The Impact of Trimethylamine N-Oxide and Coronary Microcirculatory Dysfunction on Outcomes following ST-Elevation Myocardial Infarction
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Inclusion and Exclusion Criteria
2.3. Blood Sampling and Laboratory Testing
2.4. Coronary Physiology Assessment
2.5. Data Collection
2.6. Study Endpoints
2.7. Definition
2.8. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmitt, J.; Duray, G.; Gersh, B.J.; Hohnloser, S.H. Atrial fibrillation in acute myocardial infarction: A systematic review of the incidence, clinical features and prognostic implications. Eur. Heart J. 2008, 30, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xu, S.; Li, H.; Gong, M.; Li, Z.; Liu, B.; Qin, X.; Shi, B.; Wei, Y. Long-term impact of the burden of new-onset atrial fibrillation in patients with acute myocardial infarction: Results from the NOAFCAMI-SH registry. EP Eur. 2020, 23, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.; Helm, R.H. Atrial Fibrillation. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Khalfallah, M.; Elsheikh, A. Incidence, predictors, and outcomes of new-onset atrial fibrillation in patients with ST-elevation myocardial infarction. Ann. Noninvasive Electrocardiol. 2020, 25, e12746. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, N.; Singh, A.; Zhou, W.; Gupta, A.; Fujikura, K.; Byrne, C.; Harms, H.J.; Osborne, M.T.; Bravo, P.; Andrikopoulou, E.; et al. Coronary Microvascular Dysfunction, Left Ventricular Remodeling, and Clinical Outcomes in Patients with Chronic Kidney Impairment. Circulation 2020, 141, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.T.; Ramezani, A.; Manal, A.; Raj, D.S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins 2016, 8, 326. [Google Scholar] [CrossRef]
- Yu, L.; Meng, G.; Huang, B.; Zhou, X.; Stavrakis, S.; Wang, M.; Li, X.; Zhou, L.; Wang, Y.; Wang, M.; et al. A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int. J. Cardiol. 2018, 255, 92–98. [Google Scholar] [CrossRef]
- Zou, D.; Li, Y.; Sun, G. Attenuation of Circulating Trimethylamine N-Oxide Prevents the Progression of Cardiac and Renal Dysfunction in a Rat Model of Chronic Cardiorenal Syndrome. Front. Pharmacol. 2021, 12, 2888. [Google Scholar] [CrossRef]
- Guieu, R.; Deharo, J.-C.; Maille, B.; Crotti, L.; Torresani, E.; Brignole, M.; Parati, G. Adenosine and the Cardiovascular System: The Good and the Bad. J. Clin. Med. 2020, 9, 1366. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2021, 45, S17–S38. [Google Scholar] [CrossRef]
- Ford, T.; Ong, P.; Sechtem, U.; Beltrame, J.; Camici, P.G.; Crea, F.; Kaski, J.-C.; Merz, C.N.B.; Pepine, C.J.; Shimokawa, H.; et al. Assessment of Vascular Dysfunction in Patients without Obstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2020, 13, 1847–1864. [Google Scholar] [CrossRef] [PubMed]
