Candidate Genes in Bull Semen Production Traits: An Information Approach Review
Abstract
:1. Introduction
2. Association Studies for Semen Traits
2.1. Single-Nucleotide Polymorphism Markers Used to Identify Associations
2.2. Candidate Genes Associated with Semen Traits
2.3. Genes Detected in Dairy and Beef Cattle
3. Traits in Most GWAS Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarakul, M.; Elzo, M.A.; Koonawootrittriron, S.; Suwanasopee, T.; Jattawa, D.; Laodim, T. Characterization of biological pathways associated with semen traits in the Thai multibreed dairy population. Anim. Reprod. Sci. 2018, 197, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, H. Role of the oviduct in sperm capacitation. Theriogenology 2007, 68 (Suppl. 1), S138–S146. [Google Scholar] [CrossRef] [PubMed]
- Hering, D.M.; Olenski, K.; Kaminski, S. Genome-wide association study for poor sperm motility in Hol-stein-Friesian bulls. Anim. Reprod. Sci. 2014, 146, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Suchocki, T.; Szyda, J. Genome-wide association study for semen production traits in Holstein-Friesian bulls. J. Dairy Sci. 2015, 98, 5774–5780. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Yin, H.; Zhang, X.; Sun, D.; Zhang, Q.; Liu, J.; Ding, X.; Zhang, Y.; Zhang, S. Genome-wide association study for semen traits of the bulls in Chinese Holstein. Anim. Genet. 2016, 48, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Diniz, D.B.; Lopes, M.S.; Broekhuijse, M.L.W.J.; Lopes, P.S.; Harlizius, B.; Guimarães, S.E.F.; Duijvesteijn, N.; Knol, E.F.; Silva, F.F. A genome-wide association study reveals a novel candidate gene for sperm motility in pigs. Anim. Reprod. Sci. 2014, 151, 201–207. [Google Scholar] [CrossRef]
- Marques, D.B.D.; Bastiaansen, J.W.M.; Broekhuijse, M.L.W.J.; Lopes, M.S.; Knol, E.F.; Harlizius, B.; Guimarães, S.E.F.; Silva, F.F.; Lopes, P.S. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet. Sel. Evol. 2018, 50, 40. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, M.; Metzger, J.; Martinsson, G.; Sieme, H.; Distl, O. Genome-wide association study for semen quality traits in German Warmblood stallions. Anim. Reprod. Sci. 2016, 171, 81–86. [Google Scholar] [CrossRef]
- Serrano, M.; Ramón, M.; Calvo, J.; Jiménez, M.; Freire, F.; Vázquez, J.; Arranz, J. Genome-wide association studies for sperm traits in Assaf sheep breed. Animal 2020, 15, 100065. [Google Scholar] [CrossRef]
- Karisa, B.K.; Thomson, J.; Wang, Z.; Bruce, H.L.; Plastow, G.S.; Moore, A.S. Candidate genes and bio-logical pathways associated with carcass quality traits in beef cattle. Can. J. Anim. Sci. 2013, 93, 295–306. [Google Scholar] [CrossRef]
- Wang, K.; Kang, Z.; Jiang, E.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 2020, 146, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A.; Manolio, T.A. How to interpret a genome-wide association study. JAMA 2008, 299, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Fortes, M.R.S.; Reverter, A.; Kelly, M.; McCulloch, R.; Lehnert, S.A. Genome-wide association study for inhibin, luteinizing hormone, insulin-like growth factor 1, testicular size and semen traits in bovine species. Andrology 2013, 1, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Hering, D.; Oleński, K.; Ruść, A.; Kaminski, S. Genome-wide association study for semen volume and total number of sperm in Holstein-Friesian bulls. Anim. Reprod. Sci. 2014, 151, 126–130. [Google Scholar] [CrossRef]
