Relationship between Subjective Grip Strength and Physical Functioning among Community-Dwelling Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Subjective Grip Strength
2.3. Cognitive Function
2.4. Physical Function
2.5. Body Composition
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydın, A.; Es, M. The Role of the Age-Friendly Cities Movement in the Framework of Active Aging Policies Against the Socioeconomic Risks of Demographic Aging. J. Hum. Sci 2020, 17, 847–863. [Google Scholar] [CrossRef]
- World Social Report 2023: Leaving No One behind in an Ageing World. United Nations Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2023/01/2023-wsr-tablecontents.pdf (accessed on 22 January 2024).
- National Institute of Population and Social Security Research. Overview of Social Security Costs in 2021. Available online: https://www.ipss.go.jp/ss-cost/j/fsss-R03/1/R03-gaiyou.pdf (accessed on 22 January 2024).
- Ministry of Health, Labour and Welfare. Overview of National Healthcare Expenditures in 2021. Available online: https://www.mhlw.go.jp/toukei/saikin/hw/k-iryohi/21/dl/data.pdf (accessed on 22 January 2024).
- Gill, T.M.; Baker, D.I.; Gottschalk, M.; Peduzzi, P.N.; Allore, H.; Byers, A. A Program to Prevent Functional Decline in Physically Frail, Elderly Persons Who Live at Home. N. Engl. J. Med. 2002, 347, 1068–1074. [Google Scholar] [CrossRef]
- Faber, M.J.; Bosscher, R.J.; Paw, M.J.C.A.; van Wieringen, P.C. Effects of Exercise Programs on Falls and Mobility in Frail and Pre-Frail Older Adults: A Multicenter Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2006, 87, 885–896. [Google Scholar] [CrossRef]
- Ueno, K.; Kaneko, H.; Kamiya, K.; Itoh, H.; Okada, A.; Suzuki, Y.; Matsuoka, S.; Fujiu, K.; Michihata, N.; Jo, T.; et al. Clinical Utility of Simple Subjective Gait Speed for the Risk Stratification of Heart Failure in a Primary Prevention Setting. Sci. Rep. 2022, 12, 11641. [Google Scholar] [CrossRef]
- Ohno, R.; Kaneko, H.; Ueno, K.; Kamiya, K.; Okada, A.; Suzuki, Y.; Matsuoka, S.; Fujiu, K.; Michihata, N.; Jo, T.; et al. Subjective Gait Speed and Risk of Developing Cardiovascular Events in 56,589 Cancer Survivors. Int. Heart J. 2023, 64, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Shan, Y.F.; Kimura, T.; Ukawa, S.; Ohira, H.; Okabayashi, S.; Wakai, K.; Ando, M.; Tamakoshi, A. Dual Decline in Subjective Gait Speed and Domain-Specific Cognition is Associated with Higher Risk of Incident Dementia in Older Japanese Adults: A 15-year Age-Specific Cohort Study. Arch. Gerontol. Geriatr. 2024, 117, 105254. [Google Scholar] [CrossRef]
- Iwamoto, K.; Takenaka, S.; Eto, M.; Hirai, H.; Murata, S. Relationship Between Subjective Motor Ability and Physical Function in Young People. Jpn. J. Health Promot. Phys. Ther. 2024, in press.