- Demir, O.M.; Boerhout, C.K.; de Waard, G.A.; van de Hoef, T.P.; Patel, N.; Beijk, M.A.; Williams, R.; Rahman, H.; Everaars, H.; Kharbanda, R.K.; et al. Comparison of Doppler Flow Velocity and Thermodilution Derived Indexes of Coronary Physiology. JACC Cardiovasc. Interv. 2022, 15, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Almesned, M.A.; Prins, F.M.; Lipšic, E.; Connelly, M.A.; Garcia, E.; Dullaart, R.P.F.; Groot, H.E.; van der Harst, P. Temporal Course of Plasma Trimethylamine N-Oxide (TMAO) Levels in ST-Elevation Myocardial Infarction. J. Clin. Med. 2021, 10, 5677. [Google Scholar] [CrossRef]
- Li, J.; Tan, Y.; Zhou, P.; Liu, C.; Zhao, H.; Song, L.; Zhou, J.; Chen, R.; Wang, Y.; Zhao, X.; et al. Association of Trimethylamine N-Oxide Levels and Calcification in Culprit Lesion Segments in Patients with ST-Segment–Elevation Myocardial Infarction Evaluated by Optical Coherence Tomography. Front. Cardiovasc. Med. 2021, 8, 628471. [Google Scholar] [CrossRef] [PubMed]
- Roncal, C.; Martínez-Aguilar, E.; Orbe, J.; Ravassa, S.; Fernandez-Montero, A.; Saenz-Pipaon, G.; Ugarte, A.; de Mendoza, A.E.-H.; Rodriguez, J.A.; Fernández-Alonso, S.; et al. Trimethylamine-N-Oxide (TMAO) Predicts Cardiovascular Mortality in Peripheral Artery Disease. Sci. Rep. 2019, 9, 15580. [Google Scholar] [CrossRef]
- Haghikia, A.; Li, X.S.; Liman, T.G.; Bledau, N.; Schmidt, D.; Zimmermann, F.; Kränkel, N.; Widera, C.; Sonnenschein, K.; Haghikia, A.; et al. Gut Microbiota–Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients with Stroke and Is Related to Proinflammatory Monocytes. Arter. Thromb. Vasc. Biol. 2018, 38, 2225–2235. [Google Scholar] [CrossRef]
- Kul, S.; Caliskan, Z.; Guvenc, T.S.; Celik, F.B.; Sarmis, A.; Atici, A.; Konal, O.; Akıl, M.; Cumen, A.S.; Bilgic, N.M.; et al. Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to endothelial and coronary microvascular function in patients with inflammatory bowel disease. Microvasc. Res. 2023, 146, 104458. [Google Scholar] [CrossRef]
- Ooi, Q.L.; Tow, F.K.N.-F.H.; Deva, R.; Alias, M.A.; Kawasaki, R.; Wong, T.Y.; Mohamad, N.; Colville, D.; Hutchinson, A.; Savige, J. The Microvasculature in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 1872–1878. [Google Scholar] [CrossRef]
- Merz, C.B.; Kelsey, S.F.; Pepine, C.J.; Reichek, N.; Reis, S.E.; Rogers, W.J.; Sharaf, B.L.; Sopko, G. The Women’s Ischemia Syndrome Evaluation (WISE) Study: Protocol design, methodology and feasibility report. J. Am. Coll. Cardiol. 1999, 33, 1453–1461. [Google Scholar] [CrossRef]
- Mohandas, R.; Segal, M.S.; Huo, T.; Handberg, E.M.; Petersen, J.; Johnson, B.D.; Sopko, G.; Merz, C.N.B.; Pepine, C.J. Renal Function and Coronary Microvascular Dysfunction in Women with Symptoms/Signs of Ischemia. PLoS ONE 2015, 10, e0125374. [Google Scholar] [CrossRef]
