Use of CO2-Derived Variables in Cardiac Intensive Care Unit: Pathophysiology and Clinical Implications
Abstract
:1. Introduction
2. CO2 Metabolism
3. Relation between CO2 and Cardiac Output
3.1. Macrocirculation and Cardiac Output
3.2. Microcirculation and the Microhemodynamic
3.3. Clinical Use of ΔCCO2 and ΔPCO2
3.4. Production of CO2 and O2 Consumption (VCO2/VO2 Ratio)
3.5. Clinical Use of VCO2/VO2 Ratio
4. Implications for Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, J.L.; Ince, C.; Bakker, J. Clinical review: Circulatory shock—An update: A tribute to Professor Max Harry Weil. Crit. Care 2012, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Study Group on Perioperative; Scv, O.M. Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit. Care 2006, 10, R158. [Google Scholar] [CrossRef]
- Hernandez, G.; Ospina-Tascon, G.A.; Damiani, L.P.; Estenssoro, E.; Dubin, A.; Hurtado, J.; Friedman, G.; Castro, R.; Alegria, L.; Teboul, J.L.; et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients with Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA 2019, 321, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Investigators, A.; Group, A.C.T.; Peake, S.L.; Delaney, A.; Bailey, M.; Bellomo, R.; Cameron, P.A.; Cooper, D.J.; Higgins, A.M.; Holdgate, A.; et al. Goal-directed resuscitation for patients with early septic shock. N. Engl. J. Med. 2014, 371, 1496–1506. [Google Scholar] [CrossRef]
- Jones, A.E.; Shapiro, N.I.; Trzeciak, S.; Arnold, R.C.; Claremont, H.A.; Kline, J.A.; Emergency Medicine Shock Research Network, I. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: A randomized clinical trial. JAMA 2010, 303, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Ha, E.J.; Jhang, W.K.; Park, S.J. Early blood lactate area as a prognostic marker in pediatric septic shock. Intensive Care Med. 2013, 39, 1818–1823. [Google Scholar] [CrossRef]
- Mouncey, P.R.; Osborn, T.M.; Power, G.S.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Jahan, R.; Harvey, S.E.; Bell, D.; Bion, J.F.; et al. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 2015, 372, 1301–1311. [Google Scholar] [CrossRef]
- Pro, C.I.; Yealy, D.M.; Kellum, J.A.; Huang, D.T.; Barnato, A.E.; Weissfeld, L.A.; Pike, F.; Terndrup, T.; Wang, H.E.; Hou, P.C.; et al. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med. 2014, 370, 1683–1693. [Google Scholar] [CrossRef]
- Squara, P. Central venous oxygenation: When physiology explains apparent discrepancies. Crit. Care 2014, 18, 579. [Google Scholar] [CrossRef]
- Law, M.A.; Benscoter, A.L.; Borasino, S.; Dewan, M.; Rahman, A.; Loomba, R.S.; Hock, K.M.; Alten, J.A. Inferior and Superior Vena Cava Saturation Monitoring After Neonatal Cardiac Surgery. Pediatr. Crit. Care Med. 2022, 23, e347–e355. [Google Scholar] [CrossRef]
- Seear, M.D.; Scarfe, J.C.; LeBlanc, J.G. Predicting major adverse events after cardiac surgery in children. Pediatr. Crit. Care Med. 2008, 9, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.M. Pitfalls in haemodynamic monitoring in the postoperative and critical care setting. Anaesth. Intensive Care 2016, 44, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Nebout, S.; Pirracchio, R. Should We Monitor ScVO(2) in Critically Ill Patients? Cardiol. Res. Pract. 2012, 2012, 370697. [Google Scholar] [CrossRef]
- Hernandez, G.; Bellomo, R.; Bakker, J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019, 45, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Duke, T.D.; Butt, W.; South, M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med. 1997, 23, 684–692. [Google Scholar] [CrossRef]
- Vincent, J.L.; Quintairos, E.S.A.; Couto, L., Jr.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Charpie, J.R.; Dekeon, M.K.; Goldberg, C.S.; Mosca, R.S.; Bove, E.L.; Kulik, T.J. Serial blood lactate measurements predict early outcome after neonatal repair or palliation for complex congenital heart disease. J. Thorac. Cardiovasc. Surg. 2000, 120, 73–80. [Google Scholar] [CrossRef]
- Kalyanaraman, M.; DeCampli, W.M.; Campbell, A.I.; Bhalala, U.; Harmon, T.G.; Sandiford, P.; McMahon, C.K.; Shore, S.; Yeh, T.S. Serial blood lactate levels as a predictor of mortality in children after cardiopulmonary bypass surgery. Pediatr. Crit. Care Med. 2008, 9, 285–288. [Google Scholar] [CrossRef]
- Leverve, X. Hyperglycemia and oxidative stress: Complex relationships with attractive prospects. Intensive Care Med. 2003, 29, 511–514. [Google Scholar] [CrossRef]
- Levy, B.; Gibot, S.; Franck, P.; Cravoisy, A.; Bollaert, P.E. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: A prospective study. Lancet 2005, 365, 871–875. [Google Scholar] [CrossRef]
- Levy, B.; Perez, P.; Perny, J.; Thivilier, C.; Gerard, A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit. Care Med. 2011, 39, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Preau, S.; Vodovar, D.; Jung, B.; Lancel, S.; Zafrani, L.; Flatres, A.; Oualha, M.; Voiriot, G.; Jouan, Y.; Joffre, J.; et al. Energetic dysfunction in sepsis: A narrative review. Ann. Intensive Care 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Chiolero, R.L.; Revelly, J.P.; Leverve, X.; Gersbach, P.; Cayeux, M.C.; Berger, M.M.; Tappy, L. Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit. Care Med. 2000, 28, 3784–3791. [Google Scholar] [CrossRef]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Sepsis-associated hyperlactatemia. Crit. Care 2014, 18, 503. [Google Scholar] [CrossRef] [PubMed]
- Klee, P.; Rimensberger, P.C.; Karam, O. Association Between Lactates, Blood Glucose, and Systemic Oxygen Delivery in Children After Cardiopulmonary Bypass. Front. Pediatr. 2020, 8, 332. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Wicke, J.N.; