Factors Associated with Falls in Community-Dwelling Older Adults: A Subgroup Analysis from a Telemergency Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Participants
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Non-Fallers and Fallers
3.2. Factors Associated with Falls
3.3. Characteristics of Single and Recurrent Fallers
4. Discussion
5. Implication for Practice
6. Limits
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fallon, C.K.; Karlawish, J. Is the WHO Definition of Health Aging Well? Frameworks for “Health” After Three Score and Ten. Am. J. Public Health 2019, 109, 1104–1106. [Google Scholar] [CrossRef]
- WHO Global Report on Falls Prevention in Older Age [Internet]. Available online: https://www.who.int/publications-detail-redirect/9789241563536 (accessed on 4 February 2024).
- Seppala, L.J.; van der Velde, N. How to tackle the global challenge of falls? Age Ageing 2022, 51, afac264. [Google Scholar] [CrossRef]
- Ganz, D.A.; Latham, N.K. Prevention of Falls in Community-Dwelling Older Adults. N. Engl. J. Med. 2020, 382, 734–743. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; van der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H.; et al. Task Force on Global Guidelines for Falls in Older Adults. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef]
- Kabeshova, A.; Launay, C.P.; Gromov, V.A.; Fantino, B.; Levinoff, E.J.; Allali, G.; Beauchet, O. Falling in the elderly: Do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies. Eur. J. Intern. Med. 2016, 27, 48–56. [Google Scholar] [CrossRef]
- Ağartioğlu Kundakçi, G.; Yılmaz, M.; Sözmen, M.K. Determination of the costs of falls in the older people according to the decision tree model. Arch. Gerontol. Geriatr. 2020, 87, 104007. [Google Scholar] [CrossRef]
- Step Safely: Strategies for Preventing and Managing Falls across the Life-Course [Internet]. Available online: https://www.who.int/publications-detail-redirect/978924002191-4 (accessed on 22 February 2024).
- Holt-Lunstad, J.; Perissinotto, C. Social Isolation and Loneliness as Medical Issues. N. Engl. J. Med. 2023, 388, 193–195. [Google Scholar] [CrossRef]
- Lord, S.R.; Sherrington, C.; Naganathan, V. Falls in Older People: Risk Factors and Strategies for Prevention, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Jehu, D.A.; Davis, J.C.; Falck, R.S.; Bennett, K.J.; Tai, D.; Souza, M.F.; Cavalcante, B.R.; Zhao, M.; Liu-Ambrose, T. Risk factors for recurrent falls in older adults: A systematic review with meta-analysis. Maturitas 2021, 144, 23–28. [Google Scholar] [CrossRef]
- Dautzenberg, L.; Beglinger, S.; Tsokani, S.; Zevgiti, S.; Raijmann, R.C.M.A.; Rodondi, N.; Scholten, R.J.P.M.; Rutjes, A.W.S.; Di Nisio, M.; Emmelot-Vonk, M.; et al. Interventions for preventing falls and fall-related fractures in community-dwelling older adults: A systematic review and network meta-analysis. J. Am. Geriatr. Soc. 2021, 69, 2973–2984. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yu, S. Effectiveness of multifactorial interventions in preventing falls among older adults in the community: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2020, 106, 103564. [Google Scholar] [CrossRef]
- Hopewell, S.; Copsey, B.; Nicolson, P.; Adedire, B.; Boniface, G.; Lamb, S. Multifactorial interventions for preventing falls in older people living in the community: A systematic review and meta-analysis of 41 trials and almost 20 000 participants. Br. J. Sports Med. 2020, 54, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Registered Nurses’ Association of Ontario. Preventing Falls and Reducing Injury from Falls. In Clinical best Practice Guidelines, 4th ed.; Registered Nurses’ Association of Ontario: Toronto, ON, USA, 2017. [Google Scholar]
- Stokke, R. The Personal Emergency Response System as a Technology Innovation in Primary Health Care Services: An Integrative Review. J. Med. Internet Res. 2016, 18, e187. [Google Scholar] [CrossRef] [PubMed]
- Casabona, E.; Campagna, S.; Charrier, L.; Viotti, D.; Castello, A.; Di Giulio, P.; Dimonte, V. Evaluation of a Telemergency Service for Older People Living at Home: A Cross-Sectional Study. Electronics 2023, 12, 4786. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; John Wiley & Sons, Inc: New York, NY, USA, 2013; ISBN 978-0-470-58247-3. [Google Scholar]
- Jamovi The Jamovi Project 2022. Available online: https://www.jamovi.org/ (accessed on 1 February 2024).