- Zhang, Z.; Kargo, M.; Liu, A.; Thomasen, J.R.; Pan, Y.; Su, G. Genotype-by-environment interaction of fertility traits in Danish Holstein cattle using a single-step genomic reaction norm model. Heredity 2019, 123, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Sweett, H.; Fonseca, P.A.S.; Suárez-Vega, A.; Livernois, A.; Miglior, F.; Cánovas, A. Genome-wide asso-ciation study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Liu, S.; Yin, H.; Li, C.; Qin, C.; Cai, W.; Cao, M.; Zhang, S. Genetic effects of PDGFRB and MARCH1 iden-tified in GWAS revealing strong associations with semen production traits in Chinese Holstein bulls. BMC Genet. 2017, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.L.; Hartman, A.R.; Bormann, J.M.; Weaber, R.L.; Grieger, D.M.; Rolf, M.M. Genome-wide association study of beef bull semen attributes. BMC Genom. 2022, 23, 1–12. [Google Scholar] [CrossRef]
- Elzanaty, S.; Giwercman, Y.L.; Giwercman, A. Significant impact of 5α-reductase type 2 polymorphisms on sperm concentration and motility. Int. J. Androl. 2006, 3, 414–420. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liu, H.; Yan, Y.; Li, Y. Identification and expression of GABAC receptor in rat testis and spermatozoa. Acta Biochim. Biophys. Sin. 2008, 40, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Fortes, M.R.S.; Porto-Neto, L.R.; Satake, N.; Nguyen, L.; Freitas, A.C.; Melo, T.P.; Scalez, D.C.B.; Hayes, B.; Raidan, F.S.S.; Reverter, A.; et al. X chromosome variants are associated with male fertility traits in two bovine populations. Genet. Sel. Evol. 2020, 52, 46. [Google Scholar] [CrossRef]
- Hiltpold, M.; Niu, G.; Kadri, N.K.; Crysnanto, D.; Fang, Z.-H.; Spengeler, M.; Schmitz-Hsu, F.; Fuerst, C.; Schwarzenbacher, H.; Seefried, F.R.; et al. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLoS Genet. 2020, 16, e1008804. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-A.; Zhao, M.; Meistrich, M.L.; Kumar, R. Stage-specific Expression of Dynein Light Chain-1 and Its Interacting Kinase, p21-activated Kinase-1, in Rodent Testes: Implications in Spermiogenesis. J. Histochem. Cytochem. 2005, 53, 1235–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-N.; Wang, B.; Liang, M.; Han, C.-Y.; Zhang, B.; Cai, J.; Sun, W.; Xing, G.-G. Down-regulation of CatSper1 channel in epididymal spermatozoa contributes to the pathogenesis of asthenozoospermia, whereas up-regulation of the channel by Sheng-Jing-San treatment improves the sperm motility of asthenozoospermia in rats. Fertil. Steril. 2012, 99, 579–587. [Google Scholar] [CrossRef]
- Jiang, L.-Y.; Shan, J.-J.; Tong, X.-M.; Zhu, H.-Y.; Yang, L.-Y.; Zheng, Q.; Luo, Y.; Shi, Q.-X.; Zhang, S.-Y. Cystic fibrosis transmembrane conductance regulator is correlated closely with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters. Andrologia 2013, 46, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahan, F.; Pertea, G.; Van Tassell, C.P.; Sonstegard, T.S.; et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009, 10, R42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.F.; Schnabel, R.D.; Sutovsky, P. Review: Genomics of bull fertility. Animal 2018, 12, s172–s183. [Google Scholar] [CrossRef] [Green Version]
- Borowska, A.; Szwaczkowski, T.; Kaminski, S.; Hering, D.M.; Kordan, W.; Lecewicz, M. Identification of genome regions determining semen quality in Holstein-Friesian bulls using information theory. Anim. Reprod. Sci. 2018, 192, 206–215. [Google Scholar] [CrossRef]
