Chronic Kidney Disease and Dietary Supplementation: Effects on Inflammation and Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animals
2.3. Veterinary Evaluations
2.4. Supplement
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRIS Guidelines. 2019. Available online: http://www.iris-kidney.com/guidelines/ (accessed on 12 November 2021).
- Halfen, D.P.; Caragelasco, D.S. Evaluation of Electrolyte Concentration and Pro-Inflammatory and Oxidative Status in Dogs with Advanced Chronic Kidney Disease under Dietary Treatment. Toxins 2019, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.R.; Nofiarny, D.; Perrinjaquet-Moccetti, T.; Verbruggen, M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with Captopril. Phytomed. Int. J. Phytother. Phytopharm. 2011, 18, 251–258. [Google Scholar] [CrossRef]
- Geddes, R.F.; Finch, N.C.; Syme, H.M.; Elliott, J. The role of phosphorus in the pathophysiology of chronic kidney disease. J. Vet. Emerg. Crit. Care 2013, 23, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Polzin, D.J. Chronic kidney disease in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Zatelli, A.; D’Ippolito, P.; Roura, X.; Zini, E. Short-term effects of dietary supplementation with amino acids in dogs with proteinuric chronic kidney disease. Can. Vet. J. Rev. Vet. Can. 2017, 58, 1287–1293. [Google Scholar]
- Lippi, I.; Perondi, F.; Ceccherini, G.; Marchetti, V.; Guidi, G. Effects of probiotic VSL#3 on glomerular filtration rate in dogs affected by chronic kidney disease: A pilot study. Can. Vet. J. Rev. Vet. Can. 2017, 58, 1301–1305. [Google Scholar]
- Martello, E.; Perondi, F.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; Cocca, T.; Bruni, N.; Lippi, I. Efficacy of a new dietary supplement in dogs with advanced chronic kidney disease. PeerJ 2020, 8, e9663. [Google Scholar] [CrossRef]
- Lippi, I.; Guidi, G.; Marchetti, V.; Tognetti, R.; Meucci, V. Prognostic role of the product of serum calcium and phosphorus concentrations in dogs with chronic kidney disease: 31 cases (2008–2010). J. Am. Vet. Med. Assoc. 2014, 245, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortadellas, O.; Fernández del Palacio, M.J.; Talavera, J.; Bayón, A. Calcium and phosphorus homeostasis in dogs with spontaneous chronic kidney disease at different stages of severity. J. Vet. Intern. Med. 2010, 24, 73–79. [Google Scholar] [CrossRef]
- Polzin, D.J. Evidence-based step-wise approach to managing chronic kidney disease in dogs and cats. J. Vet. Emerg. Crit. Care 2013, 23, 205–215. [Google Scholar] [CrossRef]
- Zatelli, A.; Pierantozzi, M.; D’Ippolito, P.; Bigliati, M.; Zini, E. Effect of dietary supplements in reducing probability of death for uremic crises in dogs affected by chronic kidney disease (masked RCCT). Sci. World J. 2012, 2012, 219082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshifuji, A.; Wakino, S.; Irie, J.; Tajima, T.; Hasegawa, K.; Kanda, T.; Tokuyama, H.; Hayashi, K.; Itoh, H. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2016, 31, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vianna, H.R.; Soares, C.M.; Tavares, M.S.; Teixeira, M.M.; Silva, A.C. Inflammation in chronic kidney disease: The role of cytokines. J. Bras. Nefrol. Orgao Soc. Bras. E Lat.