Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Studying Diabetes Using Zebrafish Models
Glomerular Development and Disease Model
3. Modelling Diabetic Nephropathy Using Zebrafish
3.1. Molecular Level Approaches to Model DN in Zebrafish
3.1.1. Genes
3.1.2. miRNAs
4. Advantages of Using Zebrafish for Diabetic Nephropathy Studies
5. Limitations in Zebrafish Models
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Fernandes, J.D.R.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Saisho, Y. Importance of Beta Cell Function for the Treatment of Type 2 Diabetes. J. Clin. Med. 2014, 3, 923–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cade, W.T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.B.; Florez, J.C. Genetics of Diabetes Mellitus and Diabetes Complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults: A Systematic Review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Umanath, K.; Lewis, J.B. Update on Diabetic Nephropathy: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 71, 884–895. [Google Scholar] [CrossRef]
- Hussain, S.; Chand Jamali, M.; Habib, A.; Hussain, M.S.; Akhtar, M.; Najmi, A.K. Diabetic Kidney Disease: An Overview of Prevalence, Risk Factors, and Biomarkers. Clin. Epidemiol. Glob. Health 2021, 9, 2–6. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, H.M.; Kang, J.S.; Lee, E.Y.; Yadav, D.; Kwon, M.H.; Kim, Y.M.; Kim, H.S.; Chung, C.H. Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol. Dial. Transplant. 2016, 31, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Reutens, A.T.; Atkins, R.C. Epidemiology of Diabetic Nephropathy. Diabetes Kidney 2011, 170, 1–7. [Google Scholar] [CrossRef]
- Ebarasi, L.; Oddsson, A.; Hultenby, K.; Betsholtz, C.; Tryggvason, K. Zebrafish: A Model System for the Study of Vertebrate Renal Development, Function, and Pathophysiology. Curr. Opin. Nephrol. Hypertens. 2011, 20, 416–424. [Google Scholar] [CrossRef]
- Drummond, I.A. The Zebrafish Pronephros: A Genetic System for Studies of Kidney Development. Pediatr. Nephrol. 2000, 14, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Wingert, R.A.; Selleck, R.; Yu, J.; Song, H.-D.; Chen, Z.; Song, A.; Zhou, Y.; Thisse, B.; Thisse, C.; McMahon, A.P.; et al. The Cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros. PLoS Genet. 2007, 3, e189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingert, R.A.; Davidson, A.J. The Zebrafish Pronephros: A Model to Study Nephron Segmentation. Kidney Int. 2008, 73, 1120–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehrani, Z.; Lin, S. Endocrine Pancreas Development in Zebrafish. Cell Cycle 2011, 10, 3466–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddison, L.A.; Chen, W. Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish. Front. Endocrinol. 2017, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Kinkel, M.D.; Prince, V.E. On the Diabetic Menu: Zebrafish as a Model for Pancreas Development and Function. BioEssays News Rev. Mol. Cell. Dev. Biol. 2009, 31, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.-X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Yin, L.; Maddison, L.A.; Li, M.; Kara, N.; LaFave, M.C.; Varshney, G.K.; Burgess, S.M.; Patton, J.G.; Chen, W. