Effects of Insole with Toe-Grip Bar on Barefoot Balance and Walking Function in Patients with Parkinson’s Disease: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD. Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Wirdefeldt, K.; Adami, H.O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J. Epidemiol. 2011, 26 (Suppl. 1), S1–S58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsey, E.R.; Bloem, B.R. The Parkinson pandemic—A call to action. JAMA Neurol. 2018, 75, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.E.; Canning, C.G.; Almeida, L.; Bloem, B.R.; Keus, S.H.; Löfgren, N.; Nieuwboer, A.; Verheyden, G.S.; Yamato, T.P.; Sherrington, C. Interventions for preventing falls in Parkinson’s disease. Cochrane Database Syst. Rev. 2022, 6, CD011574. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.E.; Schwarzel, A.K.; Canning, C.G. Recurrent falls in Parkinson’s disease: A systematic review. Parkinsons Dis. 2013, 2013, 906274. [Google Scholar] [CrossRef] [Green Version]
- Wielinski, C.L.; Erickson-Davis, C.; Wichmann, R.; Walde-Douglas, M.; Parashos, S.A. Falls and injuries resulting from falls among patients with Parkinson’s disease and other Parkinsonian syndromes. Mov. Disord. 2005, 20, 410–415. [Google Scholar] [CrossRef]
- Paul, S.S.; Thackeray, A.; Duncan, R.P.; Cavanaugh, J.T.; Ellis, T.D.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Two-year trajectory of fall risk in people with Parkinson disease: A latent class analysis. Arch. Phys. Med. Rehabil. 2016, 97, 372–379.e1. [Google Scholar] [CrossRef] [Green Version]
- Hvingelby, V.S.; Glud, A.N.; Sørensen, J.; Tai, Y.; Andersen, A.; Johnsen, E.; Moro, E.; Pavese, N. Interventions to improve gait in Parkinson’s disease: A systematic review of randomized controlled trials and network meta-analysis. J. Neurol. 2022, 269, 4068–4079. [Google Scholar] [CrossRef]
- Reina-Bueno, M.; Calvo-Lobo, C.; López-López, D.; Palomo-López, P.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Romero-Morales, C.; Navarro-Flores, E. Effect of foot orthoses and shoes in Parkinson’s disease patients: A PRISMA systematic review. J. Pers. Med. 2021, 11, 1136. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, H.S.; Kim, J.H.; Yoon, H.B.; Lim, O.B.; Jeon, M. Immediate effect of insoles on balance in older adults. Foot 2021, 47, 101768. [Google Scholar] [CrossRef] [PubMed]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. ISB clinical biomechanics award 2009: Toe weakness and deformity increase the risk of falls in older people. Clin. Biomech. 2009, 24, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Zammit, G.V.; Munteanu, S.E.; Scott, G. Plantarflexion strength of the toes: Age and gender differences and evaluation of a clinical screening test. Foot Ankle Int. 2006, 27, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Mickle, K.J.; Angin, S.; Crofts, G.; Nester, C.J. Effects of age on strength and morphology of toe flexor muscles. J. Orthop. Sports Phys. Ther. 2016, 46, 1065–1070. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E.; Lord, S.R. Foot and ankle characteristics associated with impaired balance and functional ability in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1546–1552. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E. Clinical determinants of plantar forces and pressures during walking in older people. Gait Posture 2006, 24, 229–236. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E.; Lord, S.R. Foot and ankle risk factors for falls in older people: A prospective study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Menz, H.B.; Auhl, M.; Spink, M.J. Foot problems as a risk factor for falls in community-dwelling older people: A systematic review and meta-analysis. Maturitas 2018, 118, 7–14. [Google Scholar] [CrossRef]