- Sang, L.; Du, Q.-Z.; Yang, W.-C.; Tang, K.-Q.; Yu, J.-N.; Hua, G.-H.; Zhang, X.-X.; Yang, L.-G. Polymorphisms in follicle stimulation hormone receptor, inhibin alpha, inhibin bata A, and prolactin genes, and their association with sperm quality in Chinese Holstein bulls. Anim. Reprod. Sci. 2011, 126, 151–156. [Google Scholar] [CrossRef]
- Ferenčaković, M. Molecular Dissection of Inbreeding Depression for Semen Quality Traits in Cattle. Ph.D. Thesis, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia, 2015. [Google Scholar]
- Ferenčaković, M.; Sölkner, J.; Kapš, M.; Curik, I. Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. J. Dairy Sci. 2017, 100, 4721–4730. [Google Scholar] [CrossRef]
- Sun, F.; Palmer, K.; Handel, M.A. Mutation of Eif4g3, encoding a eukaryotic translation initiation factor, causes male infertility and meiotic arrest of mouse spermatocytes. Development 2010, 137, 1699–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, M.T.; Viera, A.; Gómez, R.; Page, J.; Carmena, M.; Earnshaw, W.C.; Rufas, J.S.; Suja, J.A. Dynamic relocal-ization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J. Cell Sci. 2003, 116, 961–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasi, Y.-C.; Chao, H.-C.A.; Chung, C.-L.; Liu, X.-Y.; Lin, Y.-M.; Liao, P.-C.; Pan, H.-A.; Chiang, H.-S.; Kuo, P.-L. Characterization of 3-hydroxyisobutyrate dehydrogenase, HIBADH, as a sperm-motility marker. J. Assist. Reprod. Genet. 2013, 30, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselak, E.A.; Shen, X.; Song, J.; Gude, D.R.; Wang, J.; Brody, S.L.; Strauss, J.F.; Zhang, Z. Transcriptional Regulation of an Axonemal Central Apparatus Gene, Sperm-associated Antigen 6, by a SRY-related High Mobility Group Transcription Factor, S-SOX5. J. Biol. Chem. 2010, 285, 30496–30505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, L.G.; Ortega-Ferrusola, C.; Garcia, B.M.; Salido, G.M.; Peña, F.J.; Tapia, J.A. Identification of Protein Tyrosine Phosphatases and Dual-Specificity Phosphatases in Mammalian Spermatozoa and Their Role in Sperm Motility and Protein Tyrosine Phosphorylation1. Biol. Reprod. 2009, 80, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, E.; Agostini, M.; Mitchell, C.; Schoenmakers, N.; Papp, L.; Rajanayagam, O.; Padidela, R.; Ceron-Gutierrez, L.; Doffinger, R.; Prevosto, C.; et al. Mutations in the selenocysteine insertion sequence–binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Investig. 2010, 120, 4220–4235. [Google Scholar] [CrossRef] [Green Version]
- Dráberová, E.; Vinopal, S.; Morfini, G.; Liu, P.S.; Sládková, V.; Sulimenko, T.; Burns, M.R.; Solowska, J.; Kulandaivel, K.; de Chadarévian, J.-P.; et al. Microtu-bule-severing ATPase spastin in glioblastoma: Increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. J. Neuropathol. Exp. Neurol. 2011, 70, 811–826. [Google Scholar] [CrossRef] [Green Version]
- Aromolaran, K.A.; Benzow, K.A.; Cribbs, L.L.; Koob, M.D.; Piedras-Rentería, E.S. Elimination of the actin-binding domain in kelch-like 1 protein induces T-type calcium channel modulation only in the presence of action potential waveforms. J. Signal Transduct. 2012, 2012, 505346. [Google Scholar] [CrossRef]
- Henricks, D.M.; Kouba, A.J.; Lackey, B.R.; Boone, W.R.; Gray, S.L. Identification of Insulin-Like Growth Factor I in Bovine Seminal Plasma and Its Receptor on Spermatozoa: Influence on Sperm Motility1. Biol. Reprod. 1998, 59, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.; Eustache, F.; Pilikian, S.; Clavel, C.; Cordonier, H.; Benchaib, M.; Lornage, J.; Pinatel, M.-C.; Guerin, J.F. Regulators of sperm function: Effect of gastrin-releasing peptide on sperm functions. MHR Basic Sci. Reprod. Med. 1996, 2, 867–872. [Google Scholar] [CrossRef]