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and SgRNAs. Genetics 2015, 200, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Kramer-Zucker, A.G.; Wiessner, S.; Jensen, A.M.; Drummond, I.A. Organization of the Pronephric Filtration Apparatus in Zebrafish Requires Nephrin, Podocin and the FERM Domain Protein Mosaic Eyes. Dev. Biol. 2005, 285, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Hellman, N.E.; Liu, Y.; Merkel, E.; Austin, C.; Le Corre, S.; Beier, D.R.; Sun, Z.; Sharma, N.; Yoder, B.K.; Drummond, I.A. The Zebrafish Foxj1a Transcription Factor Regulates Cilia Function in Response to Injury and Epithelial Stretch. Proc. Natl. Acad. Sci. USA 2010, 107, 18499–18504. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.R.; Heckler, K.; Stoll, S.J.; Hillebrands, J.-L.; Kynast, K.; Herpel, E.; Porubsky, S.; Elger, M.; Hadaschik, B.; Bieback, K.; et al. ELMO1 Protects Renal Structure and Ultrafiltration in Kidney Development and under Diabetic Conditions. Sci. Rep. 2016, 6, 37172. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, R.A.; Onder, L.; Wilfinger, A.; Ellertsdottir, E.; Meyer, D. Requirement for Pdx1 in Specification of Latent Endocrine Progenitors in Zebrafish. BMC Biol. 2011, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotb, A.M.; Simon, O.; Blumenthal, A.; Vogelgesang, S.; Dombrowski, F.; Amann, K.; Zimmermann, U.; Endlich, K.; Endlich, N. Knockdown of ApoL1 in Zebrafish Larvae Affects the Glomerular Filtration Barrier and the Expression of Nephrin. PLoS ONE 2016, 11, e0153768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Jiang, S.; Hou, Q.; Qiu, D.; Shi, J.; Wang, L.; Chen, Z.; Zhang, M.; Duan, A.; Qin, W.; et al. Dissection of Glomerular Transcriptional Profile in Patients With Diabetic Nephropathy: SRGAP2a Protects Podocyte Structure and Function. Diabetes 2017, 67, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Schmöhl, F.; Li, X.; Qian, X.; Tabler, C.T.; Bennewitz, K.; Sticht, C.; Morgenstern, J.; Fleming, T.; Volk, N.; et al. Reduced Acrolein Detoxification in Akr1a1a Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. Adv. Sci. 2021, 8, 2101281. [Google Scholar] [CrossRef]
- Schmöhl, F.; Peters, V.; Schmitt, C.P.; Poschet, G.; Büttner, M.; Li, X.; Weigand, T.; Poth, T.; Volk, N.; Morgenstern, J.; et al. CNDP1 Knockout in Zebrafish Alters the Amino Acid Metabolism, Restrains Weight Gain, but Does Not Protect from Diabetic Complications. Cell. Mol. Life Sci. 2019, 76, 4551–4568. [Google Scholar] [CrossRef]
- Sugano, Y.; Siegfried, H.; Merkel, E.; Drummond, I.A. Novel Transgenic Lines to Analyze Renal Glutathione Redox Potential In Vivo. Zebrafish 2020, 17, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Endlich, N.; Kliewe, F.; Kindt, F.; Schmidt, K.; Kotb, A.M.; Artelt, N.; Lindenmeyer, M.T.; Cohen, C.D.; Döring, F.; Kuss, A.W.; et al. The Transcription Factor Dach1 Is Essential for Podocyte Function. J. Cell. Mol. Med. 2018, 22, 2656–2669. [Google Scholar] [CrossRef]
- Müller-Deile, J.; Gellrich, F.; Schenk, H.; Schroder, P.; Nyström, J.; Lorenzen, J.; Haller, H.; Schiffer, M. Overexpression of TGF-β Inducible MicroRNA-143 in Zebrafish Leads to Impairment of the Glomerular Filtration Barrier by Targeting Proteoglycans. Cell. Physiol. Biochem. 2016, 40, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Katayama, K.; Nishibori, Y.; Akimoto, Y.; Kudo, A.; Kurayama, R.; Hada, I.; Takahashi, S.; Kimura, T.; Fukutomi, T.; et al. Wolf-Hirschhorn Syndrome Candidate 1-like 1 Epigenetically Regulates Nephrin Gene Expression. Am. J. Physiol.-Ren. Physiol. 2017, 312, F1184–F1199. [Google Scholar] [CrossRef]