- Okada, Y.; Fukumoto, T.; Maeoka, H.; Takatori, K.; Ikuno, K.; Tsuruto, K.; Okubo, Y.; Kawaguchi, T.; Okamoto, M.; Matsushita, s.; et al. Toe flexor weakness associated disease progression in patients with Parkinson’s disease. Phys. Ther. Jpn. 2010, 37, 391–396. [Google Scholar] [CrossRef]
- Soma, M.; Nakae, H. Relationship between toe grip strength and gait or balance function in patients with Parkinson’s disease who live at home. Jpn. J. Health Promot. Phys. 2019, 9, 91–94. [Google Scholar] [CrossRef]
- Hachiya, M.; Murata, S.; Kumano, W.; Maeda, H.; Nozumi, R.; Mizokami, A.; Asami, T. Relationship between low-speed walking performed by patients with Parkinsonʼs disease and the grip strength of the toes. Jpn. J. Health Promot. Phys. 2013, 3, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H.; Murata, S.; Abiko, T.; Sakamoto, M.; Matsuo, D.; Kawaguchi, M.; Sugo, Y.; Matsui, H. Effect of insoles with a toe-grip bar on toe function and standing balance in healthy young women: A randomized controlled trial. Rehabil. Res. Pract. 2017, 2017, 2941095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiko, T.; Murata, S.; Kai, Y.; Nakano, H.; Matsuo, D.; Kawaguchi, M. Differences in electromyographic activities and spatiotemporal gait parameters between general and developed insoles with a toe-grip bar. BioMed Res. Int. 2020, 2020, 6690343. [Google Scholar] [CrossRef]
- Nakano, H.; Murata, S.; Abiko, T.; Sakamoto, M.; Matsuo, D.; Kawaguchi, M.; Sugo, Y.; Matsui, H. Effect of insoles with a toe-grip bar on toe-grip strength and body sway in middle-aged and elderly women. Top. Geriatr. Rehabil. 2019, 35, 125–128. [Google Scholar] [CrossRef]
- Nakano, H.; Murata, S.; Kai, Y.; Abiko, T.; Matsuo, D.; Kawaguchi, M. The Effect of wearing insoles with a toe-grip bar on occupational leg swelling and lower limb muscle activity: A randomized cross-over study. J. Occup. Health 2020, 62, e12193. [Google Scholar] [CrossRef]
- Nakano, H.; Murata, S.; Abiko, T.; Mitsumaru, N.; Kubo, A.; Hachiya, M.; Matsuo, D.; Kawaguchi, M. Effects of long-term use of insoles with a toe-grip bar on the balance, walking, and running of preschool children: A randomized controlled trial. BioMed Res. Int. 2020, 2020, 1940954. [Google Scholar] [CrossRef] [PubMed]
- Mickle, K.J.; Caputi, P.; Potter, J.M.; Steele, J.R. Efficacy of a progressive resistance exercise program to increase toe flexor strength in older people. Clin. Biomech. 2016, 40, 14–19. [Google Scholar] [CrossRef]
- Okamura, K.; Egawa, K.; Okii, A.; Oki, S.; Kanai, S. Intrinsic foot muscle strengthening exercises with electromyographic biofeedback achieve increased toe flexor strength in older adults: A pilot randomized controlled trial. Clin. Biomech. 2020, 80, 105187. [Google Scholar] [CrossRef]
- Tsuyuguchi, R.; Kurose, S.; Seto, T.; Takao, N.; Fujii, A.; Tsutsumi, H.; Otsuki, S.; Kimura, Y. The effects of toe grip training on physical performance and cognitive function of nursing home residents. J. Physiol. Anthropol. 2019, 38, 11. [Google Scholar] [CrossRef]
- Branthwaite, H.; Grabtree, G.; Chockalingam, N.; Greenhalgh, A. The effect of toe flexion exercises on grip. J. Am. Podiatr. Med. Assoc. 2018, 108, 355–361. [Google Scholar] [CrossRef]