- Lage, I.; Braga, F.; Almendra, M.; Meneses, F.; Teixeira, L.; Araujo, O. Falls in older persons living alone: The role of individual, social and environmental factors. Enferm. Clin. 2022, 32, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Chie, W.C.; Yang, R.S.; Kuo, K.L.; Wong, W.K.; Liaw, C.K. Risk factors for single and recurrent falls: A prospective study of falls in community dwelling seniors without cognitive impairment. Prev. Med. 2013, 57, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.; Pédrono, G.; Rigou, A.; Carcaillon-Bentata, L.; Beltzer, N. Identifying profiles of people aged 65 and over who fall at home and associated falling-induced injuries: The French ChuPADom study. Injury 2022, 53, 2511–2518. [Google Scholar] [CrossRef] [PubMed]
- Ha, V.T.; Nguyen, T.N.; Nguyen, T.X.; Nguyen, H.T.T.; Nguyen, T.T.H.; Nguyen, A.T.; Pham, T.; Vu, H.T.T. Prevalence and Factors Associated with Falls among Older Outpatients. Int. J. Environ. Res. Public Health 2021, 18, 4041. [Google Scholar] [CrossRef] [PubMed]
- Colón-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk Assessment and Prevention of Falls in Older Community-Dwelling Adults: A Review. JAMA 2024. [Google Scholar] [CrossRef] [PubMed]
- Kojima, G. Frailty as a predictor of future falls among community-dwelling older people: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2015, 16, 1027–1033. [Google Scholar] [CrossRef]
- Cox, J.; Thomas-Hawkins, C.; Pajarillo, E.; DeGennaro, S.; Cadmus, E.; Martinez, M. Factors associated with falls in hospitalized adult patients. Appl. Nurs. Res. 2015, 28, 78–82. [Google Scholar] [CrossRef]
- Rodrigues, A.R.G.M.; Assef, J.C.; Lima, C.B. Assessment of risk factors associated with falls among the elderly in a municipality in the state of Paraíba, Brazil. A cross-sectional study. Sao Paulo Med. J. 2019, 331, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Andrew, N.E.; Wang, Y.; Teo, K.; Callisaya, M.L.; Moran, C.; Snowdon, D.A.; Ellmers, S.; Beare, R.; Richardson, D.; Srikanth, V. Exploring patterns of personal alarm system use and impacts on outcomes. Australas. J. Ageing 2021, 40, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Roush, R.E.; Teasdale, T.A.; Murphy, J.N.; Kirk, M.S. Impact of a personal emergency response system on hospital utilization by community-residing elders. South Med. J. 1995, 88, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Agboola, S.; Golas, S.; Fischer, N.; Nikolova-Simons, M.; Op den Buijs, J.; Schertzer, L.; Kvedar, J.; Jethwani, K. Healthcare utilization in older patients using personal emergency response systems: An analysis of electronic health records and medical alert data: Brief Description: A Longitudinal Retrospective Analyses of healthcare utilization rates in older patients using Personal Emergency Response Systems from 2011 to 2015. BMC Health Serv. Res. 2017, 17, 282. [Google Scholar] [CrossRef] [PubMed]
- Nyman, S.R.; Victor, C.R. Use of personal call alarms among community-dwelling older people. Ageing Soc. 2014, 34, 67–89. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, S.A.; Kim, N.R.; Rhee, J.A.; Yun, Y.W.; Shin, M.H. Risk factors for falls in older Korean adults: The 2011 Community Health Survey. J. Korean Med. Sci. 2014, 29, 1482–1487. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S.E. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019, 1, CD012424. [Google Scholar] [CrossRef] [PubMed]