- Müller-Deile, J.; Dannenberg, J.; Schroder, P.; Lin, M.-H.; Miner, J.H.; Chen, R.; Bräsen, J.-H.; Thum, T.; Nyström, J.; Staggs, L.B.; et al. Podocytes Regulate the Glomerular Basement Membrane Protein Nephronectin by Means of MiR-378a-3p in Glomerular Diseases. Kidney Int. 2017, 92, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Müller-Deile, J.; Schröder, P.; Beverly-Staggs, L.; Hiss, R.; Fiedler, J.; Nyström, J.; Thum, T.; Haller, H.; Schiffer, M. Overexpression of Preeclampsia Induced MicroRNA-26a-5p Leads to Proteinuria in Zebrafish. Sci. Rep. 2018, 8, 3621. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Cao, X.; Lu, Y.; Mi, Z.; He, C.; Liu, J.; Zheng, Z.; Li, M.J.; Li, T.; et al. Activation of P-TEFb by CAMP-PKA Signaling in Autosomal Dominant Polycystic Kidney Disease. Sci. Adv. 2019, 5, eaaw3593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, A.; Wang, H.; Zhu, Y.; Wang, Q.; Zhang, J.; Hou, Q.; Xing, Y.; Shi, J.; Hou, J.; Qin, Z.; et al. Chromatin Architecture Reveals Cell Type-Specific Target Genes for Kidney Disease Risk Variants. BMC Biol. 2021, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Intine, R.V.; Olsen, A.S.; Sarras Jr, M.P. A zebrafish model of diabetes mellitus and metabolic memory. JoVE (J. Vis. Exp.) 2013, 28, e50232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, L.; Maddison, L.A.; Chen, W. Zebrafish as a Model for Obesity and Diabetes. Front. Cell Dev. Biol. 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Natascia, T.; Moro, E.; Argenton, F. Zebrafish Pancreas Development. Mol. Cell. Endocrinol. 2009, 312, 24–30. [Google Scholar] [CrossRef]
- Zecchin, E.; Filippi, A.; Biemar, F.; Tiso, N.; Pauls, S.; Ellertsdottir, E.; Gnügge, L.; Bortolussi, M.; Driever, W.; Argenton, F. Distinct Delta and Jagged Genes Control Sequential Segregation of Pancreatic Cell Types from Precursor Pools in Zebrafish. Dev. Biol. 2007, 301, 192–204. [Google Scholar] [CrossRef]
- Li, M.; Dean, E.D.; Zhao, L.; Nicholson, W.E.; Powers, A.C.; Chen, W. Glucagon Receptor Inactivation Leads to α-Cell Hyperplasia in Zebrafish. J. Endocrinol. 2015, 227, 93–103. [Google Scholar] [CrossRef]
- Maddison, L.A.; Joest, K.E.; Kammeyer, R.M.; Chen, W. Skeletal Muscle Insulin Resistance in Zebrafish Induces Alterations in β-Cell Number and Glucose Tolerance in an Age- and Diet-Dependent Manner. Am. J. Physiol.—Endocrinol. Metab. 2015, 308, E662–E669. [Google Scholar] [CrossRef] [Green Version]
- Kamel, M.; Ninov, N. Catching New Targets in Metabolic Disease with a Zebrafish. Curr. Opin. Pharmacol. 2017, 37, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.S.; Singh, A. Insights into Regeneration Tool Box: An Animal Model Approach. Dev. Biol. 2019, 453, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Garg, P. A Review of Podocyte Biology. Am. J. Nephrol. 2018, 47, 3–13. [Google Scholar] [CrossRef]
- Tryggvason, K.; Patrakka, J.; Wartiovaara, J. Hereditary Proteinuria Syndromes and Mechanisms of Proteinuria. N. Engl. J. Med. 2006, 354, 1387–1401. [Google Scholar] [CrossRef] [Green Version]
- Omori, Y.; Malicki, J. Oko Meduzy and Related Crumbs Genes Are Determinants of Apical Cell Features in the Vertebrate Embryo. Curr. Biol. CB 2006, 16, 945–957. [Google Scholar] [CrossRef] [Green Version]
- Richard, M.; Roepman, R.; Aartsen, W.M.; van Rossum, A.G.S.H.; den Hollander, A.I.; Knust, E.; Wijnholds, J.; Cremers, F.P.M. Towards Understanding CRUMBS Function in Retinal Dystrophies. Hum. Mol. Genet. 2006, 15, R235–R243. [Google Scholar] [CrossRef] [Green Version]
