Dynamic Models of Within-Herd Transmission and Recommendation for Vaccination Coverage Requirement in the Case of African Swine Fever in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Calculation of the Basic Reproduction Number (R0)
2.3. Dynamic Modeling of ASF Transmission at Farm Level
2.4. Calculation of Herd Immunity
2.5. Calculation of Vaccine Coverage
3. Results
3.1. The Best-Fitting Generation Time Distribution for a Serial Interval of Each Farm
3.2. The Basic Reproduction Number (R0)
3.3. Epidemiological Transmission Parameters
3.4. Dynamics of ASF Transmission within Farms
3.5. Vaccine Coverage Requirement
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Vizcaíno, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Eustace Montgomery, R. On A Form of Swine Fever Occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Penrith, M.L.; Vosloo, W. Review of African swine fever: Transmission, spread and control. J. S. Afr. Vet. Assoc. 2009, 80, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blome, S.; Franzke, K.; Beer, M. African swine fever—A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef] [PubMed]
- Le, V.P.; Jeong, D.G.; Yoon, S.W.; Kwon, H.M.; Trinh, T.B.N.; Nguyen, T.L.; Bui, T.T.N.; Oh, J.; Kim, J.B.; Cheong, K.M.; et al. Outbreak of African Swine Fever, Vietnam, 2019. Emerg. Infect. Dis. 2019, 25, 1433–1435. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Truong, A.D.; Dang, A.K.; Ly, D.V.; Nguyen, C.T.; Chu, N.T.; Nguyen, H.T.; Dang, H.V. Genetic characterization of African swine fever viruses circulating in North Central region of Vietnam. Transbound. Emerg. Dis. 2021, 68, 1697–1699. [Google Scholar] [CrossRef]
- OIE. African swine fever. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 8th ed.; OIE: Paris, France, 2012. [Google Scholar]
- Borca, M.V.; Rai, A.; Ramirez-Medina, E.; Silva, E.; Velazquez-Salinas, L.; Vuono, E.; Pruitt, S.; Espinoza, N.; Gladue, D.P. A Cell Culture-Adapted Vaccine Virus against the Current African Swine Fever Virus Pandemic Strain. J. Virol. 2021, 95, e00123-21. [Google Scholar] [CrossRef]
- Vietnam Develops an ASF Vaccine. What Is the Context? Available online: https://www.pigprogress.net/Health/Articles/2021/1/Vietnam-develops-an-ASF-vaccine-What-is-the-context-700012E/ (accessed on 22 January 2021).
- Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 2020, 139, 110057. [Google Scholar] [CrossRef]
- Wiratsudakul, A.; Triampo, W.; Laosiritaworn, Y.; Modchang, C. A one-year effective reproduction number of the 2014–2015 Ebola outbreaks in the widespread West African countries and quantitative evaluation of air travel restriction measure. Travel Med. Infect. Dis. 2016, 14, 481–488. [Google Scholar] [CrossRef]
- Begon, M.; Bennett, M.; Bowers, R.G.; French, N.P.; Hazel, S.M.; Turner, J. A clarification of transmission terms in host-microparasite models: Numbers, densities and areas. Epidemiol. Infect. 2002, 129, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Rao, D.M.; Chernyakhovsky, A.; Rao, V. Modeling and analysis of global epidemiology of avian influenza. Environ. Model. Softw. 2009, 24, 124–134. [Google Scholar] [CrossRef]
- Molla, W.; Frankena, K.; De Jong, M.C.M. Transmission dynamics of lumpy skin disease in Ethiopia. Epidemiol. Infect. 2017, 145, 2856–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervasi, V.; Marcon, A.; Bellini, S.; Guberti, V. Evaluation of the Efficiency of Active and Passive Surveillance in the Detection of African Swine Fever in Wild Boar. Vet. Sci. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Matthews, L.; Woolhouse, M.E.; Hunter, N. The basic reproduction number for scrapie. Proc. Biol. Sci. 1999, 266, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Guinat, C.; Gubbins, S.; Vergne, T.; Gonzales, J.L.; Dixon, L.; Pfeiffer, D.U. Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiol. Infect. 2016, 144, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, I.; Muñoz, M.J.; Montes, F.; Perez, A.; Gogin, A.; Kolbasov, D.; De la Torre, A. Reproductive Ratio for the Local Spread of African Swine Fever in Wild Boars in the Russian Federation. Transbound. Emerg. Dis. 2016, 63, e237–e245. [Google Scholar] [CrossRef]
- Barongo, M.B.; Ståhl, K.; Bett, B.; Bishop, R.P.; Fèvre, E.M.; Aliro, T.; Okoth, E.; Masembe, C.; Knobel, D.; Ssematimba, A. Estimating the Basic Reproductive Number (R0) for African Swine Fever Virus (ASFV) Transmission between Pig Herds in Uganda. PLoS ONE 2015, 10, e0125842. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho Ferreira, H.C.; Backer, J.A.; Weesendorp, E.; Klinkenberg, D.; Stegeman, J.A.; Loeffen, W.L. Transmission rate of African swine fever virus under experimental conditions. Vet. Microbiol. 2013, 165, 296–304. [Google Scholar] [CrossRef]
- Guinat, C.; Porphyre, T.; Gogin, A.; Dixon, L.; Pfeiffer, D.U.; Gubbins, S. Inferring within-herd transmission parameters for African swine fever virus using mortality data from outbreaks in the Russian Federation. Transbound. Emerg. Dis. 2018, 65, e264–e271. [Google Scholar] [CrossRef] [Green Version]
- Santman-Berends, I.M.; Stegeman, J.A.; Vellema, P.; van Schaik, G. Estimation of the reproduction ratio (R(0)) of bluetongue based on serological field data and comparison with other BTV transmission models. Prev. Vet. Med. 2013, 108, 276–284. [Google Scholar] [CrossRef] [PubMed]
- General Statistics Office of Viet Nam: Statistics on the Number of Pig Raising Households Nationwide According to the Survey Results on 1 April 2019. Available online: http://channuoivietnam.com/thong-kechan-nuoi (accessed on 1 April 2019).