- Abuladze, L.; Kunder, N.; Lang, K.; Vaask, S. Associations between self-rated health and health behaviour among older adults in Estonia: A cross-sectional analysis. BMJ Open 2017, 7, e013257. [Google Scholar] [CrossRef] [PubMed]
- New Ginsburg, G.S.; Picard, R.W.; Friend, S.H. Key Issues as Wearable Digital Health Technologies Enter Clinical Care. N. Engl. J. Med. 2024, 390, 1118–1127. [Google Scholar] [CrossRef]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Masud, T. Predicting falls in older adults: An umbrella review of instruments assessing gait, balance, and functional mobility. BMC Geriatr. 2022, 22, 615. [Google Scholar] [CrossRef]
- Waterval, N.F.J.; Claassen, C.M.; van der Helm, F.C.T.; van der Kruk, E. Predictability of Fall Risk Assessments in Community-Dwelling Older Adults: A Scoping Review. Sensors 2023, 23, 7686. [Google Scholar] [CrossRef] [PubMed]
- Lathouwers, E.; Dillen, A.; Díaz, M.A.; Tassignon, B.; Verschueren, J.; Verté, D.; De Witte, N.; De Pauw, K. Characterizing fall risk factors in Belgian older adults through machine learning: A data-driven approach. BMC Public Health 2022, 22, 2210. [Google Scholar] [CrossRef] [PubMed]
- Kabeshova, A.; Launay, C.P.; Gromov, V.A.; Annweiler, C.; Fantino, B.; Beauchet, O. Artificial neural network and falls in community-dwellers: A new approach to identify the risk of recurrent falling? J. Am. Med. Dir. Assoc. 2015, 16, 277–281. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 315) | Non-Fallers (n = 226; 71.7%) | Fallers (n = 89; 28.3%) | Statistics |
---|---|---|---|---|
Age 1 | p = 0.04 | |||
Median (IQR) | 86.6 (78.6–91.5) | 86 (77.3–91.1) | 87.7 (81.8–92.1) | |
Sex (Female) n (%) | 237 (75.2%) | 166 (73.5%) | 71 (79.8%) | p = 0.24 |
Marriage status n (%) | p = 0.76 | |||
Single | 62 (19.7%) | 47 (20.8%) | 15 (16.9%) | |
Married | 35 (11.1%) | 25 (11.1%) | 10 (11.2%) | |
Divorced | 22 (7%) | 17 (7.5%) | 5 (5.6%) | |
Widowed | 196 (62.2%) | 137 (60.6%) | 59 (66.3%) | |
Living condition (Alone) n (%) | 258 (81.9%) | 184 (81.4%) | 74 (83.1%) | p = 0.72 |
Caregiver (Yes) n (%) | 265 (84.1%) | 188 (83.2%) | 77 (86.5%) | p = 0.47 |
Walking aid (Yes) n (%) | 137 (43.5%) | 91 (40.3%) | 46 (51.7%) | p = 0.07 |
Independence (Yes) n (%) | 126 (40%) | 94 (41.6%) | 32 (36%) | p = 0.36 |
Weight 1 | p = 0.65 | |||
Median (IQR) | 68 (58–80) | 68 (57.5–80) | 68.5 (58–80) | |
Comorbidities | p = 0.67 | |||
Median (IQR) | 1 (1–3) | 2 (2–3) | 3 (2–4) | |
Hearing impairment (Yes) n (%) | 145 (46%) | 101 (44.7%) | 44 (49.4%) | p = 0.45 |
Visual impairment (Yes) n (%) | 161 (51.1%) | 116 (51.3%) | 45 (50.6%) | p = 0.90 |
Lower-limb disabilities (Yes) n (%) | 118 (37.5%) | 84 (37.2%) | 34 (38.2%) | p = 0.86 |
Fall-risk increasing drugs (Yes) n (%) | 190 (60.3%) | 141 (62.4%) | 49 (55.1%) | p = 0.23 |
Public users (Yes) n (%) | 214 (67.9%) | 152 (67.3%) | 62 (69.7%) | p = 0.68 |
Number of real events * | p < 0.01 | |||
Median (IQR) | 1 (1–3) | 2 (1–3) | 1 (0–2) | |
Real events n (%) | ||||
Medical problems (Yes) n (%) | 93 (29.5%) | 75 (33.2%) | 18 (20.2%) | p = 0.02 |
Support calls (Yes) n (%) | 112 (35.6%) | 93 (41.1%) | 19 (21.3%) | p < 0.01 |
Service demands (Yes) n (%) | 173 (54.9%) | 137 (60.6%) | 36 (40.4%) | p = 0.02 |
Crude Model | Adjusted Model * | |||||
---|---|---|---|---|---|---|
Factors | β (SE) | OR (95% CI) | p-Value | β (SE) | OR (95% CI) | p-Value |
Number of real events | −0.054 (0.156) | 0.95 (0.87–1.03) | 0.19 | - | - | - |