- Verghese, E.; Ricardo, S.D.; Weidenfeld, R.; Zhuang, J.; Hill, P.A.; Langham, R.G.; Deane, J.A. Renal Primary Cilia Lengthen after Acute Tubular Necrosis. J. Am. Soc. Nephrol. JASN 2009, 20, 2147–2153. [Google Scholar] [CrossRef]
- Verghese, E.; Weidenfeld, R.; Bertram, J.F.; Ricardo, S.D.; Deane, J.A. Renal Cilia Display Length Alterations Following Tubular Injury and Are Present Early in Epithelial Repair. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2008, 23, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Weidenfeld, R.; Verghese, E.; Ricardo, S.D.; Deane, J.A. Alterations in Renal Cilium Length during Transient Complete Ureteral Obstruction in the Mouse. J. Anat. 2008, 213, 79–85. [Google Scholar] [CrossRef]
- Yu, X.; Ng, C.P.; Habacher, H.; Roy, S. Foxj1 Transcription Factors Are Master Regulators of the Motile Ciliogenic Program. Nat. Genet. 2008, 40, 1445–1453. [Google Scholar] [CrossRef]
- Gumienny, T.L.; Brugnera, E.; Tosello-Trampont, A.C.; Kinchen, J.M.; Haney, L.B.; Nishiwaki, K.; Walk, S.F.; Nemergut, M.E.; Macara, I.G.; Francis, R.; et al. CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration. Cell 2001, 107, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Epting, D.; Wendik, B.; Bennewitz, K.; Dietz, C.T.; Driever, W.; Kroll, J. The Rac1 Regulator ELMO1 Controls Vascular Morphogenesis in Zebrafish. Circ. Res. 2010, 107, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäker, K.; Bartsch, S.; Patry, C.; Stoll, S.J.; Hillebrands, J.-L.; Wieland, T.; Kroll, J. The Bipartite Rac1 Guanine Nucleotide Exchange Factor Engulfment and Cell Motility 1/Dedicator of Cytokinesis 180 (Elmo1/Dock180) Protects Endothelial Cells from Apoptosis in Blood Vessel Development. J. Biol. Chem. 2015, 290, 6408–6418. [Google Scholar] [CrossRef] [Green Version]
- Zang, L.; Shimada, Y.; Nishimura, N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci. Rep. 2017, 7, 1461. [Google Scholar] [CrossRef] [Green Version]
- Wiggenhauser, L.M.; Metzger, L.; Bennewitz, K.; Soleymani, S.; Boger, M.; Tabler, C.T.; Hausser, I.; Sticht, C.; Wohlfart, P.; Volk, N.; et al. pdx1 Knockout Leads to a Diabetic Nephropathy–Like Phenotype in Zebrafish and Identifies Phosphatidylethanolamine as Metabolite Promoting Early Diabetic Kidney Damage. Diabetes 2022, 71, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.; Ables, E.T.; Crawford, L.; Lowe, D.; Offield, M.F.; Magnuson, M.A.; Wright, C.V.E. Pdx-1 Function Is Specifically Required in Embryonic β Cells to Generate Appropriate Numbers of Endocrine Cell Types and Maintain Glucose Homeostasis. Dev. Biol. 2008, 314, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Ahlgren, U.; Jonsson, J.; Jonsson, L.; Simu, K.; Edlund, H. β-Cell-Specific Inactivation of the Mouse Ipf1/Pdx1 Gene Results in Loss of the β-Cell Phenotype and Maturity Onset Diabetes. Genes Dev. 1998, 12, 1763–1768. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, R.A.; Dobler, S.; Schmitner, N.; Walsen, T.; Freudenblum, J.; Meyer, D. Diabetic Pdx1-Mutant Zebrafish Show Conserved Responses to Nutrient Overload and Anti-Glycemic Treatment. Sci. Rep. 2015, 5, 14241. [Google Scholar] [CrossRef] [Green Version]
- Drummond, I.A.; Majumdar, A.; Hentschel, H.; Elger, M.; Solnica-Krezel, L.; Schier, A.F.; Neuhauss, S.C.F.; Stemple, D.L.; Zwartkruis, F.; Rangini, Z.; et al. Early Development of the Zebrafish Pronephros and Analysis of Mutations Affecting Pronephric Function. Development 1998, 125, 4655–4667. [Google Scholar] [CrossRef]