- Strandkvist, V.; Larsson, A.; Pauelsen, M.; Nyberg, L.; Vikman, I.; Lindberg, A.; Gustafsson, T.; Röijezon, U. Hand Grip Strength is Strongly Associated with Lower Limb Strength But Only Weakly With Postural Control in Community-Dwelling Older Adults. Arch. Gerontol. Geriatr. 2021, 94, 104345. [Google Scholar] [CrossRef] [PubMed]
- Felix, R.J.; Mishra, R.; Thomas, J.C.; Wilson, B.P.; Belavendra, A.; Gopal, G.K. Is Handgrip Strength a Useful Tool to Detect Slow Walking Speed in Older Indian Adults: A Cross-Sectional Study Among Geriatric Outpatients in a Tertiary Care Hospital in South India. J. Frailty Sarcopenia Falls 2022, 7, 183–191. [Google Scholar] [CrossRef]
- Staples, W.H.; Kays, A.; Richman, R. Examination of the Correlation Between Physical and Psychological Measures in Community-Dwelling Older Adults. Clin. Interv. Aging 2020, 15, 293–300. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Assal, F.; Bridenbaugh, S.; Herrmann, F.R.; Kressig, R.W.; Allali, G. Imagined Timed UP & Go Test: A New Tool to Assess Higher-Level Gait and Balance Disorders in Older Adults? J. Neurol. Sci. 2010, 294, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Launay, C.P.; Sejdić, E.; Allali, G.; Annweiler, C. Motor Imagery of Gait: A New Way to Detect Mild Cognitive Impairment? J. Neuroeng. Rehabil. 2014, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-Mental State’. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, K.K.; Chan, J.Y.; Hirai, H.W.; Wong, S.Y.; Kwok, T.C. Cognitive Tests to Detect Dementia: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2015, 175, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) Test Better Suited Than the Mini-Mental State Examination (MMSE) in Mild Cognitive Impairment (MCI) Detection Among People Aged Over 60? Meta-Analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education, Culture, Sports, Science, and Technology. New Physical Fitness Test Implementation Guidelines (for 65–79 Year Olds). Available online: https://www.mext.go.jp/component/a_menu/sports/detail/__icsFiles/afieldfile/2010/07/30/1295079_04.pdf (accessed on 22 January 2024).
- Kimura, M.; Mizuta, C.; Yamada, Y.; Okayama, Y.; Nakamura, E. Constructing an Index of Physical Fitness Age for Japanese Elderly Based on 7-Year Longitudinal Data: Sex Differences in Estimated Physical Fitness Age. Age 2012, 34, 203–214. [Google Scholar] [CrossRef]
- Narazaki, K.; Matsuo, E.; Honda, T.; Nofuji, Y.; Yonemoto, K.; Kumagai, S. Physical Fitness Measures as Potential Markers of Low Cognitive Function in Japanese Community-Dwelling Older Adults Without Apparent Cognitive Problems. J. Sports Sci. Med. 2014, 13, 590–596. [Google Scholar] [PubMed]
- Goda, A.; Murata, S.; Nakano, H.; Matsuda, H.; Yokoe, K.; Mitsumoto, H.; Shiraiwa, K.; Abiko, T.; Horie, J. Temporal Patterns in Performance of the 30 Second Chair-Stand Test Evince Differences in Physical and Mental Characteristics Among Community-Dwelling Older Adults in Japan. Healthcare 2020, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Nakatani, T.; Nadamoto, M.; Mimura, K.-I.; Itoh, M. Validation of a 30-sec Chair-Stand Test for Evaluating Lower Extremity Muscle Strength in Japanese Elderly Adults. Taiikugaku Kenkyu (Jpn. J. Phys. Educ. Health Sport Sci.) 2002, 47, 451–461. [Google Scholar]