Medical problems (Yes) | −0.673 (0.299) | 0.51 (0.28–0.91) | 0.02 | −1.161 (0.344) | 0.31 (0.16–0.61) | <0.001 |
Support calls (Yes) | −0.946 (0.292) | 0.38 (0.22–0.69) | 0.001 | −1.351 (0.329) | 0.26 (0.14–0.49) | <0.001 |
Service demands (Yes) | −0.818 (0.255) | 0.44 (0.27–0.73) | 0.001 | −1.221 (0.301) | 0.30 (0.16–0.53) | <0.001 |
Variables | Total | Single Fallers | Recurrent-Fallers | Statistics |
---|---|---|---|---|
(n = 89) | (n = 66; 74.1%) | (n = 23; 25.9%) | ||
Age * | p = 0.78 | |||
Median (IQR) | 87.7 (81.8–92.1) | 87.5 (81.8–91.9) | 89.1 (80.4–94.7) | |
Sex (Female) n (%) | 71 (79.8%) | 52 (78.8%) | 19 (82.6%) | p = 0.69 |
Marriage status n (%) | p = 0.58 | |||
Single | 15 (16.8%) | 12 (18.2%) | 3 (13%) | |
Married | 10 (11.2%) | 6 (9.1%) | 4 (17.4%) | |
Divorced | 5 (5.6%) | 3 (4.5%) | 2 (8.7%) | |
Widowed | 59 (66.3%) | 45 (68.2%) | 14 (60.9%) | |
Living condition (Alone) n (%) | 74 (83.1%) | 56 (84.8%) | 18 (78.3%) | p = 0.47 |
Caregiver (Yes) n (%) | 77 (86.5%) | 57 (86.4%) | 20 (87%) | p = 0.94 |
Walking aid (Yes) n (%) | 46 (51.7%) | 32 (41.5%) | 14 (60.9%) | p = 0.31 |
Independence (Yes) n (%) | 32 (36%) | 28 (42.4%) | 4 (17.4%) | p = 0.03 |
Weight * | p = 0.90 | |||
Median (IQR) | 68.5 (58–80) | 69.5 (58–80.1) | 67.5 (57.8–80.4) | |
Comorbidities | p < 0.01 | |||
Median (IQR) | 3 (2–4) | 3 (2–4) | 2 (1–2.8) | |
Hearing impairment (Yes) n (%) | 44 (49.4%) | 33 (50%) | 11 (47.8%) | p = 0.86 |
Visual impairment (Yes) n (%) | 45 (50.6%) | 34 (51.5%) | 11 (47.8%) | p = 0.76 |
Lower—limb disabilities (Yes) n (%) | 34 (38.2%) | 21 (31.8%) | 13 (56.5%) | p = 0.04 |
Fall—risk increasing drugs (Yes) n (%) | 49 (55.1%) | 37 (56.1%) | 12 (52.2%) | p = 0.75 |
Public users (Yes) n (%) | 62 (69.7%) | 46 (69.7%) | 16 (69.6%) | p = 0.99 |
Number of real events ** | p = 0.17 | |||
Median (IQR) | 1 (0–2) | 0.5 (0–2) | 1 (0–3) | |
Real events n (%) | ||||
Medical problems (Yes) n (%) | 18 (20.2%) | 9 (13.6%) | 9 (39.1%) | p = 0.01 |
Support calls (Yes) n (%) | 19 (21.3%) | 14 (21.2%) | 5 (21.7%) | p = 0.96 |
Service demands (Yes) n (%) | 36 (40.4%) | 25 (37.9%) | 11 (47.8%) | p = 0.40 |
Traumatic fall (Yes) n (%) | 25 (28.1%) | 18 (27.3%) | 7 (30.4%) | p = 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casabona, E.; Riva-Rovedda, F.; Castello, A.; Sciarrotta, D.; Di Giulio, P.; Dimonte, V. Factors Associated with Falls in Community-Dwelling Older Adults: A Subgroup Analysis from a Telemergency Service. Geriatrics 2024, 9, 69. https://doi.org/10.3390/geriatrics9030069
Casabona E, Riva-Rovedda F, Castello A, Sciarrotta D, Di Giulio P, Dimonte V. Factors Associated with Falls in Community-Dwelling Older Adults: A Subgroup Analysis from a Telemergency Service. Geriatrics. 2024; 9(3):69. https://doi.org/10.3390/geriatrics9030069
Chicago/Turabian StyleCasabona, Elena, Federica Riva-Rovedda, Angela Castello, Daniele Sciarrotta, Paola Di Giulio, and Valerio Dimonte. 2024. "Factors Associated with Falls in Community-Dwelling Older Adults: A Subgroup Analysis from a Telemergency Service" Geriatrics 9, no. 3: 69. https://doi.org/10.3390/geriatrics9030069
APA StyleCasabona, E., Riva-Rovedda, F., Castello, A., Sciarrotta, D., Di Giulio, P., & Dimonte, V. (2024). Factors Associated with Falls in Community-Dwelling Older Adults: A Subgroup Analysis from a Telemergency Service. Geriatrics, 9(3), 69. https://doi.org/10.3390/geriatrics9030069