- Putaala, H. The Murine Nephrin Gene Is Specifically Expressed in Kidney, Brain and Pancreas: Inactivation of the Gene Leads to Massive Proteinuria and Neonatal Death. Hum. Mol. Genet. 2001, 10, 1–8. [Google Scholar] [CrossRef]
- Ma, L.; Shelness, G.S.; Snipes, J.A.; Murea, M.; Antinozzi, P.A.; Cheng, D.; Saleem, M.A.; Satchell, S.C.; Banas, B.; Mathieson, P.W.; et al. Localization of APOL1 Protein and MRNA in the Human Kidney: Nondiseased Tissue, Primary Cells, and Immortalized Cell Lines. J. Am. Soc. Nephrol. JASN 2015, 26, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wharram, B.L.; Goyal, M.; Wiggins, J.E.; Sanden, S.K.; Hussain, S.; Filipiak, W.E.; Saunders, T.L.; Dysko, R.C.; Kohno, K.; Holzman, L.B.; et al. Podocyte Depletion Causes Glomerulosclerosis: Diphtheria Toxin–Induced Podocyte Depletion in Rats Expressing Human Diphtheria Toxin Receptor Transgene. J. Am. Soc. Nephrol. 2005, 16, 2941–2952. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Greene, C.S.; Eichinger, F.; Nair, V.; Hodgin, J.B.; Bitzer, M.; Lee, Y.; Zhu, Q.; Kehata, M.; Li, M.; et al. Defining Cell-Type Specificity at the Transcriptional Level in Human Disease. Genome Res. 2013, 23, 1862–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gbadegesin, R.A.; Hall, G.; Adeyemo, A.; Hanke, N.; Tossidou, I.; Burchette, J.; Wu, G.; Homstad, A.; Sparks, M.A.; Gomez, J.; et al. Mutations in the Gene That Encodes the F-Actin Binding Protein Anillin Cause FSGS. J. Am. Soc. Nephrol. JASN 2014, 25, 1991–2002. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and Pathophysiology of Carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Peters, V.; Zschocke, J.; Schmitt, C.P. Carnosinase, Diabetes Mellitus and the Potential Relevance of Carnosinase Deficiency. J. Inherit. Metab. Dis. 2018, 41, 39–47. [Google Scholar] [CrossRef]
- Albrecht, T.; Schilperoort, M.; Zhang, S.; Braun, J.D.; Qiu, J.; Rodriguez, A.; Pastene, D.O.; Krämer, B.K.; Köppel, H.; Baelde, H.; et al. Carnosine Attenuates the Development of Both Type 2 Diabetes and Diabetic Nephropathy in BTBR Ob/Ob Mice. Sci. Rep. 2017, 7, 44492. [Google Scholar] [CrossRef]
- Peters, V.; Riedl, E.; Braunagel, M.; Höger, S.; Hauske, S.; Pfister, F.; Zschocke, J.; Lanthaler, B.; Benck, U.; Hammes, H.-P.; et al. Carnosine Treatment in Combination with ACE Inhibition in Diabetic Rats. Regul. Pept. 2014, 194–195, 36–40. [Google Scholar] [CrossRef]
- Zhou, W.; Boucher, R.C.; Bollig, F.; Englert, C.; Hildebrandt, F. Characterization of Mesonephric Development and Regeneration Using Transgenic Zebrafish. Am. J. Physiol.—Ren. Physiol. 2010, 299, F1040–F1047. [Google Scholar] [CrossRef]
- Takemoto, M.; He, L.; Norlin, J.; Patrakka, J.; Xiao, Z.; Petrova, T.; Bondjers, C.; Asp, J.; Wallgard, E.; Sun, Y.; et al. Large-Scale Identification of Genes Implicated in Kidney Glomerulus Development and Function. EMBO J. 2006, 25, 1160–1174. [Google Scholar] [CrossRef]
- Ristola, M.; Arpiainen, S.; Saleem, M.A.; Holthöfer, H.; Lehtonen, S. Transcription of Nephrin–Neph3 Gene Pair Is Synergistically Activated by WT1 and NF-ΚB and Silenced by DNA Methylation. Nephrol. Dial. Transplant. 