Differences in Automated External Defibrillator Types in Out-of-Hospital Cardiac Arrest Treated by Police First Responders
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. The Viennese Police First Responder Program
2.3. Data Acquisition and Patient Follow-Up
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Alternating Stage-Winners during BLS
4.2. Balanced-Out Effects on Survival and Neurological Function
4.3. Future Prospects—Can’t Beggars Be Choosers?
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semeraro, F.; Greif, R.; Böttiger, B.W.; Burkart, R.; Cimpoesu, D.; Georgiou, M.; Yeung, J.; Lippert, F.; Lockey, A.S.; Olasveengen, T.M.; et al. European Resuscitation Council Guidelines 2021: Systems saving lives. Resuscitation 2021, 161, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Olasveengen, T.M.; Semeraro, F.; Ristagno, G.; Castren, M.; Handley, A.; Kuzovlev, A.; Monsieurs, K.G.; Raffay, V.; Smyth, M.; Soar, J.; et al. European Resuscitation Council Guidelines 2021: Basic Life Support. Resuscitation 2021, 161, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef] [PubMed]
- Oving, I.; de Graaf, C.; Masterson, S.; Koster, R.W.; Zwinderman, A.H.; Stieglis, R.; AliHodzic, H.; Baldi, E.; Betz, S.; Cimpoesu, D.; et al. European first responder systems and differences in return of spontaneous circulation and survival after out-of-hospital cardiac arrest: A study of registry cohorts. Lancet Reg. Health Eur. 2020, 1, 100004. [Google Scholar] [CrossRef] [PubMed]
- Hasselqvist-Ax, I.; Nordberg, P.; Herlitz, J.; Svensson, L.; Jonsson, M.; Lindqvist, J.; Ringh, M.; Claesson, A.; Björklund, J.; Andersson, J.; et al. Dispatch of Firefighters and Police Officers in Out-of-Hospital Cardiac Arrest: A Nationwide Prospective Cohort Trial Using Propensity Score Analysis. J. Am. Heart Assoc. 2017, 6, e005873. [Google Scholar] [CrossRef] [Green Version]
- Matinrad, N.; Reuter-Oppermann, M. A review on initiatives for the management of daily medical emergencies prior to the arrival of emergency medical services. Central Eur. J. Oper. Res. 2022, 30, 251–302. [Google Scholar] [CrossRef]
- Husain, S.; Eisenberg, M. Police AED programs: A systematic review and meta-analysis. Resuscitation 2013, 84, 1184–1191. [Google Scholar] [CrossRef]
- Saner, H.; Morger, C.; Eser, P.; von Planta, M. Dual dispatch early defibrillation in out-of-hospital cardiac arrest in a mixed urban–rural population. Resuscitation 2013, 84, 1197–1202. [Google Scholar] [CrossRef]
- Krammel, M.; Lobmeyr, E.; Sulzgruber, P.; Winnisch, M.; Weidenauer, D.; Poppe, M.; Datler, P.; Zeiner, S.; Keferboeck, M.; Eichelter, J.; et al. The impact of a high-quality basic life support police-based first responder system on outcome after out-of-hospital cardiac arrest. PLoS ONE 2020, 15, e0233966. [Google Scholar] [CrossRef]
- Malta Hansen, C.; Kragholm, K.; Pearson, D.A.; Tyson, C.; Monk, L.; Myers, B.; Nelson, D.; Dupre, M.E.; Fosbøl, E.L.; Jollis, J.G.; et al. Association of Bystander and First-Responder Intervention With Survival After Out-of-Hospital Cardiac Arrest in North Carolina, 2010–2013. JAMA 2015, 314, 255–264. [Google Scholar] [CrossRef]