- Wada, Y.; Shojima, K.; Tamaki, K.; Mori, T.; Kusunoki, H.; Onishi, M.; Tsuji, S.; Matsuzawa, R.; Nagai, K.; Sano, K.; et al. Association Between Timed Up-and-Go Test and Future Changes in the Frailty Status in a Longitudinal Study of Japanese Community-Dwelling Older Adults. Clin. Interv. Aging 2023, 18, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Makino, K.; Makizako, H.; Doi, T.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Suzuki, T.; Shimada, H. Fear of Falling and Gait Parameters in Older Adults with and Without Fall History. Geriatr. Gerontol. Int. 2017, 17, 2455–2459. [Google Scholar] [CrossRef] [PubMed]
- Iwase, H.; Murata, S.; Nakano, H.; Shiraiwa, K.; Abiko, T.; Goda, A.; Nonaka, K.; Anami, K.; Horie, J. Relationship Between Age-Related Changes in Skeletal Muscle Mass and Physical Function: A Cross-Sectional Study of An Elderly Japanese Population. Cureus 2022, 14, e24260. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A. Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.A.; Dias, J.M.; Dias, R.C.; Santos, P.; Zampa, C.C. A Study on the Relationship Between Muscle Function, Functional Mobility and Level of Physical Activity in Community-Dwelling Elderly. Rev. Bras. Fisioter. 2011, 15, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Wiśniowska-Szurlej, A.; Ćwirlej-Sozańska, A.; Wołoszyn, N.; Sozański, B.; Wilmowska-Pietruszyńska, A. Association Between Handgrip Strength, Mobility, Leg Strength, Flexibility, and Postural Balance in Older Adults Under Long-Term Care Facilities. BioMed Res. Int. 2019, 2019, 1042834. [Google Scholar] [CrossRef]
- Stevens, P.J.; Syddall, H.E.; Patel, H.P.; Martin, H.J.; Cooper, C.; Aihie Sayer, A. Is Grip Strength a Good Marker of Physical Performance Among Community-Dwelling Older People? J. Nutr. Health Aging 2012, 16, 769–774. [Google Scholar] [CrossRef]
- Bohannon, R.W. Muscle Strength: Clinical and Prognostic Value of Hand-Grip Dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Neves, T.; Fett, C.A.; Ferriolli, E.; Crespilho Souza, M.G.; Dos Reis Filho, A.D.; Martin Lopes, M.B.; Carraro Martins, N.M.; Rezende Fett, W.C. Correlation Between Muscle Mass, Nutritional Status and Physical Performance of Elderly People. Osteoporos. Sarcopenia 2018, 4, 145–149. [Google Scholar] [CrossRef]
- Fragkiadaki, S.; Kontaxopoulou, D.; Beratis, I.N.; Andronas, N.; Economou, A.; Yannis, G.; Papanicolaou, A.; Papageorgiou, S.G. Self-Awareness of Cognitive Efficiency: Differences Between Healthy Elderly and Patients with Mild Cognitive Impairment (MCI). J. Clin. Exp. Neuropsychol. 2016, 38, 1144–1157. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.M.; Michaels, K.; Padilla, M.; Pelton, G.; Bell, K.; Marder, K.; Stern, Y.; Devanand, D.P. Functional Significance of Mild Cognitive Impairment in Elderly Patients Without a Dementia Diagnosis. Am. J. Geriatr. Psychiatry 1999, 7, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
All Participants | ||||
---|---|---|---|---|
Strong Group (n = 112) | Weak Group (n = 173) | p-Value | Effect Size | |
Age (years) | 76.0 (72.3–81.0) | 76.0 (72.0–81.0) | 0.772 | 0.017 |
Height (kg) | 51.1 (45.0–56.2) | 48.6 (43.5–55.2) | 0.228 | 0.071 |
BMI (kg/m2) | 22.1 (20.3–24.2) | 22.1 (19.7–24.0) | 0.707 | 0.022 |
MMSE (points) | 29.0 (27.0–30.0) | 29.0 (27.0–30.0) | 0.891 | 0.008 |
Grip strength (kgf) | 22.3 ± 4.1 | 19.8 ± 4.2 | <0.001 † | 0.598 |
Quadriceps muscle strength (kgf) | 22.3 (17.0–28.1) | 20.1 (16.2–24.8) | 0.056 | 0.113 |
One-leg standing time (s) | 15.3 (5.5–36.4) | 12.5 (5.3–28.0) | 0.267 | 0.066 |
CS-30 test (times) | 22.0 (17.3–27.0) | 20.0 (17.0–24.0) | 0.039 | 0.122 |
TUG test (s) | 5.8 (5.3–6.8) | 6.2 (5.4–7.0) | 0.027 | 0.131 |
Normal gait speed (cm/s) | 133.7 (113.6–147.3) | 126.3 (110.9–144.3) | 0.071 | 0.107 |