2012, 27, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Semanchik, N.; Lee, S.H.; Somlo, S.; Barbano, P.E.; Coifman, R.; Sun, Z. Chemical Modifier Screen Identifies HDAC Inhibitors as Suppressors of PKD Models. Proc. Natl. Acad. Sci. USA 2009, 106, 21819–21824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakore, P.I.; D’Ippolito, A.M.; Song, L.; Safi, A.; Shivakumar, N.K.; Kabadi, A.M.; Reddy, T.E.; Crawford, G.E.; Gersbach, C.A. Highly Specific Epigenome Editing by CRISPR-Cas9 Repressors for Silencing of Distal Regulatory Elements. Nat. Methods 2015, 12, 1143–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Eales, J.M.; Akbarov, A.; Guo, H.; Becker, L.; Talavera, D.; Ashraf, F.; Nawaz, J.; Pramanik, S.; Bowes, J.; et al. Molecular Insights into Genome-Wide Association Studies of Chronic Kidney Disease-Defining Traits. Nat. Commun. 2018, 9, 4800. [Google Scholar] [CrossRef] [PubMed]
- Schips, T.G.; Vanhoutte, D.; Vo, A.; Correll, R.N.; Brody, M.J.; Khalil, H.; Karch, J.; Tjondrokoesoemo, A.; Sargent, M.A.; Maillet, M.; et al. Thrombospondin-3 Augments Injury-Induced Cardiomyopathy by Intracellular Integrin Inhibition and Sarcolemmal Instability. Nat. Commun. 2019, 10, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Sun, X.; Icli, B.; Feinberg, M.W. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr. Rev. 2017, 38, 145–168. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Hanke, N.; King, B.L.; Vaske, B.; Haller, H.; Schiffer, M. A Fluorescence-Based Assay for Proteinuria Screening in Larval Zebrafish (Danio Rerio). Zebrafish 2015, 12, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- Drummond, I.A. Zebrafish Kidney Development. Methods Cell Biol. 2004, 76, 501–530. [Google Scholar] [CrossRef]
- Eremina, V.; Quaggin, S.E. The Role of VEGF-A in Glomerular Development and Function. Curr. Opin. Nephrol. Hypertens. 2004, 13, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, H.; Lin, H.; Qi, J.; Zhu, C.; Gao, Z.; Wang, H. Circulating MicroRNAs Are Elevated in Plasma from Severe Preeclamptic Pregnancies. Reproduction 2012, 143, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, Z.-T.; Kong, J.; Zhu, X.-D.; Zhang, Y.-Y.; Lu, L.; Zhou, J.-M.; Wang, L.-R.; Zhang, K.-Z.; Zhang, Q.-B.; Ao, J.-Y.; et al. MicroRNA-26a Inhibits Angiogenesis by Down-Regulating VEGFA through the PIK3C2α/Akt/HIF-1α Pathway in Hepatocellular Carcinoma. PLoS ONE 2013, 8, e77957. [Google Scholar] [CrossRef] [Green Version]
- Müller-Deile, J.; Dannenberg, J.; Liu, P.; Lorenzen, J.; Nyström, J.; Thum, T.; Schiffer, M. Identification of Cell and Disease Specific MicroRNAs in Glomerular Pathologies. J. Cell. Mol. Med. 2019, 23, 3927–3939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Stage | Effects | Reference |
---|---|---|---|
IGF-I receptor, U6x:sgRNA | Larvae | CRISPR/Cas9 knockdown of liver insulin receptor causes postprandial hyperglycemia and fasting hypoglycemia. Dominant-negative expression of IGF-I receptor (IGFIR) in skeletal muscle causes an elevation in fasting blood glucose. | [18] |
Nephrin and Podosine | Embryo | Morpholino-mediated knockdown of nephrin and podosine caused the disappearance of the podocyte process. | [19] |
Crb2b | Embryo | Morpholino-mediated knockdown of the Crb2b protein caused an overall disruption of the podocyte process, including loss of the slit diaphragm. | [19] |
foxj1a | Embryo | Induction of foxj1a increased the length of cilia and boosted cilia beat in response to kidney damage. | [20] |
ELMO1/DOCK180 | Embryos | ELM O1 knockout exhibits alterations in the zebrafish pronephric structure. | [21] |
pdx1 pdx1sa280 | Adult | Mutations lead to reduced body size and reduced survival. Beta-cell numbers and insulin levels are decreased and the exocrine pancreas is defined, but acinar differentiation is impeded. Overall pancreatic islet size was significantly reduced in the mutants. | [22] |