- Okubo, M. Importance of first responder systems in out-of-hospital cardiac arrest raises more questions. Lancet Reg. Health Eur. 2021, 1, 100009. [Google Scholar] [CrossRef]
- Greif, R.; Lockey, A.; Breckwoldt, J.; Carmona, F.; Conaghan, P.; Kuzovlev, A.; Pflanzl-Knizacek, L.; Sari, F.; Shammet, S.; Scapigliati, A.; et al. European Resuscitation Council Guidelines 2021: Education for resuscitation. Resuscitation 2021, 161, 388–407. [Google Scholar] [CrossRef] [PubMed]
- Vukmir, R.B. Survival from prehospital cardiac arrest is critically dependent upon response time. Resuscitation 2006, 69, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Andelius, L.; Oving, I.; Folke, F.; de Graaf, C.; Stieglis, R.; Kjoelbye, J.S.; Hansen, C.M.; Koster, R.W.; Tan, H.L.; Blom, M.T.; et al. Management of first responder programmes for out-of-hospital cardiac arrest during the COVID-19 pandemic in Europe. Resusc. Plus 2021, 5, 100075. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.D.; Jacobs, I.G.; Nadkarni, V.M.; Berg, R.A.; Bhanji, F.; Biarent, D.; Bossaert, L.L.; Brett, S.J.; Chamberlain, D.; de Caen, A.R.; et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation 2015, 96, 328–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nürnberger, A.; Sterz, F.; Malzer, R.; Warenits, A.; Girsa, M.; Stöckl, M.; Hlavin, G.; Magnet, I.A.M.; Weiser, C.; Zajicek, A.; et al. Out of hospital cardiac arrest in Vienna: Incidence and outcome. Resuscitation 2013, 84, 42–47. [Google Scholar] [CrossRef]
- Kiguchi, T.; Okubo, M.; Nishiyama, C.; Maconochie, I.; Ong, M.E.H.; Kern, K.B.; Wyckoff, M.H.; McNally, B.; Christensen, E.F.; Tjelmeland, I.; et al. Out-of-hospital cardiac arrest across the World: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation 2020, 152, 39–49. [Google Scholar] [CrossRef]
- Salhi, R.A.; Hammond, S.; Lehrich, J.L.; O’leary, M.; Kamdar, N.; Brent, C.; Mendes de Leon, C.F.; Mendel, P.; Nelson, C.; Forbush, B.; et al. The association of fire or police first responder initiated interventions with out of hospital cardiac arrest survival. Resuscitation 2022, 174, 9–15. [Google Scholar] [CrossRef]
- Stein, P.; Spahn, G.H.; Müller, S.; Zollinger, A.; Baulig, W.; Brüesch, M.; Seifert, B.; Spahn, D.R. Impact of city police layperson education and equipment with automatic external defibrillators on patient outcome after out of hospital cardiac arrest. Resuscitation 2017, 118, 27–34. [Google Scholar] [CrossRef]
- Berg, M.D.; Clark, L.L.; Valenzuela, T.D.; Kern, K.B.; Berg, R.A. Post-shock chest compression delays with automated external defibrillator use. Resuscitation 2005, 64, 287–291. [Google Scholar] [CrossRef]
- Müller, M.P.; Poenicke, C.; Kurth, M.; Richter, T.; Koch, T.; Eisold, C.; Pfältzer, A.; Heller, A.R. Quality of basic life support when using different commercially available public access defibrillators. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, V.; Witwer, P.; Schwingshackl, L.; Salchner, H.; Gasteiger, L.; Schabauer, W.; Lederer, W. Effects of automated external defibrillators on hands-off intervals in lay rescuers. Notf. Rett. Med. 2022, 5, 1–8. [Google Scholar] [CrossRef]