- Zeng, W.; Baumann, C.; Schmidtmann, A.; Honaramooz, A.; Tang, L.; Bondareva, A.; Dores, C.; Fan, T.; Xi, S.; Geiman, T.; et al. Lymphoid-Specific Helicase (HELLS) Is Essential for Meiotic Progression in Mouse Spermatocytes1. Biol. Reprod. 2011, 84, 1235–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Aharon, I.; Brown, P.R.; Etkovitz, N.; Eddy, E.M.; Shalgi, R. The expression of calpain 1 and calpain 2 in spermatogenic cells and spermatozoa of the mouse. Reproduction 2005, 129, 435–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezende, F.; Dietsch, G.O.; Peñagaricano, F. Genetic dissection of bull fertility in US Jersey dairy cattle. Anim. Genet. 2018, 49, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Peñagaricano, F. Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet. 2016, 17, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Zhou, C.; Shi, S.; Fang, L.; Liu, J.; Sun, D.; Jiang, L.; Zhang, S. Weighted single-step genome-wide associ-ation study of semen traits in Holstein bulls of China. Front. Genet. 2019, 10, 1053. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.; Qin, F.; Li, W.; Li, F.; Yue, X. Copy number variation of ZNF280AY across 21 cattle breeds and its association with the reproductive traits of Holstein and Simmental bulls. J. Dairy Sci. 2019, 102, 7226–7236. [Google Scholar] [CrossRef]
- Buzanskas, M.E.; Grossi, D.D.A.; Ventura, R.V.; Schenkel, F.S.; Chud, T.C.S.; Stafuzza, N.B.; Rola, L.D.; Meirelles, S.L.C.; Mokry, F.B.; Mudadu, M.D.A.; et al. Candidate genes for male and female reproductive traits in Canchim beef cattle. J. Anim. Sci. Biotechnol. 2017, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Druet, T.; Fritz, S.; Sellem, E.; Basso, B.; Gérard, O.; Salas-Cortes, L.; Humblot, P.; Druart, X.; Eggen, A. Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls. J. Anim. Breed. Genet. 2009, 126, 269–277. [Google Scholar] [CrossRef]
- Cai, Z.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genom. 2019, 20, 255. [Google Scholar] [CrossRef]
- Schnabel, R.D.; Sonstegard, T.S.; Taylor, J.F.; Ashwell, M.S. Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. Anim. Genet. 2005, 36, 408–416. [Google Scholar] [CrossRef]
- Ickowicz, D.; Finkelstein, M.; Breitbart, H. Mechanism of sperm capacitation and the acrosome reaction: Role of protein kinases. Asian J. Androl. 2012, 14, 816–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, N.; Yomogida, K.; Okabe, M.; Touhara, K. Functional characterization of a mouse testicular olfac-tory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 2004, 117, 5835–5845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belleannée, C.; Da Silva, N.; Shum, W.W.C.; Brown, D.; Breton, S. Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells. Am. J. Physiol. Physiol. 2010, 298, C817–C830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lwaleed, A.B.; Greenfield, R.S.; Hicks, J.; Birch, B.R.; Cooper, A.J. Quantitation of seminal factor IX and factor IXa in fertile, nonfertile, and vasectomy subjects: A step closer toward identifying a functional clotting system in human semen. J. Androl. 2004, 26, 146–152. [Google Scholar]
