Impact of Calcium Propionate Supplementation on the Lactation Curve and Milk Metabolomic Analysis on Rambouillet Ewes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals and Diets
2.3. Sample Collection and Calculations
2.4. Analytical Methods
2.5. Statical Analysis
3. Results
3.1. Performance of Ewes
3.2. Milk Metabolomic Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SIAP, SAGARPA. Servicio de Información Agroalimentaria y Pesquera, Secretaría de Agricultura Ganadería y Desarrollo Rural, Pesca y Alimentación. 2023. Available online: https://www.gob.mx/siap/acciones-y-programas/produccion-pecuaria (accessed on 1 December 2024).
- Ochoa-Cordero, M.A.; Torres-Hernández, G.; Ochoa-Alfaro, A.E.; Vega-Roque, L.; Mandeville, P.B. Milk yield and composition of Rambouillet ewes under intensive management. Small Rumin. Res. 2002, 43, 269–274. [Google Scholar] [CrossRef]
- Yıldırır, M.; Akbağ, H.I.; Yurtman, İ.Y. The Effect of Restricted Nutrition on Ewe Milking Performance and Lamb Growth Characteristics in Creep Feeding Conditions. Iran. J. Appl. Anim. Sci. 2022, 12, 525–532. [Google Scholar]
- Akbulut, N.K.; Harman, H.; Kal, Y.; Kırbaş, M. Examination of blood cortisol and some parameters at parturition and on 30th day postpartum in single and twin-pregnant ewes. Livest. Stud. 2021, 61, 55–59. [Google Scholar] [CrossRef]
- Campos, N.R.F.; dos Santos Difante, G.; do Nascimento Rangel, A.H.; Urbano, S.A.; Neto, J.V.E.; da Costa, A.B.G.; de Carvalho Netto, R.T.; Cavalcante Rivero, P.H.; Bezerra, J.I.G. Supplementation strategies and their effects on ewes colostrum and milk compositions in the initial third lactation period. Semin. Ciências Agrárias 2019, 40, 1535–1542. [Google Scholar] [CrossRef]
- Kuchtík, J.; Sustova, K.; Urban, T.; Zapletal, D. Effect of the stage of lactation on milk composition, its properties and the quality of rennet curdling in East Friesian ewes. Czech J. Anim. Sci. 2008, 53, 55. [Google Scholar] [CrossRef]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef]
- Becker, V.A.E.; Stamer, E.; Thaller, G. Liability to diseases and their relation to dry matter intake and energy balance in German Holstein and Fleckvieh dairy cows. J. Dairy Sci. 2021, 104, 628–643. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Kristensen, N.B.; Donkin, S.S.; Hammon, H.M.; Penner, G.B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life 2010, 62, 869–877. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Extent of hypophagia caused bypropionate infusion is related to plasma glucose concentration in lactating dairy cows. J. Nutr. 2003, 133, 1105–1112. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Wang, X. Effects of dietary energy levels on rumen fermentation, microbiota, and gastrointestinal morphology in growing ewes. Food Sci. Nutr. 2020, 8, 6621–6632. [Google Scholar] [CrossRef]
- Pérez Segura, L.F.; Ramirez, R.F.; Relling, A.E.; Roque-Jimenez, J.A.; Zhang, N.; Vargas-Bello-Pérez, E.; Lee-Rangel, H.A. Effects of maternal calcium propionate supplementation on offspring productivity and meat metabolomic profile in sheep. PLoS ONE 2023, 18, e0294627. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wang, D.; Zhao, F.Q.; Liang, S.; Liu, J. AMPK-mTOR pathway is involved in glucose-modulated aminoacid sensing and utilization in the mammary glands of lactating goats. J. Anim. Sci. Biotechnol. 