- Fleischhackl, R.; Losert, H.; Haugk, M.; Eisenburger, P.; Sterz, F.; Laggner, A.N.; Herkner, H. Differing operational outcomes with six commercially available automated external defibrillators. Resuscitation 2004, 62, 167–174. [Google Scholar] [CrossRef]
- Israel, C.W.; Grönefeld, G. Technical requirements for early defibrillation: What are the capabilities of automated external defibrillators. Herzschrittmachertherapie Elektrophysiol. 2005, 16, 84–93. [Google Scholar] [CrossRef]
- van Alem, A.P.; Sanou, B.T.; Koster, R.W. Interruption of cardiopulmonary resuscitation with the use of the automated external defibrillator in out-of-hospital cardiac arrest. Ann. Emerg. Med. 2003, 42, 449–457. [Google Scholar] [CrossRef]
- Cheskes, S.; Schmicker, R.H.; Verbeek, P.R.; Salcido, D.D.; Brown, S.P.; Brooks, S.; Menegazzi, J.J.; Vaillancourt, C.; Powell, J.; May, S.; et al. The impact of peri-shock pause on survival from out-of-hospital shockable cardiac arrest during the Resuscitation Outcomes Consortium PRIMED trial. Resuscitation 2014, 85, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.P.; Eisenberg, M.S.; Cummins, R.O.; Hallstrom, A. Predicting Survival From Out-of-Hospital Cardiac Arrest: A Graphic Model. Ann. Emerg. Med. 1993, 22, 1652–1658. [Google Scholar] [CrossRef]
- Cheskes, S.; Schmicker, R.H.; Christenson, J.; Salcido, D.D.; Rea, T.; Powell, J.; Edelson, D.P.; Sell, R.; May, S.; Menegazzi, J.J.; et al. Perishock pause: An independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation 2011, 124, 58–66. [Google Scholar] [CrossRef] [Green Version]
- van Alem, A.P.; Vrenken, R.H.; de Vos, R.; Tijssen, J.G.P.; Koster, R.W. Use of automated external defibrillator by first responders in out of hospital cardiac arrest: Prospective controlled trial. BMJ 2003, 327, 1312. [Google Scholar] [CrossRef] [Green Version]
- Mosesso, V.N.; Shapiro, A.H.; Stein, K.; Burkett, K.; Wang, H. Effects of AED device features on performance by untrained laypersons. Resuscitation 2009, 80, 1285–1289. [Google Scholar] [CrossRef]
- de Graaf, C.; Beesems, S.G.; Oud, S.; Stickney, R.E.; Piraino, D.W.; Chapman, F.W.; Koster, R.W. Analyzing the heart rhythm during chest compressions: Performance and clinical value of a new AED algorithm. Resuscitation 2021, 162, 320–328. [Google Scholar] [CrossRef]
- Rhee, J.E.; Kim, T.; Kim, K.; Choi, S. Is there any room for shortening hands-off time further when using an AED? Resuscitation 2009, 80, 231–237. [Google Scholar] [CrossRef]
Table 1 | Overall (n = 350) | LP CR Plus (n = 197) | Philips HS1 (n = 40) | Philips FrX (n = 108) | LP 1000 (n = 5) | p-Value |
---|---|---|---|---|---|---|
Age, years (IQR) | 66 (55–77) | 66 (55–77) | 67 (56–78) | 64 (55–74) | 77 (60–83) | 0.982 |
Male gender, n (%) | 289 (83) | 164 (83) | 32 (80) | 88 (82) | 5 (100) | 0.812 |
anyROSC, n (%) | 200 (57) | 116 (59) | 20 (50) | 63 (58) | 1 (20) | 0.327 |
sustROSC, n (%) | 173 (49) | 101 (51) | 18 (45) | 53 (49) | 1 (20) | 0.515 |
30 days survival, n (%) | 108 (31) | 67 (34) | 9 (23) | 32 (30) | 0 | 0.134 |
CPC 1 or 2, n (%) | 91 (26) | 56 (28) | 7 (18) | 28 (26) | 0 | 0.165 |