-Am. Nefrol. 2011, 33, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.C.; de Almeida, B.F.; Soeiro, C.S.; Ferreira, W.L.; de Lima, V.M.; Ciarlini, P.C. Oxidative stress, superoxide production, and apoptosis of neutrophils in dogs with chronic kidney disease. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2013, 77, 136–141. [Google Scholar]
- Oberg, B.P.; McMenamin, E.; Lucas, F.L.; McMonagle, E.; Morrow, J.; Ikizler, T.A.; Himmelfarb, J. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004, 65, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Fusi, E.; Rizzi, R.; Polli, M.; Cannas, S.; Giardini, A.; Bruni, N.; Marelli, S.P. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Vet. Rec. Open 2019, 6, e000368. [Google Scholar] [CrossRef] [Green Version]
- Bruni, N.; Martello, E.; Fusi, E.; Meineri, G.; Giardini, A. Study of faecal parameters and body condition in dogs with a diet supplemented with Lactobacillus acidophilus D2/CSL (CECT 4529). Ital. J. Anim. Sci. 2020, 19, 704–711. [Google Scholar] [CrossRef]
- Saettone, V.; Biasato, I. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals 2020, 10, 2199. [Google Scholar] [CrossRef]
- McNaught, C.E.; MacFie, J. Probiotics in clinical practice: A critical review of the evidence. Nutr. Res. 2001, 21, 343–353. [Google Scholar] [CrossRef]
- Brown, S.A.; Brown, C.A.; Crowell, W.A.; Barsanti, J.A.; Allen, T.; Cowell, C.; Finco, D.R. Beneficial effects of chronic administration of dietary omega-3 polyunsaturated fatty acids in dogs with renal insufficiency. J. Lab. Clin. Med. 1998, 131, 447–455. [Google Scholar] [CrossRef]
- Brown, S.A. Oxidative Stress and Chronic Kidney Disease. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 157–166. [Google Scholar] [CrossRef]
- Biasibetti, E.; Martello, E.; Bigliati, M.; Biasato, I.; Cocca, T.; Bruni, N.; Capucchio, M.T. A long term feed supplementation based on phosphate binders in Feline Chronic Kidney Disease. Vet. Res. Commun. 2018, 42, 161–167. [Google Scholar] [CrossRef] [PubMed]
- FEDIAF. Nutritional Guidelines 2014. Available online: https://www.fediaf.org/ (accessed on 12 November 2021).
- Anraku, M.; Tanaka, M.; Hiraga, A.; Nagumo, K.; Imafuku, T.; Maezaki, Y.; Iohara, D.; Uekama, K.; Watanabe, H.; Hirayama, F.; et al. Effects of chitosan on oxidative stress and related factors in hemodialysis patients. Carbohydr. Polym. 2014, 112, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Gaggl, M.; Cejka, D.; Plischke, M.; Heinze, G.; Fraunschiel, M.; Schmidt, A.; Hörl, W.H.; Sunder-Plassmann, G. Effect of oral sodium bicarbonate supplementation on progression of chronic kidney disease in patients with chronic metabolic acidosis: Study protocol for a randomized controlled trial (SoBic-Study). Trials 2013, 14, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Wolf, B.W.; Chow, J.; Garleb, K.A.; Williams, J.A.; Fahey, G.C., Jr. Fructooligosaccharides and Lactobacillus acidophilus modify bowel function and protein catabolites excreted by healthy humans. J. Nutr. 2002, 132, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rodriguez, R. Oleanolic acid and related triterpenoids from olives on vascular function: Molecular mechanisms and therapeutic perspectives. Curr. Med. Chem. 2015, 22, 1414–1425. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Almes, K.; Jewell, D.E. Serum Concentrations of Symmetric Dimethylarginine and Creatinine in Dogs with Naturally Occurring Chronic Kidney Disease. J. Vet. Intern. Med. 2016, 30, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.A.; MacLeay, J.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Schiefelbein, H.; Paetau-Robinson, I.; Jewell, D.E. Positive Impact of Nutritional Interventions on Serum Symmetric Dimethylarginine and Creatinine Concentrations in Client-Owned Geriatric Dogs. PLoS ONE 2016, 11, e0153653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, V.J.; Freeman, L.M. Association between body condition and survival in dogs with acquired chronic kidney disease. J. Vet. Intern. Med. 2011, 25, 1306–1311. [Google Scholar] [CrossRef]
- Evenepoel, P.; Poesen, R.; Meijers, B. The gut–kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [Google Scholar] [CrossRef]
- Nallu, A.; Sharma, S.; Ramezani, A.; Muralidharan, J.; Raj, D. Gut microbiome in chronic kidney disease: Challenges and opportunities. Transl. Res. J. Lab. Clin. Med. 2017, 179, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, R.; Glorieux, G. The intestine and the kidneys: A bad marriage can be hazardous. Clin. Kidney J. 2015, 8, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irazabal, M.V.; Torres, V.E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020, 9, 1342. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, A.; Guidi, G.; Marchetti, V.; Simoni, S.; Lubas, G.; Cardini, G. Use of D-Roms Assay in Dogs Affected by Chronic Renal Failure to Evaluate Prognosis: Preliminary Results. Abstr. Ecvim 2007, 17, 232. [Google Scholar] [CrossRef]
Ingredients | % |
---|---|
Feed supplement | |
Vitamin B12 1/1000 | 10 |
Vitamin E | 0.002 |
Vitamin B6 | 0.5 |
Vitamin C | 5 |
Folic acid | 0.2 |
Lactobacillus acidophilus D2/CSL | 0.211 |
Olea europaea L.: olive extract | 2 |
Chitosan | 8 |
Sodium bicarbonate | 6 |
Colloidal silica E551b | 0.5 |
Calcium carbonate | 26 |
Calcium lactate-gluconate | 16 |
Fructooligosaccharides (Profeed® Maxflow) | 20 |
Optimizor uranus | 0.2 |
Maltodextrin | 5.387 |
Total | 100.000 |
Placebo | |
Maltodextrin | 95.00 |
Appetite stimulants | 5.00 |
Total | 100.000 |
Parameter | Time | Group | |
---|---|---|---|
CTR Mean (95% CI) | TRT Mean (95% CI) | ||
BW kg | T0 | 16.47 (15.36; 16.76) | 16.53 (16.25; 17.55) |
T30 | 16.45 (15.34; 16.76) | 16.6 (16.3; 17.62) | |
T60 | 16.44 (15.36; 16.74) | 16.73 (16.44; 17.75) | |
T90 | 16.43 (15.35; 16.72) | 16.81 (16.51; 17.83) | |
BCS 1–5 | T0 | 2.9 (2.25; 3.43) | 2.81 (2.26; 3.48) |
T30 | 2.9 (2.29; 3.45) | 3.26 (2.75; 3.91) | |
T60 | 2.9 (2.22; 3.43) | 3.91 (3.38; 4.58) | |
T90 | 2.91 (2.27; 3.44) | 4.31 (3.75; 4.95) *,$ |
Parameter | Time | Group | |
---|---|---|---|