2020, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Karcher, E.L.; Pickett, M.M.; Varga, G.A.; Donkin, S.S. Effect of dietary carbohydrate and monensin on expression of gluconeogenic enzymes in liver of transition dairy cows. J. Anim. Sci. 2007, 85, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, L.; Hosseinkhani, A.; Taghizadeh, A.; Ghasemi-Panahi, B.; Hamidian, G. Effect of late gestational feed restriction and glucogenic precursor on behavior and performance of Ghezel ewes and their offspring. Appl. Anim. Behav. Sci. 2020, 231, 105030. [Google Scholar] [CrossRef]
- Xu, W.; Vervoort, J.; Saccenti, E.; Kemp, B.; van Hoeij, R.J.; van Knegsel, A.T. Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation. J. Dairy Sci. 2020, 103, 4795–4805. [Google Scholar] [CrossRef]
- Yanibada, B.; Hohenester, U.; Pétéra, M.; Canlet, C.; Durand, S.; Jourdan, F.; Ferlay, A.; Morgavi, D.; Boudra, H. Milk metabolome reveals variations on enteric methane emissions from dairy cows fed a specific inhibitor of the methanogenesis pathway. J. Dairy Sci. 2021, 104, 12553–12566. [Google Scholar] [CrossRef]
- DOF. NORMA Oficial Mexicana NOM-062-ZOO-1999, Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio; Diario Oficial de la Federación: Ciudad de México, Mexico, 2001. [Google Scholar]
- Cifuentes-López, R.O.; Lee-Rangel, H.A.; García-Lopez, J.C.; Vicente, J.G.; Flores-Primo, A.; Pinos-Rodríguez, J.M. Effect of calcium propionate on live weight, consumption and carcass of lambs fed on alfalfa hay (Medicago sativa). Agrociencia 2018, 52, 81–88. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.; Lewis, A. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle: Methods for dietary fibre neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Cannon, V.L.; Loerch, S.C. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid. J. Anim. Sci. 2006, 31, 225–229. [Google Scholar] [CrossRef]
- Wood, P.D.P. Algebraic model of the lactation curve in cattle. Nature 1967, 216, 164–165. [Google Scholar] [CrossRef]
- Portolano, B.; Spatafora, F.; Bono, G.; Margiotta, S.; Todaro, M.; Ortoleva, V.; Leto, G. Application of the Wood model to lactation curves of Comisana sheep. Small Rumin. Res. 1997, 24, 7–13. [Google Scholar] [CrossRef]
- Nava-García, A.; Martínez-Rojero, R.D.; Mastache-Lagunas, A.A.; Ulloa-Arvizu, R. Curva de rendimiento y composición de leche en ovejas criollas de la Montaña de Guerrero, México. Ecosistemas Recur. Agropecu. 2019, 6, 391–398. [Google Scholar] [CrossRef]
- Ángeles Hernández, J.C.; Radic Schilling, S.; Vera Arias, M.A.; Echeverría Pérez, R.A.; Castelán-Ortega, O.A.; Ramírez Pérez, A.H.; González Ronquillo, M. Effect of live weight pre- and post-lambing on milk production of East Friesian sheep. Ital. J. Anim. Sci. 2017, 17, 184–194. [Google Scholar] [CrossRef]
- Mendoza-Martínez, G.D.; Pinos-Rodríguez, J.M.; Lee-Rangel, H.A.; Hernández-García, P.A.; Rojo-Rubio, R.; Relling, A. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim. Prod. Sci. 2015, 56, 1194–1198. [Google Scholar] [CrossRef]
- Hashem, N.M.; El-Zarkouny, S.Z. Metabolic attributes, milk production and ovarian activity of ewes supplemented with a soluble sugar or a protected-fat as different energy sources during postpartum period. Ann. Anim. Sci. 2017, 17, 229–240. [Google Scholar] [CrossRef]
- Bell, A.W.; Bauman, D.E. Adaptations of glucose metabolism during pregnancy and lactation. J. Mammary Gland. Biol. 1997, 2, 265–278. [Google Scholar] [CrossRef]