- Corban, M.T.; Godo, S.; Burczak, D.R.; Noseworthy, P.A.; Toya, T.; Lewis, B.R.; Lerman, L.O.; Gulati, R.; Lerman, A. Coronary Endothelial Dysfunction Is Associated with Increased Risk of Incident Atrial Fibrillation. J. Am. Heart Assoc. 2020, 9, e014850. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, C.; Allan, T.; Besser, S.A.; de la Pena, A.; Blair, J. The relationship between coronary microvascular dysfunction, atrial fibrillation and heart failure with preserved ejection fraction. Am. J. Cardiovasc. Dis. 2021, 11, 29–38. [Google Scholar] [PubMed]
- Kaya, A.; Keskin, M.; Tatlisu, M.A.; Uzman, O.; Borklu, E.; Cinier, G.; Yildirim, E.; Kayapinar, O. Atrial Fibrillation: A Novel Risk Factor for No-Reflow Following Primary Percutaneous Coronary Intervention. Angiology 2019, 71, 175–182. [Google Scholar] [CrossRef]
- Packer, M. Characterization, Pathogenesis, and Clinical Implications of Inflammation-Related Atrial Myopathy as an Important Cause of Atrial Fibrillation. J. Am. Heart Assoc. 2020, 9, e015343. [Google Scholar] [CrossRef]
- Skalidis, E.I.; Hamilos, M.I.; Karalis, I.K.; Chlouverakis, G.; Kochiadakis, G.E.; Vardas, P.E. Isolated Atrial Microvascular Dysfunction in Patients with Lone Recurrent Atrial Fibrillation. J. Am. Coll. Cardiol. 2008, 51, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Lam, C.S.P.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.S.; Beussink-Nelson, M.L.; Faxén, U.L.; Fermer, M.L.; Broberg, M.A.; et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 2018, 39, 3439–3450. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Rush, C.J.; Berry, C.; Oldroyd, K.G.; Rocchiccioli, J.P.; Lindsay, M.M.; Touyz, R.M.; Murphy, C.L.; Ford, T.J.; Sidik, N.; McEntegart, M.B.; et al. Prevalence of Coronary Artery Disease and Coronary Microvascular Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Ryan, M.; Lumley, M.; Modi, B.; McConkey, H.; Ellis, H.; Scannell, C.; Clapp, B.; Marber, M.; Webb, A.; et al. Coronary Microvascular Dysfunction Is Associated with Myocardial Ischemia and Abnormal Coronary Perfusion During Exercise. Circulation 2019, 140, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Herring, N.; Tapoulal, N.; Kalla, M.; Ye, X.; Borysova, L.; Lee, R.; Dall’armellina, E.; Stanley, C.; Ascione, R.; Lu, C.-J.; et al. Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur. Heart J. 2019, 40, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall (n = 200) | No CMD (n = 154) | CMD (n = 46) | p-Value |
---|---|---|---|---|
Sex (female) | 81 (40.5%) | 50 (32.5%) | 31 (67.4%) | <0.001 |
Age (years) | 65.5 [58, 76] | 67 [58, 76] | 63 [57, 76] | 0.558 |
Body mass index (kg/m2) | 27.53 [24.56, 30.82] | 27.64 [24.67, 31.21] | 26.75 [24.44, 29.41] | 0.319 |
Body surface area (m2) | 1.93 [1.81, 2.10] | 1.94 [1.81, 2.12] | 1.89 [1.83, 2.05] | 0.471 |