CTR Mean (95% CI) | TRT Mean (95% CI) | ||
SBP mm Hg | T0 | 141.59 (136.23; 147.38) | 142.58 (136.8; 147.69) |
T30 | 149.29 (143.9; 154.97) | 142.9 (137.28; 148.5) | |
T60 | 152.78 (147.66; 158.29) * | 142.21 (136.81; 147.79) | |
T90 | 155.62 (150.13; 161.57) * | 142.98 (137.5; 148.21) $ | |
DBP mm Hg | T0 | 80.73 (77.77; 83.8) | 81.21 (78.09; 84.15) |
T30 | 85.79 (82.9; 89.15) | 82.4 (79.15; 85.51) | |
T60 | 86.34 (83.56; 89.45) | 83.27 (80.12; 86.16) | |
T90 | 89.52 (86.62; 92.65) * | 83.63 (80.63; 86.62) $ |
Parameter | Laboratory Standard Reference Range | Time | Group | |
---|---|---|---|---|
CTR Mean (95% CI) | TRT Mean (95% CI) | |||
CREA mg/dL | 0.5–1.8 | T0 | 3.2 (2.89; 3.51) | 3.17 (2.83; 3.46) |
T30 | 3.28 (3; 3.59) | 2.9 (2.57; 3.19) | ||
T60 | 3.24 (2.95; 3.53) | 2.7 (2.37; 2.98) | ||
T90 | 3.22 (2.92; 3.53) | 2.4 (2.03; 2.68) *,$ | ||
BUN mg/dL | 15–45 | T0 | 127.8 (115.79; 143.21) | 136.37 (122; 148.88) |
T30 | 140.26 (128.24; 155.85) | 132.52 (118.21; 144.91) | ||
T60 | 152.55 (140.03; 168.01) | 130.01 (115.83; 142.32) | ||
T90 | 165.1 (153.08; 181.03) * | 126.62 (112.71; 138.95) $ | ||
P mg/dL | 2.7–5 | T0 | 8.07 (7.27; 8.93) | 8.1 (7.23; 8.92) |
T30 | 8.32 (7.53; 9.17) | 7.41 (6.56; 8.23) | ||
T60 | 8.55 (7.76; 9.42) | 6.97 (6.08; 7.8) | ||
T90 | 8.78 (7.98; 9.62) | 5.71 (4.86; 6.55) *,$ | ||
TP mg/dL | 6–7.5 | T0 | 5.84 (5.63; 6.02) | 5.66 (5.47; 5.89) |
T30 | 5.64 (5.41; 5.83) | 5.72 (5.51; 5.95) | ||
T60 | 5.48 (5.25; 5.67) | 5.73 (5.53; 5.96) | ||
T90 | 5.34 (5.11; 5.52) * | 5.82 (5.62; 6.06) $ | ||
ALB mg/dL | 2.5–4.2 | T0 | 2.09 (1.92; 2.23) | 1.87 (1.73; 2.06) |
T30 | 1.95 (1.79; 2.09) | 1.92 (1.78; 2.11) | ||
T60 | 1.83 (1.66; 1.98) | 2 (1.86; 2.18) | ||
T90 | 1.72 (1.55; 1.87) * | 2.09 (1.94; 2.29) $ | ||
AG | 0.5–1.3 | T0 | 0.95 (0.9; 1.03) | 0.93 (0.88; 1) |
T30 | 0.95 (0.9; 1.03) | 0.94 (0.89; 1) | ||
T60 | 0.92 (0.86; 0.99) | 0.93 (0.87; 0.99) | ||
T90 | 0.91 (0.83; 0.96) | 0.92 (0.84; 0.96) | ||
GLU mg/dL | 50–100 | T0 | 87.44 (86.2; 89.06) | 87.23 (86; 88.7) |
T30 | 86.85 (85.33; 88.23) | 87.11 (85.75; 88.39) | ||
T60 | 86.32 (84.64; 87.48) | 86.99 (85.64; 88.3) | ||
T90 | 87.84 (86.62; 89.73) | 86.87 (85.28; 88.14) | ||
ALT UI/L | 7–40 | T0 | 80.43 (79.26; 81.56) | 80.66 (79.64; 81.83) |
T30 | 80.01 (78.77; 81.11) | 80.53 (79.49; 81.56) | ||
T60 | 80.93 (79.89; 82.22) | 80.34 (79.24; 81.33) | ||
T90 | 80.42 (79.42; 81.55) | 80.2 (79.05; 81.37) | ||
AST UI/L | 7–40 | T0 | 50.06 (49.51; 50.57) | 50.41 (49.89; 51) |
T30 | 50.24 (49.72; 50.81) | 50.24 (49.71; 50.77) | ||
T60 | 50.28 (49.78; 50.9) | 50.09 (49.52; 50.61) | ||
T90 | 50.2 (49.68; 50.79) | 49.87 (49.28; 50.38) | ||
ALP UI/L | 5–110 | T0 | 188.03 (185.84; 190.13) | 188.93 (186.84; 191.17) |
T30 | 187.4 (185.21; 189.57) | 188.01 (185.9; 190.28) | ||
T60 | 187.56 (185.4; 190.05) | 187.05 (184.54; 189.3) | ||
T90 | 187.26 (185.2; 189.37) | 185.55 (182.97; 187.72) | ||
BIL mg/dL | 0–0.7 | T0 | 0.28 (0.25; 0.32) | 0.27 (0.22; 0.3) |
T30 | 0.28 (0.25; 0.33) | 0.27 (0.24; 0.3) | ||
T60 | 0.28 (0.25; 0.32) | 0.28 (0.24; 0.31) | ||
T90 | 0.29 (0.26; 0.33) | 0.28 (0.24; 0.31) | ||