zApoL1 | Larvae | When the zApoL1 gene was knocked off, the larvae suffered significant pericardial edema. With knockdown of the expression of zApoL1 gene, the larvae developed having critical pericardial edema. | [23] |
SRGAP2a | Larvae | SRGAP2a knockdown causes podocyte foot process effacement, a disrupted slit diaphragm, and a disorganized glomerular filtration barrier, as well as reduced GFP expression. | [24] |
Akr1a1a | Larvae | Knockout induced impaired glucose homeostasis, followed by abnormal angiogenesis in the hyaloid vasculature of the larvae, resulting in angiogenic retinal vessels and GBM thickening in adults. | [25] |
CNDP1 | Embryos | Knockouts can increase carnosine levels in vivo and prevent some weight gain to an extent, but not enough to prevent the complications caused by diabetes. | [26] |
ssGrx1-roGFP2 | Embryos | When crossed with the Gal4 strain, propelled by the anterior kidney-specific cadherin 17 (cdh17) promoter, biosensors were precisely expressed in the pronephric tubules. | [27] |
DACH1 | Larva | Knockdown of zebrafish ortholog Dachd1 induces glomerular morphological changes with downregulation of nephrin and leakage of the filtration barrier. | [28] |
miR-143 | Eggs | Overexpression of miR-143 in zebrafish eggs at the one- to four-cell stages caused a phenotype, resulting in pericardial and yolk sack edema. | [29] |
WHSC1L1-L | Embryos | Injection of Whsc111 mRNA into the embryo showed a clear reduction in nephrin mRNA, but not podocin and CD2AP mRNA. | [30] |
NPNT | Larvae | Knockdown resulted in generalized edema, and uncovering of injected 70 kDa fluorescence-labeled dextran in the water showed proteinuria and podocyte effacement, and thickening of the GBM | [31] |
VEGF-A | Larvae | The glomerular phenotype was salvaged by injecting recombinant zebrafish vegf-Aa protein. | [31] |
miR-26a-5p | Embryo | Proteinuria, endothelial cell enlargement, edema, damage of glomerular endothelial fenestration, and podocyte foot process effacement are all symptoms of overexpression in preeclampsia. | [32] |
pkd2 | Embryos | Knockdown resulted in cystic kidney, hydrocephalus, and dorsal axis curvature in zebrafish embryos. | [33] |
SLC34A1 | Larvae | In zebrafish, SLC34A1 knockout caused edema and impaired kidney function. | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharchil, C.; Vijay, A.; Ramachandran, V.; Bhagavatheeswaran, S.; Devarajan, R.; Koul, B.; Yadav, D.; Balakrishnan, A. Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet. Sci. 2022, 9, 312. https://doi.org/10.3390/vetsci9070312
Sharchil C, Vijay A, Ramachandran V, Bhagavatheeswaran S, Devarajan R, Koul B, Yadav D, Balakrishnan A. Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Veterinary Sciences. 2022; 9(7):312. https://doi.org/10.3390/vetsci9070312
Chicago/Turabian StyleSharchil, Charles, Amulya Vijay, Vinu Ramachandran, Sambhavi Bhagavatheeswaran, Reena Devarajan, Bhupendra Koul, Dhananjay Yadav, and Anandan Balakrishnan. 2022. "Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus" Veterinary Sciences 9, no. 7: 312. https://doi.org/10.3390/vetsci9070312
APA StyleSharchil, C., Vijay, A., Ramachandran, V., Bhagavatheeswaran, S., Devarajan, R., Koul, B., Yadav, D., & Balakrishnan, A. (2022). Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Veterinary Sciences, 9(7), 312. https://doi.org/10.3390/vetsci9070312