Arterial hypertension | 118 (59.0%) | 93 (60.4%) | 25 (54.3%) | 0.465 |
History of coronary artery disease | 55 (27.5%) | 41 (26.6%) | 14 (30.4%) | 0.611 |
History of PCI | 24 (12.0%) | 17 (11.0%) | 7 (15.2%) | 0.444 |
History of stroke | 25 (12.5%) | 19 (12.3%) | 6 (13.0%) | 0.899 |
History of diabetes mellitus | 49 (24.5%) | 28 (18.2%) | 21 (45.7%) | <0.001 |
History of dyslipidemia | 114 (57.0%) | 88 (57.1%) | 26 (56.5%) | 0.940 |
Smoker (former/current) | 108 (54.0%) | 78 (50.6%) | 30 (65.2%) | 0.082 |
History of alcohol abuse | 19 (9.5%) | 15 (9.7%) | 4 (8.7%) | 0.832 |
Baseline CHADS2-VASc score | 3 [2, 4] | 3 [2, 4] | 4 [3, 5] | 0.038 |
KILLIP class | 0.944 | |||
I | 59 (29.5%) | 46 (29.9%) | 13 (28.3%) | |
II | 106 (53.0%) | 80 (51.9%) | 26 (56.5%) | |
III | 26 (13.0%) | 21 (13.6%) | 5 (10.9%) | |
IV | 9 (4.5%) | 7 (4.5%) | 2 (4.3%) |
Laboratory Test | Overall (n = 200) | No CMD (n = 154) | CMD (n = 46) | p-Value |
---|---|---|---|---|
On admission | ||||
Hemoglobin (g/L) | 135.50 [119, 147] | 135 [119, 146] | 141.5 [115, 148] | 0.983 |
Red cell distribution width (%) | 13.70 [13.10, 14.40] | 13.70 [13.1, 14.4] | 13.65 [13.20, 14.50] | 0.962 |
White Blood Cell Count (109/L) | 9.83 [8.09, 12.10] | 9.76 [8.07, 11.98] | 10.42 [8.16, 12.99] | 0.372 |
Neutrophil (109/L) | 7.09 [5.29, 9.0] | 7.09 [5.20, 8.85] | 6.96 [5.60, 9.61] | 0.533 |
Lymphocyte (109/L) | 1.85 [1.28, 2.61] | 1.85 [1.31, 2.62] | 1.83 [1.27, 2.59] | 0.825 |
Neutrophil-Lymphocyte Ratio | 3.81 [2.34, 5.74] | 3.80 [2.35, 5.77] | 3.87 [2.33, 5.49] | 0.938 |
Platelets (×109/L) | 240 [203, 272.50] | 239.5 [203, 265] | 241.5 [200, 283] | 0.628 |
Total cholesterol (mmol/L) | 4.67 [3.77, 5.84] | 4.71 [3.84, 5.90] | 4.53 [3.54, 5.60] | 0.449 |
Low-density lipoprotein (mmol/L) | 3.02 [2.35, 4.13] | 3.04 [2.37, 4.15] | 2.98 [2.28, 4.09] | 0.780 |
High-density lipoprotein (mmol/L) | 1.11 [0.92, 1.36] | 1.13 [0.95, 1.36] | 1.09 [0.88, 1.32] | 0.390 |
Triglycerides (mmol/L) | 1.17 [0.82, 1.68] | 1.18 [0.82, 1.69] | 1.14 [0.88, 1.57] | 0.671 |
Creatinine Clearance (mL/min) | 39.5 [34.8, 47.5] | 40.9 [36.10, 48.60] | 36.6 [32.80, 42.50] | 0.001 |
Basal Troponin I (µg/L) | 2.21 [0.81, 3.88] | 2.16 [0.77, 3.58] | 2.23 [0.89, 4.77] | 0.179 |
Peak Troponin I (µg/L) | 45.0 [27.0, 65.0] | 42.0 [27.00, 62.00] | 50.0 [28.00, 81.00] | 0.140 |
High-sensitivity C-reactive protein (mg/L) | 3.66 [1.85, 10.52] | 4.77 [2.36, 11.89] | 2.23 [1.36, 5.82] | 0.005 |
During follow-up | ||||
Hemoglobin (g/L) | 142 [134, 153] | 142 [133, 152] | 141 [136, 153] | 0.477 |
Red cell distribution width (%) | 13.50 [12.90, 14.50] | 13.50 [12.80, 14.60] | 13.4 [13.0, 14.20] | 0.760 |
White Blood Cell Count (109/L) | 9.30 [7.40, 11.99] | 9.50 [7.42, 11.81] | 9.15 [7.16, 13.32] | 0.941 |
Platelets (×109/L) | 209 [166.5, 249.0] | 209 [168, 249] | 208.5 [165, 257] | 0.785 |