- Nielsen, M.O.; Madsen, T.G.; Hedeboe, A.M. Regulation of mammary glucose uptake in goats: Role of mammary gland supply insulin IGF-1 and synthetic capacity. J. Dairy Res. 2001, 68, 337–349. [Google Scholar] [CrossRef]
- Toral, P.G.; Abecia, L.; Hervás, G.; Yáñez-Ruiz, D.R.; Frutos, P. Plasma and milk metabolomics in lactating sheep divergent for feed efficiency. J. Dairy Sci. 2023, 106, 3947–3960. [Google Scholar] [CrossRef]
- Sun, H.Z.; Wang, D.M.; Wang, B.; Wang, J.K.; Liu, H.Y.; Guan, L.L.; Liu, J.X. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality. J. Proteome Res. 2015, 14, 1287–1298. [Google Scholar] [CrossRef]
- Queiroga, R.d.C.R.E.; Leite Neta, M.T.S.; Dutra Sandes, R.D.; Narain, N.; Sousa Galvão, M.D.; Madruga, M.S.; Germano Costa, R. An insight in key volatile compounds in goat milk based on their odor active values. J. Food Sci. Nutr. 2019, 2, 49–60. [Google Scholar] [CrossRef]
- Lerma-Reyes, I.; Mendoza-Martínez, G.; Rojo-Rubio, R.; Mejia, M.; Garcia-Lopez, J.; Lee-Rangel, H. Influence of supplemental canola or soybean oil on milk yield, fatty acid profile and postpartum weight changes in grazing dairy goats. Anim. Biosci. 2018, 31, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R.; Bell, A.V.; Trigg, T.E. Body composition changes in goats during early lactation estimated using a two-pool model of tritiated water kinetics. Br. J. Nutr. 1990, 64, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Fernandes, E.A.; Cano, A.E.P.; Vinitwatanakhun, J.; Boeren, S.; Van Hooijdonk, T.; Van Knegsel, A.; Vervoort, J.; Hettinga, K.A. Changes in Milk Proteome and Metabolome Associated with Dry Period Length, Energy Balance, and Lactation Stage in Postparturient Dairy Cows. J. Proteome Res. 2013, 12, 3288–3296. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shen, T.; Yang, W.; Yu, H.; Gao, S.; Huang, B.; Xu, C. Ketotic cows display a different serum nonesterified fatty acid composition. J. Dairy Res. 2020, 87, 52–55. [Google Scholar] [CrossRef]
- Roy, M.K.; Cendali, F.I.; Ooyama, G.; Gamboni, F.; Morton, H.; D’Alessandro, A. Red Blood Cell Metabolism in Patients with Propionic Acidemia. Separations 2021, 8, 142. [Google Scholar] [CrossRef]
- Gross, J.J.; Bruckmaier, R.M. Review: Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animals 2019, 13, s75–s81. [Google Scholar] [CrossRef]
- Rawlings, J.B. Biosynthesis of fatty acids and related metabolites. Nat. Prod. Rep. 1998, 15, 275. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed. Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Lozada, L.; Fraga, M.J.; Juarez, M. Fatty acid composition of caprine milk: Major, branched-chain, and trans fatty acids. J. Dairy Sci. 1999, 82, 878–884. [Google Scholar] [CrossRef]
- Berthelot, V.; Bas, P.; Schmidely, P.; Duvaux-Ponter, C. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Rumin. Res. 2001, 40, 29–39. [Google Scholar] [CrossRef]
- Payne, A.H.; Hales, D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004, 25, 947–970. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Kim, I.H.; Cho, J.H.; Yoo, J.S.; Kim, H.J.; Shin, S.O. Utilization of δ-aminolevulinic acid for livestock: Blood characteristics and immune organ weight in broilers. J. Anim. Feed. Sci. 2008, 17, 215. [Google Scholar] [CrossRef]
