3655–3660. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Wang, H.; Li, Z.; Li, Y.; Ping, S.; Bardeesi, A.S.A.; Guo, Y.; Zhou, Y.; Pei, T.; et al. Role of nifedipine and hydrochlorothiazide in MAPK activation and vascular smooth muscle cell proliferation and apoptosis. Herz 2017, 42, 573–584. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Gao, L.; Li, J.; Chen, W.; Chi, J.; Zhang, X.; Fu, Y.; Zhao, M.; Liu, N.; et al. Cortistatin exerts antiproliferation and antimigration effects in vascular smooth muscle cells stimulated by Ang II through suppressing ERK1/2, p38 MAPK, JNK and ERK5 signaling pathways. Ann. Transl. Med. 2019, 7, 561. [Google Scholar] [CrossRef] [PubMed]
- Madiraju, P.; Hossain, E.; Anand-Srivastava, M.B. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells. Mol. Cell. Biochem. 2018, 448, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Mitra, S.; Gregg, H.; Flavahan, S.; Chotani, M.A.; Clark, K.R.; Goldschmidt-Clermont, P.J.; Flavahan, N.A. Redox regulation of vascular smooth muscle cell differentiation. Circ. Res. 2001, 89, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Park, S.L.; Won, S.Y.; Song, J.-H.; Kambe, T.; Nagao, M.; Kim, W.-J.; Moon, S.-K. EPO gene expression promotes proliferation, migration and invasion via the p38MAPK/AP-1/MMP-9 pathway by p21WAF1 expression in vascular smooth muscle cells. Cell. Signal. 2015, 27, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kulik, M.; Lechleider, R.J. Smad proteins regulate transcriptional induction of the SM22alpha gene by TGF-beta. Nucleic Acids Res. 2003, 31, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Chen, W.; Gaofeng, Z.; Changcheng, L.; Guoping, T.; Minyan, Z.; Yang, L.; Min, Y.; Luo, J. Cyanidin-3-O-β-glucoside protects against pulmonary artery hypertension induced by monocrotaline via the TGF-β1/p38 MAPK/CREB signaling pathway. Mol. Med. Rep. 2021, 23, 338. [Google Scholar] [CrossRef]
PubChem Cid | Molecule Name | Formula | CAS Number | Structure | Target Amount |
---|---|---|---|---|---|
177072 | Dihydrokaranone | C15H22O | 19598-45-9 | 203 | |
5319799 | 3-Methyl-6,7,8-Trihydropyrrolo [1,2-A]Pyrimidin-2-One | C8H10N2O | 76884-47-4 | 199 | |
5320113 | Tanshiquinone B | C18H16O3 | 65907-76-8 | 168 | |
5320114 | Neotanshinone C | C16H12O3 | 65907-77-9 | 168 | |
5320066 | Neocryptotanshinone Ii | C17H18O3 | 27468-20-8 | 168 | |
5319835 | Miltionone I | C19H20O4 | 6855-99-8 | 168 | |
102090422 | Sebiferic Acid | C30H48O2 | 52809-09-3 | 154 | |
5417 | Tetrahydropalmatine | C21H25NO4 | 2934-97-6 | 138 | |
13849 | Pentadecanoic Acid | C15H30O2 | 1002-84-2 | 138 | |
23518 | Methyl Pentadecanoate | C16H32O2 | 7132-64-1 | 138 | |
985 | Hexadecanoic Acid | C16H32O2 | 67701-02-4 | 138 | |
2969 | Decanoic Acid | C10H20O2 | 334-48-5 | 138 | |
19347555 | Azelaic Acid | C9H16O4 | 32733-99-6 | 138 | |
12113497 | 13-Methyl Pentadecanoic Acid | C16H32O2 | 20121-96-4 | 138 | |
5280450 | Linoleic Acid | C18H32O2 | 2197-37-7 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Deng, R.; Wang, K.; Wang, H.; Han, Y.; Duan, Z. Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study. Vet. Sci. 2025, 12, 78. https://doi.org/10.3390/vetsci12020078
Kang J, Deng R, Wang K, Wang H, Han Y, Duan Z. Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study. Veterinary Sciences. 2025; 12(2):78. https://doi.org/10.3390/vetsci12020078
Chicago/Turabian StyleKang, Jie, Ruiqiang Deng, Keyao Wang, Huimin Wang, Yufeng Han, and Zhibian Duan. 2025. "Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study" Veterinary Sciences 12, no. 2: 78. https://doi.org/10.3390/vetsci12020078
APA StyleKang, J., Deng, R., Wang, K., Wang, H., Han, Y., & Duan, Z. (2025). Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study. Veterinary Sciences, 12(2), 78. https://doi.org/10.3390/vetsci12020078