Total cholesterol (mmol/L) | 3.25 [2.87, 4.17] | 3.19 [2.84, 3.95] | 3.86 [2.97, 4.91] | 0.005 |
Low-density lipoprotein (mmol/L) | 2.12 [1.51, 2.63] | 2.12 [1.47, 2.45] | 2.15 [1.81, 3.40] | 0.014 |
High-density lipoprotein (mmol/L) | 1.25 [1.12, 1.48] | 1.25 [1.12, 1.52] | 1.30 [1.12, 1.42] | 0.658 |
Triglycerides (mmol/L) | 1.11 [0.74, 1.47] | 1.11 [0.74, 1.49] | 1.06 [0.78, 1.25] | 0.675 |
High-sensitivity C-reactive protein (mg/L) | 4.21 [2.29, 6.30] | 4.02 [1.98, 6.14] | 4.67 [3.27, 6.87] | 0.021 |
Erythrocyte sedimentation rate (mm/h) | 13.0 [9.0, 17.0] | 12.50 [9, 16] | 15.50 [10, 22] | 0.040 |
B-type natriuretic peptide (ng/L) | 37.0 [27.0, 66.75] | 37.0 [27.0, 51.0] | 73.0 [29.0, 104.0] | <0.001 |
Trimethylamine N-oxide (µM) | 2.96 [1.82, 4.56] | 2.41 [1.34, 3.54] | 5.28 [3.97, 7.45] | <0.001 |
Parameters | Overall (n = 200) | No CMD (n = 154) | CMD (n = 46) | p-Value |
---|---|---|---|---|
Angiographic. | ||||
Pain-to-door time (minutes) | 314 [107.75, 597.0] | 314 [104, 503] | 373 [141, 767] | 0.051 |
Door-to-balloon (minutes) | 40 [30, 51.75] | 40 [29.0, 51.0] | 40.5 [33.0, 55.0] | 0.323 |
Pre-PCI TIMI flow | 0.258 | |||
0 | 124 (62.0%) | 90 (58.4%) | 34 (73.9%) | |
1 | 8 (4.0%) | 6 (3.9%) | 2 (4.30%) | |
2 | 40 (20.0%) | 34 (22.1%) | 6 (13.0%) | |
3 | 28 (14.0%) | 24 (15.6%) | 4 (8.7%) | |
Post-PCI TIMI flow | 0.259 | |||
0 | 2 (1.0%) | 1 (0.6%) | 1 (2.2%) | |
1 | 1 (0.5%) | 0 (0.0%) | 1 (2.2%) | |
2 | 20 (10.0%) | 15 (9.7%) | 5 (10.9%) | |
3 | 177 (88.5%) | 138 (89.6%) | 39 (84.8%) | |
Culprit Vessel | 0.068 | |||
Left anterior descending artery | 111 (55.5%) | 86 (55.8%) | 25 (54.3%) | |
Circumflex artery | 49 (24.5%) | 42 (27.3%) | 7 (15.2%) | |
Right coronary artery | 40 (20.0%) | 26 (16.9%) | 14 (30.4%) | |
Number of diseased vessels | 0.913 | |||
2-Vessel Disease | 116 (58.0%) | 89 (57.8%) | 27 (58.7%) | |
3-Vessel Disease | 84 (42.0%) | 65 (42.2%) | 19 (41.3%) | |
Echocardiographic | ||||
Post-PCI left atrial diameter (mm) | 36.0 [32.0, 38.75] | 35.0 [32.0, 38.0] | 37.0 [34.0, 40.0] | 0.183 |
Post-PCI left atrial Volume (mL) | 50.0 [45.25, 62.75] | 50.0 [46.0, 57.0] | 53.0 [44.0, 75.0] | 0.209 |
Post-PCI left atrial volume index (mL/m2) | 26.33 [22.62, 31.86] | 26.24 [22.60, 31.25] | 26.58 [23.02, 39.54] | 0.267 |
Post-PCI left ventricular ejection fraction (%) | 40.0 [36.0, 45.0] | 40.0 [35.0, 45.0] | 45.0 [40.0, 50.0] | 0.019 |
12-month left ventricular ejection fraction (%) | 45.0 [40.0, 50.0] | 50.0 [40.0, 55.0] | 40.0 [32.0, 40.50] | <0.001 |
Coronary physiology at 3-month follow-up | ||||
Coronary flow reserve | 2.68 [2.19, 2.90] | 2.84 [2.64, 2.98] | 1.85 [1.32, 2.17] | <0.001 |
Fractional flow reserve | 0.92 [0.87, 0.97] | 0.92 [0.87, 0.97] | 0.90 [0.85, 0.94] | 0.116 |
Index of microvascular resistance | 20 [14.25, 28.25] | 18.0 [13.0, 21.0] | 44.0 [38.0, 51.0] | <0.001 |