- Palladino, M.; Johnson, T.; Gupta, R.; Chapman, J.; Ojha, P. Members of the Toll-Like Receptor Family of Innate Immunity Pattern-Recognition Receptors Are Abundant in the Male Rat Reproductive Tract1. Biol. Reprod. 2007, 76, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Kayser, M.; Palstra, R.J. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res. 2012, 3, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Wu, N.; Baravalle, G.; Cohn, B.; Ma, J.; Lo, B.; Shin, J.S. MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. J. Exp. Med. 2013, 6, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Baxter, E.M.; Van Doren, M. Phf7 Controls Male Sex Determination in the Drosophila Germline. Dev. Cell 2012, 22, 1041–1051. [Google Scholar] [CrossRef] [Green Version]
- Piomboni, P.; Governini, L.; Gori, M.; Puggioni, E.; Costantino-Ceccarini, E.; Luddi, A. New Players in the Infertility of a Mouse Model of Lysosomal Storage Disease: The Hypothalamus-Pituitary-Gonadal Axis. Front. Endocrinol. 2014, 4, 204. [Google Scholar] [CrossRef] [Green Version]
- Pausch, H.; Venhoranta, H.; Wurmser, C.; Hakala, K.; Iso-Touru, T.; Sironen, A.; Vingborg, R.K.; Lohi, H.; Söderquist, L.; Fries, R.; et al. A frameshift mutation in ARMC3 is associated with a tail stump sperm defect in Swedish Red (Bos taurus) cattle. BMC Genet. 2016, 17, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gredler, B.; Fuerst, C.; Fuerst-Waltl, B.; Schwarzenbacher, H.; Sölkner, J. Genetic parameters for semen production traits in Austrian dual-purpose Simmental bulls. Reprod. Domest. Anim. 2007, 42, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Stälhammar, E.M.; Janson, L.; Philipsson, J. Genetic studies on fertility in A.I. bulls. I. Age, season and genetic effects on semen characteristics in young bulls. Anim. Reprod. Sci. 1989, 19, 1–2. [Google Scholar] [CrossRef]
- Karoui, S.; Díaz, C.; Serrano, M.; Cue, R. Time trends, environmental factors and genetic basis of semen traits collected in Holstein bulls under commercial conditions. Anim. Reprod. Sci. 2011, 124, 28–38. [Google Scholar] [CrossRef] [PubMed]
Population Size | Target Traits | Snps Used | Articles Published |
---|---|---|---|
1581 Holstein Friesian bulls | Sperm motility. | Illumina BovineSNP50KBeadChip, 54,001. | [3] |
Polish, Holstein Friesian 1212 bulls | Sperm concentration, semen volume, number of spermatozoa, motility, and motility score. | Illumina BovineSNP50K BeadChip 54,001. | [4] |
692 Holstein bulls | Ejaculate volume, sperm concentration, sperm motility, and sperm concentration | Illumina BovineSNP50 BeadChip, SNP markers | [5] |
1085 tropical composite bulls | Sperm motility and percentage of normal spermatozoa. | Illumina Bovine HD SNP50 BeadChip | [13] |
788, Holstein Friesian bulls | Semen volume and total number of sperm | Illumina BovineSNP50 Bead-Chip, 54,001. | [14] |
730 Chinese Holstein bulls | Semen volume per ejaculate, sperm motility, sperm concentration per ejaculate, the number of sperms per ejaculate, and the number of motile sperms per ejaculate. | Illumina Bovine SNP50 BeadChip | [17] |
1819 Angus | Volume, concentration, number of spermatozoa, initial motility, post-thaw motility, three-hour post-thaw motility, percentage of normal spermatozoa, primary abnormalities, and secondary abnormalities. | Illumina Bovine HD SNP50 BeadChip | [18] |
1799, Austrian Fleckvieh bulls | Total number of spermatozoa and percentage of live spermatozoa. | Illumina Bovine SNP50K BeadChip 54,001. | [20] |
1099 Brahman and Tropical bulls 1719 | Sperm morphology and sperm chromatin phenotypes. | Illumina BovineSNP50 BeadChip, 54,000. | [21] |
2481 Brown Swiss bulls | Ejaculate volume, sperm concentration, sperm motility, sperm head, and tail anomalies | Illumina Bovine HD SNP50 BeadChip 777,962SNPs | [22] |