- Mai, T.N.; Yamazaki, W.; Bui, T.P.; Nguyen, V.G.; Huynh, T.M.L.; Mitoma, S.; Daous, H.E.; Kabali, E.; Norimine, J.; Sekiguchi, S. A descriptive survey of porcine epidemic diarrhea in pig populations in northern Vietnam. Trop. Anim. Health Prod. 2020, 52, 3781–3788. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 1993, 2, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.T.; Garske, T.; Ghani, A.C.; Clarke, P.S. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Biostatistics 2011, 12, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Korennoy, F.I.; Gulenkin, V.M.; Gogin, A.E.; Vergne, T.; Karaulov, A.K. Estimating the Basic Reproductive Number for African Swine Fever Using the Ukrainian Historical Epidemic of 1977. Transbound. Emerg. Dis. 2017, 64, 1858–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, P.; Eames, K.; Heymann, D.L. “Herd Immunity”: A Rough Guide. Clin. Infect. Dis. 2011, 52, 911–916. [Google Scholar] [CrossRef]
- Plans-Rubió, P. The vaccination coverage required to establish herd immunity against influenza viruses. Prev. Med. 2012, 55, 72–77. [Google Scholar] [CrossRef]
- ASF Vaccine on Track for Unveiling. Available online: https://vir.com.vn/asf-vaccine-on-track-for-unveiling-83057.html (accessed on 10 March 2021).
- Tran, X.H.; Le, T.T.P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Zhang, S.; Diao, M.; Yu, W.; Pei, L.; Lin, Z.; Chen, D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. 2020, 93, 201–204. [Google Scholar] [CrossRef]
- Dharmaratne, S.; Sudaraka, S.; Abeyagunawardena, I.; Manchanayake, K.; Kothalawala, M.; Gunathunga, W. Estimation of the basic reproduction number (R0) for the novel coronavirus disease in Sri Lanka. Virol. J. 2020, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Dong, Y.; Yu, X.; Wang, H.; Tsamlag, L.; Zhang, S.; Chang, R.; Wang, Z.; Yu, Y.; Long, R.; et al. Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios. Front. Med. 2020, 14, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Kinoshita, R.; Mizumoto, K.; Yasuda, Y.; Nah, K. Transmission potential of Zika virus infection in the South Pacific. Int. J. Infect. Dis. 2016, 45, 95–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikbakht, R.; Baneshi, M.R.; Bahrampour, A. Estimation of the Basic Reproduction Number and Vaccination Coverage of Influenza in the United States (2017–18). J. Res. Health Sci. 2018, 18, e00427. [Google Scholar]
- De Carvalho Ferreira, H.C.; Weesendorp, E.; Elbers, A.R.; Bouma, A.; Quak, S.; Stegeman, J.A.; Loeffen, W.L.A. African swine fever virus excretion patterns in persistently infected animals: A quantitative approach. Vet. Microbiol. 2012, 160, 327–340. [Google Scholar] [CrossRef] [PubMed]
- De Koeijer, A.; Heesterbeek, H.; Schreuder, B.; Oberthür, R.; Wilesmith, J.; van Roermund, H.; Jong, M.D. Quantifying BSE control by calculating the basic reproduction ratio R0 for the infection among cattle. J. Math. Biol. 2004, 48, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Brooks-Pollock, E.; de Jong, M.C.; Keeling, M.J.; Klinkenberg, D.; Wood, J.L. Eight challenges in modelling infectious livestock diseases. Epidemics 2015, 10, 1–5. [Google Scholar] [CrossRef]
- Gulenkin, V.M.; Korennoy, F.I.; Karaulov, A.K.; Dudnikov, S.A. Cartographical analysis of African swine fever outbreaks in the territory of the Russian Federation and computer modeling of the basic reproduction ratio. Prev. Vet. Med. 2011, 102, 167–174. [Google Scholar] [CrossRef]
- Depner, K.; Gortazar, C.; Guberti, V.; Masiulis, M.; More, S.; Oļševskis, E.; Thulke, H.-H.; Viltrop, A.; Woźniakowski, G.; Abrahantes, J.C.; et al. Epidemiological analyses of African swine fever in the Baltic States and Poland: (Update September 2016–September 2017). EFSA J. 2017, 15, e05068. [Google Scholar]