- Nagai, K.; Inoue, T.; Yamada, Y.; Tateuchi, H.; Ikezoe, T.; Ichihashi, N.; Tsuboyama, T. Effects of toe and ankle training in older people: A cross-over study. Geriatr. Gerontol. Int. 2011, 11, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouglidis, V.; Nikodelis, T.; Hatzitaki, V.; Amiridis, I.G. Changes in the limits of stability induced by weight-shifting training in elderly women. Exp. Aging Res. 2011, 37, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Sofianidis, G.; Hatzitaki, V.; Douka, S.; Grouios, G. Effect of a 10-week traditional dance program on static and dynamic balance control in elderly adults. J. Aging Phys. Act. 2009, 17, 167–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogaya, S.; Ikezoe, T.; Tsuboyama, T.; Ichihashi, N. Postural control on a wobble board and stable surface of young and elderly people. Rigakuryoho Kagaku. 2009, 24, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.; Clark, P.; Klenerman, L. The importance of the toes in walking. J. Bone Jt. Surg. Br. 1990, 72, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Hamel, A.J.; Donahue, S.W.; Sharkey, N.A. Contributions of active and passive toe flexion to forefoot loading. Clin. Orthop. Relat. Res. 2001, 393, 326–334. [Google Scholar] [CrossRef]
- Misu, S.; Doi, T.; Asai, T.; Sawa, R.; Tsutsumimoto, K.; Nakakubo, S.; Yamada, M.; Ono, R. Association between toe flexor strength and spatiotemporal gait parameters in community-dwelling older people. J. Neuroeng. Rehabil. 2014, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Soma, M.; Murata, S.; Nakae, H.; Nakano, H.; Ishida, H.; Maruyama, Y.; Nagara, H.; Nagara, Y. Association between toe-grip strength and gait in patient with Parkinson’s disease: Analysis of temporal and spatial gait parameters in comfortable and fast walking. Jpn. J. Health Promot. Phys. Ther. 2021, 10, 195–198. [Google Scholar] [CrossRef]
- Chou, S.W.; Cheng, H.Y.; Chen, J.H.; Ju, Y.Y.; Lin, Y.C.; Wong, M.K. The role of the great toe in balance performance. J. Orthop. Res. 2009, 27, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Ashton-Miller, J.A.; Alexander, N.B. Effects of age and gender on toe flexor muscle strength. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M392–M397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otake, Y.; Yozu, A.; Fukui, T.; Sumitani, M.; Haga, N. Relationship between toe flexion movement and center of pressure position. Int. J. Foot Ankle 2018, 2, 15. [Google Scholar]
- Quinlan, S.; Fong Yan, A.; Sinclair, P.; Hunt, A. The evidence for improving balance by strengthening the toe flexor muscles: A systematic review. Gait Posture 2020, 81, 56–66. [Google Scholar] [CrossRef]
- Nakae, H.; Murata, S.; Soma, M.; Nakano, H.; Isida, H.; Maruyama, Y.; Nagara, H.; Nagara, Y. The effect on posture control ability and walking ability by wearing insole that enhance the toe grip function in home-care patients with Parkinson’s disease. Jpn. J. Health Promt. Phys. Ther. 2020, 10, 125–130. [Google Scholar] [CrossRef]
- Koeneman, M.A.; Verheijden, M.W.; Chinapaw, M.J.; Hopman-Rock, M. Determinants of physical activity and exercise in healthy older adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 142. [Google Scholar] [CrossRef]
Parameters | Intervention Group (n = 15) | Control Group (n = 14) | p-Value | |
---|---|---|---|---|
Men/Women (n) | 5 /10 | 7 / 7 | 0.36 | |
Hoehn and Yahr stage (n) | II | 2 | 1 | 0.86 |
III | 11 | 11 | ||
IV | 2 | 2 | ||
Age (years) | 71.13 ± 7.91 | 71.36 ± 7.91 | 0.94 | |
Total trajectory length (cm) | 47.58 ± 27.43 | 55.96 ± 25.31 | 0.40 | |
Envelop area (cm2) | 2.85 ± 1.80 | 3.60 ± 3.80 | 0.50 | |
Maximum AP-COP distance (cm) | 7.88 ± 2.46 | 9.24 ± 2.55 | 0.16 | |
Normal walking condition | Walking speed (cm/s) | 83.14 ± 24.22 | 82.45 ± 22.33 | 0.94 |
Fastest walking condition | Step length (cm) | 42.70 ± 10.62 | 45.79 ± 9.95 | 0.43 |