SNP Name | Position | Identified Candidate Genes | Reference |
---|---|---|---|
rs29010277 | X | LOC100848828 | [4] |
rs110419531 | X | MAGEB10 | [4] |
rs109349108 | X | MAGEB10 | [4] |
rs110685046 | X | MAGEB10 | [4] |
rs211260176 | 6 | MARCH1 | [17] |
rs211260176 | 6 | MARCH1 | [17] |
rs211260176 | 6 | MARCH1 | [17] |
rs110128350 | 27 | DLC1 | [23] |
rs109170505 | 22 | OPN1LW | [31] |
rs110876480 | 1 | GABRR3 | [20] |
rs109466217 | 2 | EF4G3 | [32] |
rs109416157 | 29 | INCENP | [33] |
rs43399120 | 4 | CFTR | [25] |
rs109697710 | 4 | HIBADH | [34] |
rs290117704 | 5 | SOX5 | [35] |
rs42601646 | 5 | PTPRB | [36] |
rs2601646 | 5 | PTPRR | [37] |
rs11065449 | 8 | SECISBP2 | [37] |
rs42749302 | 8 | CYCL2 | [36] |
rs109677705 | 11 | SPAST | [38] |
rs41574912 | 12 | KLHL1 | [39] |
rs41965546 | 21 | TGFIR | [40] |
rs110876480 | 24 | GRP | [41] |
rs110149073 | 25 | PRKCB | [42] |
rs42736384 | 26 | HELLS | [42] |
rs109339115 | 29 | CATSPERR1 | [24] |
rs109339115 | 29 | CAPN1 | [43] |
Associated Trait | Chromosomes | Identified Candidate Genes | Reference |
---|---|---|---|
semen volume per ejaculate | 6 | MARCH1 | [17] |
number of motile sperm per ejaculate | 6 | MARCH1 | [17] |
Sperm motility | 6 | MARCH1 | [17] |
Percentage of live sperm | 1 | SPATA16 | [31] |
Total number of sperms | 14 | RPLIOL | [31] |
1 | NYD-SP5 | [31] | |
10 | SPESP1 | [31] | |
Semen motility | 27 | COX7A2L | [31] |
25 | DNAH3 | [44] | |
5 | PRP11 | [45] | |
Ejaculate volume | 10 | PSMBS | [46] |
16 | NR5A2 | [46] | |
10 | PRMTS | [46] | |
Sperm concentration | 25 | FSCN1 | [46] |
Number of motile sperm | 24 | IQCJ | [46] |
Number of sperms per ejaculate | 3 | LXH8 | [46] |
24 | NPC1 | [46] | |
8 | DMRT1 | [46] | |
EV, SPC, TSN, SM, and PTM | Y | ZNF280AY | [47] |
Semen quality | Y | SOX5 (SRY-box5) | [28] |
Breeds | Genes | Traits | Reference |
---|---|---|---|
Dairy breed, chinese holstein | ETNK1, PDE3A, CSF1R, WTI, DSCAML1, SOD1, and RUNX | Semen traits | [5] |
MARCH1, PDGFRB, and PDE3A | SVPE, SCPE, NSPE, and NMSPE | [17] | |
PSMS, PRMT5, ACTB, PBDE3A, FSCN1, NR5A2, IQCG, LANX8, and DMRT1 | VE, SM, SC, NSP, and NMSP | [46] | |
MC4R, ETNK1, LOC785875, TRIM36, ALPL, PRKCB, HIBADH, KHL1, PD2RN4, CTTR, SRD5A2, CAPN1, CATSPER1, ATP5O GABRR3 EIF4G3, SOX5 PTPRB PTPRR, SECISBP2, CYLC2, CRYZL1, LOC785875 ZBTB40, ALPL, AGBL4 ST7, PDZRN4, CNOT2, ETNK1 MRPL1, RAPGEF6, FREM1 GADD45G SPIN1 GRIN3A TRIM36 LOC511898 TGFA, FAM84B, LOC100139627, CYP2C87, SORCS1, LOC101905219, and DLC1 | Poor SM | [3,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47] | |
FSHR, INHBA, INHA, and PRL | VOL, SCON, MOT, FMOT, AIR, and ASR | [29] | |
Brown swiss | WDR19 | Semen quality | [22] |
Dual purpose breeds, holstein friesian | |||
DCP1, SFMBT1, GALC, PRKCD, PHF7, TLR9, SPATA7, and TMEM110 | SV and TNP | [14] | |
PDRK2 and GALNT13 | |||
MAGEB10 and KLH13 | SV, MS, M, SC, and NS | [4] | |
Beef breeds, crossbreeds (angus, simmental, piedmontese, gelbvieh, charolais, and limousine.) | WTAP, ACAT2, TCP1, EZR, PRKN, PACRG, PLCB4, LAMP5, PAK5LMBRD2, UGT3A2, CAPSL, IL7R, SPEF2, SKP2, PRLR, and DCC | SM | [16] |
American angus | HERC2, OCA2, and LOC101902976 | VOL, CONC, NSP, IMot, PTMot, 3HRPTMot, %NORM, PRIM, and SEC | [18] |
Gene ID | Gene Full Name | Gene ID | Gene Full Name |
---|---|---|---|
TGFA | Transforming growth factor, Ralph [3] | PRKCB | Protein kinase C, beta [3,52] |
ETNK1 | Ethanolamine kinase 1 [3,5] | HIBADH | 3-Hydroxyisobutyrate dehydrogenase [3,33] |
LOC785875 | Olfactory receptor 5K3-like [3,53] | INCENP | Inner centromere protein antigens 135/155 kDa [3,43] |