- Kirkeby, C.; Halasa, T.; Gussmann, M.; Toft, N.; Græsbøll, K. Methods for estimating disease transmission rates: Evaluating the precision of Poisson regression and two novel methods. Sci. Rep. 2017, 7, 9496. [Google Scholar] [CrossRef] [Green Version]
- Chladná, Z.; Kopfová, J.; Rachinskii, D.; Rouf, S.C. Global dynamics of SIR model with switched transmission rate. J. Math. Biol. 2020, 80, 1209–1233. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, N.N.; Richt, J.A. Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines 2019, 7, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, K.; Chapman, D.; Argilaguet, J.M.; Fishbourne, E.; Hutet, E.; Cariolet, R.; Hutchings, G.; Oura, C.A.L.; Netherton, C.L.; Moffat, K.; et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine 2011, 29, 4593–4600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Model | Farm Scale (Pig Heads) | |
---|---|---|
1 | 100–299 | 3–6 |
2 | 100–299 | 3–14 |
3 | 300–999 | 3–6 |
4 | 300–999 | 3–14 |
Farm ID | Mean | Standard Deviation | Best-Fitting Generation Time Distribution |
---|---|---|---|
Farm 1 | 2.790321 | 2.021366 | Gamma |
Farm 2 | 2.166667 | 1.651193 | Gamma |
Farm 3 | 1.916569 | 1.758193 | Lognormal |
Farm 4 | 2.166667 | 1.651193 | Gamma |
Farm 5 | 2.345724 | 1.59627 | Weibull |
Farm 6 | 2.815932 | 2.068268 | Weibull |
Farm 7 | 1.252727 | 1.270785 | Lognormal |
Farm 8 | 2.72771 | 1.803711 | Weibull |
Farm 9 | 2.273011 | 2.556474 | Lognormal |
Farm 10 | 6.703201 | 2.880502 | Weibull |
Parameters | Description | Farm Scale | |||
---|---|---|---|---|---|
100–299 | 300–999 | ||||
R0 | The basic reproduction number | 1.66 (95%CI: 0.88–2.84) | 1.40 (95%CI: 1.01–1.90) | ||
T | The infectious period (Guinat et al., 2016) | 4.5 (Minimum) | 8.5 (Maximum) | 4.5 (Minimum) | 8.5 (Maximum) |
γ | Removal rate | 0.22 | 0.12 | 0.22 | 0.12 |
β | Transmission rate | 0.37 (95%CI: 0.20–0.63) | 0.20 (95%CI: 0.10–0.33) | 0.31 (95%CI: 0.22–0.41) | 0.16 (95%CI: 0.12–0.22) |
Parameter | Description | Farm Scale | |
---|---|---|---|
100–299 | 300–999 | ||
Vaccine efficacy | 80% | ||
Herd immunity threshold | 0.3975 (95%CI: 0–0.6479) | 0.2857 (95%CI: 0.0099–0.4737) | |
Vaccine coverage | 0.4970 (95%CI: 0–0.8099) | 0.3571 (95%CI: 0.0124–0.5921) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, T.N.; Sekiguchi, S.; Huynh, T.M.L.; Cao, T.B.P.; Le, V.P.; Dong, V.H.; Vu, V.A.; Wiratsudakul, A. Dynamic Models of Within-Herd Transmission and Recommendation for Vaccination Coverage Requirement in the Case of African Swine Fever in Vietnam. Vet. Sci. 2022, 9, 292. https://doi.org/10.3390/vetsci9060292
Mai TN, Sekiguchi S, Huynh TML, Cao TBP, Le VP, Dong VH, Vu VA, Wiratsudakul A. Dynamic Models of Within-Herd Transmission and Recommendation for Vaccination Coverage Requirement in the Case of African Swine Fever in Vietnam. Veterinary Sciences. 2022; 9(6):292. https://doi.org/10.3390/vetsci9060292
Chicago/Turabian StyleMai, Thi Ngan, Satoshi Sekiguchi, Thi My Le Huynh, Thi Bich Phuong Cao, Van Phan Le, Van Hieu Dong, Viet Anh Vu, and Anuwat Wiratsudakul. 2022. "Dynamic Models of Within-Herd Transmission and Recommendation for Vaccination Coverage Requirement in the Case of African Swine Fever in Vietnam" Veterinary Sciences 9, no. 6: 292. https://doi.org/10.3390/vetsci9060292
APA StyleMai, T. N., Sekiguchi, S., Huynh, T. M. L., Cao, T. B. P., Le, V. P., Dong, V. H., Vu, V. A., & Wiratsudakul, A. (2022). Dynamic Models of Within-Herd Transmission and Recommendation for Vaccination Coverage Requirement in the Case of African Swine Fever in Vietnam. Veterinary Sciences, 9(6), 292. https://doi.org/10.3390/vetsci9060292