- Brunetto, A.L.R.; Giacomelli, C.M.; Favero, J.F.; Bissacotti, B.F.; Copeti, P.M.; Morsch, V.M.; de Oliveira, F.d.C.; Wagner, R.; Alves, R.; Pereira, W.A.B.; et al. Phytogenic blend in the diet of growing Holstein steers: Effects on performance, digestibility, rumen volatile fatty acid profile, and immune and antioxidant responses. Anim. Feed. Sci. Technol. 2023, 297, 115595. [Google Scholar] [CrossRef]
- Karagül-Yüceer, Y.; Drake, M.; Cadwallader, K.R. Aroma-Active Components of Nonfat Dry Milk. J. Agric. Food Chem. 2001, 49, 2948–2953. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, G.; Freundlich, J.S.; Ekins, S.; Wickramaratne, N.; Nolan, S.T.; William, R.B. Essential metabolites of Mycobacterium tuberculosis and their mimics. Am. Soc. Microb. 2011, 2, e00301-10. [Google Scholar] [CrossRef]
- Pero, R.W. Health consequences of catabolic synthesis of hippuric acid in humans. Curr. Clin. Pharmacol. 2010, 5, 67–73. [Google Scholar] [CrossRef]
- Tong, J.; Zhang, H.; Zhang, Y.; Xiong, B.; Jiang, L. Microbiome and metabolome analyses of milk from dairy cows with subclinical Streptococcus agalactiae mastitis-Potential biomarkers. Front. Microbiol. 2019, 10, 2547. [Google Scholar] [CrossRef]
Ingredients | g kg−1 of DM |
---|---|
Corn silage | 500 |
Alfalfa hay | 500 |
Chemical composition, g kg−1 of DM | |
Dry matter | 646.65 |
Crude Protein | 157 |
Neutral Digestion Fiber | 470 |
Acid Digestion Fiber | 276.5 |
Ether extract | 31.45 |
Ash | 92.1 |
Item | CP/0S | CP/30S | p-Value | SEM |
---|---|---|---|---|
Initial lactating ewe weight, kg | 67.8 a | 62.3 b | 0.04 | 7.2 |
Final lactating weight, kg | 64.7 a | 60.5 b | 0.03 | 5.8 |
Difference, kg | 3.1 a | 1.8 b | 0.06 | 0.99 |
Milk production, mL | 315.6 b | 472.7 a | 0.04 | 36.1 |
Item | CP/0S | CP/30S | p-Value | SEM |
---|---|---|---|---|
Lactation peak, day | 24 a | 10 b | 0.01 | 1.73 |
Maximum production, mL | 344 b | 521 a | 0.01 | 12.5 |
Lactation persistence, day | 12 b | 22 a | 0.02 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Segura, L.F.; Lee-Rangel, H.A.; Flores Ramirez, R.; García-López, J.C.; Álvarez-Fuentes, G.; Vázquez Valladolid, A.; Hernández-García, P.A.; Negrete Sanchez, O.; Rendon Huerta, J.A. Impact of Calcium Propionate Supplementation on the Lactation Curve and Milk Metabolomic Analysis on Rambouillet Ewes. Vet. Sci. 2025, 12, 79. https://doi.org/10.3390/vetsci12020079
Pérez Segura LF, Lee-Rangel HA, Flores Ramirez R, García-López JC, Álvarez-Fuentes G, Vázquez Valladolid A, Hernández-García PA, Negrete Sanchez O, Rendon Huerta JA. Impact of Calcium Propionate Supplementation on the Lactation Curve and Milk Metabolomic Analysis on Rambouillet Ewes. Veterinary Sciences. 2025; 12(2):79. https://doi.org/10.3390/vetsci12020079
Chicago/Turabian StylePérez Segura, Luis Fernando, Hector A. Lee-Rangel, Rogelio Flores Ramirez, Juan Carlos García-López, Gregorio Álvarez-Fuentes, Anayeli Vázquez Valladolid, Pedro A. Hernández-García, Octavio Negrete Sanchez, and Juan Antonio Rendon Huerta. 2025. "Impact of Calcium Propionate Supplementation on the Lactation Curve and Milk Metabolomic Analysis on Rambouillet Ewes" Veterinary Sciences 12, no. 2: 79. https://doi.org/10.3390/vetsci12020079
APA StylePérez Segura, L. F., Lee-Rangel, H. A., Flores Ramirez, R., García-López, J. C., Álvarez-Fuentes, G., Vázquez Valladolid, A., Hernández-García, P. A., Negrete Sanchez, O., & Rendon Huerta, J. A. (2025). Impact of Calcium Propionate Supplementation on the Lactation Curve and Milk Metabolomic Analysis on Rambouillet Ewes. Veterinary Sciences, 12(2), 79. https://doi.org/10.3390/vetsci12020079