Stance time (s) | 0.74 ± 0.12 | 0.77 ± 0.07 | 0.56 | |
Swing time (s) | 0.33 ± 0.04 | 0.36 ± 0.03 | 0.42 | |
Walking speed (cm/s) | 125.31 ± 34.63 | 138.26 ± 29.34 | 0.29 | |
Step length (cm) | 53.21 ± 12.98 | 59.55 ± 9.92 | 0.15 | |
Stance time (s) | 0.57 ± 0.08 | 0.59 ± 0.06 | 0.60 | |
Swing time (s) | 0.27 ± 0.07 | 0.29 ± 0.04 | 0.43 |
Parameters | Group | Before | After | 95% CI | Group × Time | ES | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | F-Value | p-Value | η2 | ||||
Total trajectory length (cm) | Intervention | 47.58 | 27.43 | 43.11 | 16.46 | −7.44–16.39 | 0.00 | 0.96 | 0.00 | |
Control | 55.96 | 25.31 | 51.11 | 21.91 | −7.48–17.19 | |||||
Envelop area (cm2) | Intervention | 2.85 | 1.80 | 2.59 | 1.87 | −1.11–1.63 | 0.70 | 0.41 | 0.03 | |
Control | 3.60 | 3.80 | 2.53 | 1.05 | −0.35–2.48 | |||||
Maximum AP-COP distance (cm) | Intervention | 7.88 | 2.46 | 9.75 | 2.48 | 0.85–2.89 | 8.90 | 0.01 * | 0.25 | |
Control | 9.24 | 2.55 | 8.98 | 2.45 | −1.31–0.79 | |||||
Normal walking condition | Walking speed (cm/s) | Intervention | 83.14 | 24.22 | 98.27 | 23.60 | 6.12–24.13 | 1.50 | 0.23 | 0.05 |
Control | 82.45 | 22.33 | 89.83 | 26.28 | −1.94–16.70 | |||||
Step length (cm) | Intervention | 42.70 | 10.62 | 49.14 | 10.99 | 2.52–10.36 | 1.48 | 0.23 | 0.05 | |
Control | 45.79 | 9.95 | 48.89 | 12.73 | −0.96–7.15 | |||||
Stance time (s) | Intervention | 0.74 | 0.12 | 0.68 | 0.07 | 0.02–0.10 | 2.48 | 0.13 | 0.08 | |
Control | 0.77 | 0.07 | 0.75 | 0.08 | −0.02–0.06 | |||||
Swing time (s) | Intervention | 0.33 | 0.04 | 0.33 | 0.03 | −0.02–0.02 | 0.36 | 0.55 | 0.01 | |
Control | 0.36 | 0.03 | 0.35 | 0.04 | −0.02–0.03 | |||||
Fastest walking condition | Walking speed (cm/s) | Intervention | 125.31 | 34.63 | 138.98 | 37.92 | 0.31–27.04 | 3.21 | 0.08 | 0.11 |
Control | 138.26 | 29.34 | 135.14 | 41.77 | −16.96–10.71 | |||||
Step length (cm) | Intervention | 53.21 | 12.98 | 58.76 | 12.82 | 1.43–9.67 | 5.94 | 0.02 * | 0.18 | |
Control | 59.55 | 9.92 | 58.05 | 15.15 | −5.77–2.77 | |||||
Stance time (s) | Intervention | 0.57 | 0.08 | 0.58 | 0.08 | −0.03–0.03 | 0.02 | 0.90 | 0.00 | |
Control | 0.59 | 0.06 | 0.59 | 0.07 | −0.03–0.03 | |||||
Swing time (s) | Intervention | 0.27 | 0.07 | 0.29 | 0.05 | −0.01–0.05 | 0.57 | 0.46 | 0.02 | |
Control | 0.29 | 0.04 | 0.29 | 0.04 | −0.03–0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, H.; Murata, S.; Nakae, H.; Soma, M.; Isida, H.; Maruyama, Y.; Nagara, H.; Nagara, Y. Effects of Insole with Toe-Grip Bar on Barefoot Balance and Walking Function in Patients with Parkinson’s Disease: A Randomized Controlled Trial. Geriatrics 2022, 7, 128. https://doi.org/10.3390/geriatrics7060128
Nakano H, Murata S, Nakae H, Soma M, Isida H, Maruyama Y, Nagara H, Nagara Y. Effects of Insole with Toe-Grip Bar on Barefoot Balance and Walking Function in Patients with Parkinson’s Disease: A Randomized Controlled Trial. Geriatrics. 2022; 7(6):128. https://doi.org/10.3390/geriatrics7060128
Chicago/Turabian StyleNakano, Hideki, Shin Murata, Hideyuki Nakae, Masayuki Soma, Haruhisa Isida, Yuumi Maruyama, Hitoshi Nagara, and Yuko Nagara. 2022. "Effects of Insole with Toe-Grip Bar on Barefoot Balance and Walking Function in Patients with Parkinson’s Disease: A Randomized Controlled Trial" Geriatrics 7, no. 6: 128. https://doi.org/10.3390/geriatrics7060128
APA StyleNakano, H., Murata, S., Nakae, H., Soma, M., Isida, H., Maruyama, Y., Nagara, H., & Nagara, Y. (2022). Effects of Insole with Toe-Grip Bar on Barefoot Balance and Walking Function in Patients with Parkinson’s Disease: A Randomized Controlled Trial. Geriatrics, 7(6), 128. https://doi.org/10.3390/geriatrics7060128