ALPL | Alkaline phosphatase, liver/bone/kidney [54] | SOD1 | superoxide dismutase 1 [5] |
TRIM36 | Tripartite motif containing 36 [3] | ACAT2 | Acetyl-CoA Acetyltransferase 2 [16] |
MC4R | Melanocortin 4 receptor [15] | TCP1 | T-complex protein 1 subunit alpha [16] |
RSPH3 | Radial Spoke Head 3 [16] | GABRR3 | Gamma-Aminobutyric Acid Type A Receptor Subunit Rho3 [3,20] |
TAGAP | T Cell Activation RhoGTPase Activating Protein [16] | CAPN1 | Calpain 1 (mu/I) large subunit [43] |
FNDC1 | Fibronectin Type III Domain Containing [16] | CATSPER1 | Cation channel, sperm-associated 1 [3,22] |
F9 | Coagulation factor IX [55] | ATP5O | ATP synthase, H+ transporting, mitochondrial [3,54] |
WDRD | WD Repeat Domain 19 [22] | EIF4G3 | Eukaryotic translation initiation factor 4 gamma, 3 [3] |
PTPRR | Protein tyrosine phosphatase, receptor type, R [3,36] | CYLC2 | Cylicin, basic protein of sperm head cytoskeleton 2 [3,56] |
SOX5 | SRY-Box Transcription Factor 5 [3,35] | CRYZL1 | Crystallin, zeta (quinone reductase)-like 1 [3] |
PTPRB | Protein tyrosine phosphatase, receptor type, B [3,36] | LOC785875 | olfactory receptor 5K3-like [3] |
SECISBP2 | SECIS binding protein 2Cylicin, basic protein of sperm head cytoskeleton 2 [37] | OCA2 | oculocutaneous albinism I [57] |
KLHL1 | kelch-like 1 (Drosophilia) [39] | AGBL4 | ATP/GTP binding protein-like 4 [3] |
PDGFRB | Platelet-derived growth factor receptor beta [5,17,58] | RAPGEF6 | Rap quinine nucleotide exchange factor (GEF) 6 [3] |
PDE3A | phosphodiesterase 3A [5,58] | ZBTB40 | Zinc finger and BTB domain containing 40 [3] |
DCP1 | decapping mRNA 1A [16] | ST7 | Suppression of tumorigenicity7 [3] |
SFMBT1 | Scm-like with four mbt domains 1 [14] | CNOT2 | CCR4-NOT transcription complex, subunit 2 [3] |
PRKCD | protein kinase C [14] | ETNK1 | Ethanolamine kinase 1 [3] |
KLH13 | Kelch-Like Family Member 13 [4] | MRPL1 | Mitochondrial ribosomal protein L1 [3] |
HERC2 | HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase 2 [57] | FREM1 | FRAS1 related extracellular matrix1 [3] |
MARCH1 | membrane-associated ring finger 1 [17,59] | SPIN1 | spindling 1 [3] |
PHF7 | PH finger protein 7 [60] | KIRREL3 | Kirre-like nephrin family adhesion molecule 3 [56] |
GALC | Galactosylceramidase [61] | LOC511898 | Protein disulfide isomerase family A, member 6 [3] |
TLR9 | Toll-like receptor 9 [56] | SPATA7 | spermatogenesis associated 7 [3] |
TMEM110 | transmembrane protein 110 [14] | NR5A2 | Nuclear Receptor Subfamily 5 Group A [46] |
MAGEB10 | melanoma antigen family B10 [4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modiba, M.C.; Nephawe, K.A.; Mdladla, K.H.; Lu, W.; Mtileni, B. Candidate Genes in Bull Semen Production Traits: An Information Approach Review. Vet. Sci. 2022, 9, 155. https://doi.org/10.3390/vetsci9040155
Modiba MC, Nephawe KA, Mdladla KH, Lu W, Mtileni B. Candidate Genes in Bull Semen Production Traits: An Information Approach Review. Veterinary Sciences. 2022; 9(4):155. https://doi.org/10.3390/vetsci9040155
Chicago/Turabian StyleModiba, Mamokoma Cathrine, Khathutshelo Agree Nephawe, Khanyisile Hadebe Mdladla, Wenfa Lu, and Bohani Mtileni. 2022. "Candidate Genes in Bull Semen Production Traits: An Information Approach Review" Veterinary Sciences 9, no. 4: 155. https://doi.org/10.3390/vetsci9040155
APA StyleModiba, M. C., Nephawe, K. A., Mdladla, K. H., Lu, W., & Mtileni, B. (2022). Candidate Genes in Bull Semen Production Traits: An Information Approach Review. Veterinary Sciences, 9(4), 155. https://doi.org/10.3390/vetsci9040155