Outcome | Overall (n = 200) | No CMD (n = 154) | CMD (n = 46) | p-Value |
---|---|---|---|---|
New-onset of atrial fibrillation | 22 (11.0%) | 7 (4.5%) | 15 (32.6%) | <0.001 |
LVEF improvement | 154 (78.6%) | 141 (92.8%) | 13 (29.5%) | <0.001 |
Unadjusted Univariable Analysis | Adjusted Univariable Analysis | |||||
---|---|---|---|---|---|---|
Variable | Odds Ratio (95% CI) | AUC | AIC | p-Value | Odds Ratio (95% CI) | p-Value |
Sex (female) | 2.899 (1.155–7.276) | 0.630 | 137.223 | 0.023 | ||
Age | 1.003 (0.967–1.041) | 0.503 | 142.358 | 0.867 | ||
Body mass index | 0.890 (0.798–0.993) | 0.353 | 137.470 | 0.038 | ||
Inferior STEMI | 0.654 (0.261–1.637) | 0.449 | 141.761 | 0.364 | 0.627 (0.242–1.624) | 0.336 |
Arterial hypertension | 1.004 (0.408–2.472) | 0.501 | 142.606 | 0.993 | 0.979 (0.385–2.491) | 0.965 |
History of CAD | 0.753 (0.264–2.150) | 0.473 | 142.314 | 0.596 | 0.768 (0.259–2.279) | 0.635 |
History of stroke | 1.120 (0.306–4.095) | 0.506 | 142.578 | 0.864 | 0.910 (0.240–3.450) | 0.889 |
History of diabetes mellitus | 2.388 (0.952–5.993) | 0.592 | 139.346 | 0.064 | 1.897 (0.713–5.045) | 0.200 |
History of dyslipidemia | 2.177 (0.814–5.821) | 0.588 | 139.999 | 0.121 | 2.094 (0.758–5.789) | 0.154 |
Smoker (former/current) | 1.959 (0.762–5.035) | 0.580 | 140.551 | 0.163 | 1.767 (0.665–4.699) | 0.254 |
Baseline CHADS2-VASc score | 1.112 (0.825–1.501) | 0.549 | 142.123 | 0.486 | 0.853 (0.546–1.332) | 0.485 |
Pain-to-door time | 1.001 (1.000–1.001) | 0.587 | 137.321 | 0.015 | 1.001 (1.000–1.001) | 0.041 |
Door-to-balloon | 0.992 (0.966–1.019) | 0.472 | 142.243 | 0.554 | 0.992 (0.964–1.020) | 0.558 |
Basal Troponin I | 1.071 (1.008–1.139) | 0.576 | 138.013 | 0.026 | 1.102 (1.029–1.180) | 0.005 |
Creatinine Clearance | 0.965 (0.919–1.013) | 0.380 | 140.370 | 0.154 | 0.966 (0.923–1.010) | 0.130 |
Neutrophil-Lymphocyte Ratio | 0.944 (0.802–1.111) | 0.493 | 142.002 | 0.486 | 0.970 (0.818–1.152) | 0.731 |
3-month Total cholesterol | 1.443 (1.034–2.013) | 0.678 | 138.283 | 0.031 | 1.383 (0.948–2.017) | 0.092 |
3-month LDL | 1.657 (1.075–2.556) | 0.677 | 137.713 | 0.022 | 1.521 (0.938–2.466) | 0.089 |
3-month HDL | 0.543 (0.121–2.432) | 0.448 | 141.937 | 0.425 | 0.439 (0.087–2.208) | 0.318 |
3-month Triglycerides | 1.072 (0.589–1.953) | 0.565 | 142.555 | 0.820 | 1.114 (0.597–2.079) | 0.734 |
3-month High-sensitivity CRP | 0.995 (0.974–1.016) | 0.470 | 142.306 | 0.623 | 1.011 (0.857–1.192) | 0.897 |
3-month ESR | 1.085 (1.014–1.161) | 0.622 | 137.101 | 0.019 | 1.076 (1.005–1.152) | 0.036 |
3-month BNP | 1.007 (1.001–1.012) | 0.607 | 137.150 | 0.014 | 1.005 (0.999–1.011) | 0.085 |
3-month TMAO | 1.216 (1.055–1.401) | 0.669 | 135.771 | 0.007 | 1.200 (1.031–1.397) | 0.018 |
3-Vessel Disease | 0.767 (0.306–1.921) | 0.468 | 142.280 | 0.571 | 0.800 (0.310–2.065) | 0.645 |