Table 2 | Overall (n = 350) | LP CR Plus (n = 197) | Philips HS1 (n = 40) | Philips FrX (n = 108) | LP 1000 (n = 5) | p-Value |
---|---|---|---|---|---|---|
Call → EMS on scene, min (IQR) | 6.5 (5.0–8.8) | 6.7 (5.2–8.8) | 6.0 (4.9–8.7) | 6.2 (5.0–8.4) | 10.2 (8.6–11.4) | 0.991 |
EMS on scene → ALS start, min (IQR) | 1.7 (1.0–2.6) | 1.7 (1.0–2.6) | 1.6 (0.8–2.6) | 1.8 (1.0–2.6) | 1.1 (0.7–1.8) | 0.974 |
Call → Pol-AED turned on, min (IQR) | 4.4 (2.5–6.5) | 4.4 (2.6–6.4) | 4.7 (2.6–6.8) | 4.7 (2.4–6.2) | 8.0 (1.0–9.5) | 0.995 |
Call → 1st Pol-AED shock, min (IQR) | 5.6 (3.5–7.8) | 5.7 (4.0–7.8) | 5.6 (3.9–8.4) | 5.5 (3.0–7.5) | 9.1 (1.7–10.5) | 0.201 |
Pol-AED turned on → electrodes placed on patient, seconds (IQR) | 37 (22–51) | 43 (31–56) | 35 (29–58) | 21 (3–37) | 12 (4–39) | 0.003 |
Pol-AED turned on → rhythm analysis start, seconds (IQR) | 41 (26–59) | 50 (37–66) | 39 (29–80) | 22 (3–38) | 39 (10–60) | 0.022 |
Pol-AED turned on → 1st shock, seconds, (IQR) | 61 (46–79) | 69 (55–85) | 59 (50–97) | 45 (28–61) | 59 (28–81) | <0.001 |
Pol-AED turned on → chest compression start after 1st AED shock, seconds (IQR) | 69 (53–89) | 74 (61–94) | 70 (61–114) | 55 (36–71) | 63 (33–88) | 0.999 |
Electrodes placed on patient → analysis start, seconds (IQR) | 3 (0–4) | 3 (3–4) | 0 (0–1) | 0 (0–1) | 3 (2–10) | <0.001 |
Rhythm analysis time, seconds (IQR) | 8 (5–12) | 5 (5–6) | 12 (12–16) | 12 (11–18) | 6 (5–8) | <0.001 |
Shock loading time, seconds (IQR) | 6 (0–6) | 6 (6–6) | 0 (0–1) | 0 (0–1) | 6 (5–7) | <0.001 |
1st POL-AED shock → chest compression start, seconds (IQR) | 5 (3–8) | 4 (3–6) | 7 (3–14) | 6 (3–11) | 6 (2–7) | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krammel, M.; Eichelter, J.; Gatterer, C.; Lobmeyr, E.; Neymayer, M.; Grassmann, D.; Holzer, M.; Sulzgruber, P.; Schnaubelt, S. Differences in Automated External Defibrillator Types in Out-of-Hospital Cardiac Arrest Treated by Police First Responders. J. Cardiovasc. Dev. Dis. 2023, 10, 196. https://doi.org/10.3390/jcdd10050196
Krammel M, Eichelter J, Gatterer C, Lobmeyr E, Neymayer M, Grassmann D, Holzer M, Sulzgruber P, Schnaubelt S. Differences in Automated External Defibrillator Types in Out-of-Hospital Cardiac Arrest Treated by Police First Responders. Journal of Cardiovascular Development and Disease. 2023; 10(5):196. https://doi.org/10.3390/jcdd10050196
Chicago/Turabian StyleKrammel, Mario, Jakob Eichelter, Constantin Gatterer, Elisabeth Lobmeyr, Marco Neymayer, Daniel Grassmann, Michael Holzer, Patrick Sulzgruber, and Sebastian Schnaubelt. 2023. "Differences in Automated External Defibrillator Types in Out-of-Hospital Cardiac Arrest Treated by Police First Responders" Journal of Cardiovascular Development and Disease 10, no. 5: 196. https://doi.org/10.3390/jcdd10050196
APA StyleKrammel, M., Eichelter, J., Gatterer, C., Lobmeyr, E., Neymayer, M., Grassmann, D., Holzer, M., Sulzgruber, P., & Schnaubelt, S. (2023). Differences in Automated External Defibrillator Types in Out-of-Hospital Cardiac Arrest Treated by Police First Responders. Journal of Cardiovascular Development and Disease, 10(5), 196. https://doi.org/10.3390/jcdd10050196