Maximum gait speed (cm/s) | 179.4 (151.6–199.9) | 168.4 (150.4–188.6) | 0.029 | 0.128 |
Body fat (kg) | 15.5 (12.3–19.3) | 15.7 (12.4–20.4) | 0.429 | 0.047 |
Skeletal muscle mass (kg) | 18.5 (16.7–20.0) | 17.2 (16.1–18.8) | <0.001 | 0.213 |
Normal Cognitive Function | ||||
---|---|---|---|---|
Strong Group (n = 74) | Weak Group (n = 123) | p-Value | Effect Size | |
Age (years) | 75.6 ± 5.8 | 76.2 ± 5.8 | 0.486 † | 0.103 |
Height (kg) | 51.9 (45.7–56.6) | 48.8 (43.5–55.5) | 0.136 | 0.106 |
BMI (kg/m2) | 22.2 (20.0–24.5) | 21.9 (19.4–23.9) | 0.338 | 0.068 |
MMSE (points) | 30.0 (29.0–30.0) | 30.0 (29.0–30.0) | 0.201 | 0.091 |
Grip strength (kgf) | 23.0 ± 3.7 | 20.2 ± 3.9 | <0.001 † | 0.729 |
Quadriceps muscle strength (kgf) | 23.2 (19.8–28.9) | 20.1 (16.1–24.7) | 0.009 | 0.244 |
One-leg standing time (s) | 21.3 (6.9–45.5) | 14.0 (6.5–29.9) | 0.041 | 0.146 |
CS-30 (times) | 23.0 (19.0–29.0) | 20.0 (17.0–25.0) | 0.002 | 0.220 |
TUG (s) | 5.7 (5.2–6.4) | 6.1 (5.3–6.8) | 0.014 | 0.175 |
Normal gait speed (cm/s) | 136.2 ± 18.7 | 127.5 ± 24.7 | 0.006 † | 0.383 |
Maximum gait speed (cm/s) | 184.6 (164.9–204.0) | 173.8 (152.3–191.4) | 0.006 | 0.197 |
Body fat (kg) | 16.1 ± 4.9 | 16.3 ± 6.3 | 0.833 | 0.031 |
Skeletal muscle mass (kg) | 18.7 ± 2.3 | 17.7 ± 2.3 | 0.003 † | 0.447 |
MCI | ||||
---|---|---|---|---|
Strong Group (n = 38) | Weak Group (n = 50) | p-Value | Effect Size | |
Age (years) | 79.2 ± 6.3 | 77.8 ± 5.9 | 0.291 † | 0.229 |
Height (kg) | 48.9 (42.7–55.2) | 48.6 (43.8–54.1) | 0.930 | 0.009 |
BMI (kg/m2) | 21.9 (20.5–24.0) | 22.3 (20.2–24.2) | 0.443 | 0.082 |
MMSE (points) | 26.0 (25.0–27.0) | 26.0 (25.0–27.0) | 0.692 | 0.042 |
Grip strength (kgf) | 20.3 ± 4.6 | 18.7 ± 4.6 | 0.109 † | 0.349 |
Quadriceps muscle strength (kgf) | 17.6 (13.1–25.5) | 20.9 (16.0–26.0) | 0.259 | 0.120 |
One-leg standing time (s) | 6.5 (3.8–18.6) | 7.4 (4.0–20.6) | 0.667 | 0.046 |
CS-30 (times) | 19.0 (16.0–23.3) | 19.5 (17.0–23.3) | 0.499 | 0.032 |
TUG (s) | 6.4 (5.6–6.9) | 6.6 (5.8–7.4) | 0.391 | 0.072 |
Normal gait speed (cm/s) | 119.8 ± 26.4 | 122.8 ± 21.7 | 0.570 † | 0.123 |
Maximum gait speed (cm/s) | 162.9 (136.4–186.9) | 159.2 (145.1–177.3) | 0.943 | 0.008 |
Body fat (kg) | 14.8 (11.6–19.2) | 15.8 (13.4–20.0) | 0.212 | 0.133 |
Skeletal muscle mass (kg) | 18.0 ± 2.6 | 17.2 ± 3.2 | 0.271 † | 0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwamoto, K.; Kikuchi, Y.; Nakano, H.; Katsurasako, T.; Mori, K.; Shiraiwa, K.; Horie, J.; Murata, S. Relationship between Subjective Grip Strength and Physical Functioning among Community-Dwelling Older Women. Geriatrics 2024, 9, 68. https://doi.org/10.3390/geriatrics9030068
Iwamoto K, Kikuchi Y, Nakano H, Katsurasako T, Mori K, Shiraiwa K, Horie J, Murata S. Relationship between Subjective Grip Strength and Physical Functioning among Community-Dwelling Older Women. Geriatrics. 2024; 9(3):68. https://doi.org/10.3390/geriatrics9030068
Chicago/Turabian StyleIwamoto, Kohei, Yuki Kikuchi, Hideki Nakano, Tsuyoshi Katsurasako, Kohei Mori, Kayoko Shiraiwa, Jun Horie, and Shin Murata. 2024. "Relationship between Subjective Grip Strength and Physical Functioning among Community-Dwelling Older Women" Geriatrics 9, no. 3: 68. https://doi.org/10.3390/geriatrics9030068
APA StyleIwamoto, K., Kikuchi, Y., Nakano, H., Katsurasako, T., Mori, K., Shiraiwa, K., Horie, J., & Murata, S. (2024). Relationship between Subjective Grip Strength and Physical Functioning among Community-Dwelling Older Women. Geriatrics, 9(3), 68. https://doi.org/10.3390/geriatrics9030068