Post-PCI left atrial diameter | 1.159 (1.082–1.242) | 0.823 | 122.310 | <0.001 | 1.206 (1.107–1.313) | <0.001 |
Post-PCI LAVI | 1.211 (1.128–1.299) | 0.914 | 91.959 | <0.001 | 1.225 (1.136–1.322) | <0.001 |
Post-PCI LVEF (%) | 0.981 (0.922–1.045) | 0.472 | 142.261 | 0.554 | 0.984 (0.925–1.046) | 0.599 |
Coronary flow reserve | 0.385 (0.199–0.746) | 0.265 | 134.287 | 0.005 | 0.475 (0.234–0.963) | 0.039 |
Fractional flow reserve | 0.004 (0.001–9.907) | 0.433 | 140.702 | 0.167 | 0.001 (0.000–4.362) | 0.110 |
IMR | 1.057 (1.029–1.085) | 0.763 | 125.668 | <0.001 | 1.050 (1.021–1.081) | 0.001 |
Effect | Odds Ratio | 95% Confidence Limits | p-Value | |
---|---|---|---|---|
Post-PCI left ventricular ejection fraction (%) | 0.897 | 0.813 | 0.989 | 0.029 |
Post-PCI left atrial volume index (mL/m2) | 1.261 | 1.146 | 1.387 | <0.001 |
Trimethylamine N-oxide (µM) Index of microvascular resistance | 1.290 1.066 | 1.002 1.018 | 1.660 1.117 | 0.048 0.007 |
Effect | Odds Ratio | 95% Confidence Limits | p-Value | |
---|---|---|---|---|
Coronary flow reserve | 2.438 | 1.064 | 5.585 | 0.035 |
Index of microvascular resistance | 0.941 | 0.910 | 0.973 | <0.001 |
Trimethylamine N-oxide (µM) | 0.777 | 0.665 | 0.909 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldujeli, A.; Patel, R.; Grabauskyte, I.; Hamadeh, A.; Lieponyte, A.; Tatarunas, V.; Khalifeh, H.; Briedis, K.; Skipskis, V.; Aldujeili, M.; et al. The Impact of Trimethylamine N-Oxide and Coronary Microcirculatory Dysfunction on Outcomes following ST-Elevation Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2023, 10, 197. https://doi.org/10.3390/jcdd10050197
Aldujeli A, Patel R, Grabauskyte I, Hamadeh A, Lieponyte A, Tatarunas V, Khalifeh H, Briedis K, Skipskis V, Aldujeili M, et al. The Impact of Trimethylamine N-Oxide and Coronary Microcirculatory Dysfunction on Outcomes following ST-Elevation Myocardial Infarction. Journal of Cardiovascular Development and Disease. 2023; 10(5):197. https://doi.org/10.3390/jcdd10050197
Chicago/Turabian StyleAldujeli, Ali, Riddhi Patel, Ingrida Grabauskyte, Anas Hamadeh, Austeja Lieponyte, Vacis Tatarunas, Hussein Khalifeh, Kasparas Briedis, Vilius Skipskis, Montazar Aldujeili, and et al. 2023. "The Impact of Trimethylamine N-Oxide and Coronary Microcirculatory Dysfunction on Outcomes following ST-Elevation Myocardial Infarction" Journal of Cardiovascular Development and Disease 10, no. 5: 197. https://doi.org/10.3390/jcdd10050197
APA StyleAldujeli, A., Patel, R., Grabauskyte, I., Hamadeh, A., Lieponyte, A., Tatarunas, V., Khalifeh, H., Briedis, K., Skipskis, V., Aldujeili, M., Jarasuniene, D., Rana, S., Unikas, R., & Haq, A. (2023). The Impact of Trimethylamine N-Oxide and Coronary Microcirculatory Dysfunction on Outcomes following ST-Elevation Myocardial Infarction. Journal of Cardiovascular Development and Disease, 10(5), 197. https://doi.org/10.3390/jcdd10050197