CHOL mg/dL | 140–240 | T0 | 388.03 (384.59; 391.78) | 388.07 (384.52; 391.68) |
T30 | 389.49 (385.72; 393.82) | 387.47 (383.49; 391.19) | ||
T60 | 388.99 (385.47; 393.09) | 387.36 (383.42; 390.96) | ||
T90 | 385.03 (380.95; 388.62) | 387.42 (383.67; 391.08) | ||
SDMA µg/dL | <18 | T0 | 33.97 (30.9; 37.36) | 35.09 (31.38; 38.47) |
T30 | 35.15 (31.92; 38.59) | 31.56 (27.9; 34.87) | ||
T60 | 34.62 (31.44; 38.2) | 28.74 (25.26; 31.85) | ||
T90 | 35.34 (32.2; 38.8) | 25.58 (22.06; 28.88) *,$ |
Parameter | Laboratory Standard Reference Range | Time | Group | |
---|---|---|---|---|
CTR Mean (95% CI) | TRT Mean (95% CI) | |||
HCO3 mmol/L | 18–24 | T0 | 16.61 (15.97; 17.22) | 16.51 (15.84; 17.16) |
T90 | 16.60 (15.96; 17.2) | 17.32 (16.66; 17.99) | ||
iCa mmol/L | 1.29–1.41 | T0 | 1.34 (1.28; 1.39) | 1.32 (1.26; 1.37) |
T90 | 1.35 (1.29; 1.4) | 1.40 (1.34; 1.46) |
Parameter | Laboratory Standard Reference Range | Time | Group | |
---|---|---|---|---|
CTR Mean (95% CI) | TRT Mean (95%CI) | |||
UPC | <0.5 | T0 | 0.73 (0.53; 0.94) | 0.67 (0.46; 0.87) |
T30 | 0.8 (0.6; 1.02) | 0.62 (0.41; 0.82) | ||
T60 | 0.87 (0.67; 1.09) | 0.46 (0.25; 0.65) $ | ||
T90 | 0.95 (0.76; 1.17) | 0.24 (0.03; 0.44) *,$ | ||
USG | - | T0 | 1014.68 (1009.79; 1019.17) | 1015.04 (1010.74; 1019.42) |
T30 | 1012.71 (1007.95; 1016.89) | 1016.25 (1012.07; 1020.6) | ||
T60 | 1010.59 (1005.85; 1015.01) | 1019.22 (1014.89; 1023.74) | ||
T90 | 1007.81 (1003.11; 1012.21) | 1023.51 (1019.17; 1027.95) $ |
Parameter | Laboratory Standard Reference Range | Time | Group | |
---|---|---|---|---|
CTR Mean (95% CI) | TRT Mean (95% CI) | |||
CRP mg/dL | 0-0.1 | T0 | 0.65 (0.55; 0.76) | 0.81 (0.69; 0.92) |
T30 | 0.65 (0.55; 0.76) | 0.74 (0.63; 0.86) | ||
T60 | 0.73 (0.62; 0.84) | 0.65 (0.54; 0.76) | ||
T90 | 0.82 (0.72; 0.93) | 0.56 (0.45; 0.66) *,$ | ||
d-ROMs U CARR | T0 | 113.7 (104.83; 124.8) | 113.26 (103.08; 121.81) | |
T30 | 119.25 (110.28; 130.18) | 106.66 (96.61; 115.35) | ||
T60 | 123.53 (114.78; 134.54) | 102.85 (93.09; 111.52) $ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martello, E.; Perondi, F.; Bruni, N.; Bisanzio, D.; Meineri, G.; Lippi, I. Chronic Kidney Disease and Dietary Supplementation: Effects on Inflammation and Oxidative Stress. Vet. Sci. 2021, 8, 277. https://doi.org/10.3390/vetsci8110277
Martello E, Perondi F, Bruni N, Bisanzio D, Meineri G, Lippi I. Chronic Kidney Disease and Dietary Supplementation: Effects on Inflammation and Oxidative Stress. Veterinary Sciences. 2021; 8(11):277. https://doi.org/10.3390/vetsci8110277
Chicago/Turabian StyleMartello, Elisa, Francesca Perondi, Natascia Bruni, Donal Bisanzio, Giorgia Meineri, and Ilaria Lippi. 2021. "Chronic Kidney Disease and Dietary Supplementation: Effects on Inflammation and Oxidative Stress" Veterinary Sciences 8, no. 11: 277. https://doi.org/10.3390/vetsci8110277
APA StyleMartello, E., Perondi, F., Bruni, N., Bisanzio, D., Meineri, G., & Lippi, I. (2021). Chronic Kidney Disease and Dietary Supplementation: Effects on Inflammation and Oxidative Stress. Veterinary Sciences, 8(11), 277. https://doi.org/10.3390/vetsci8110277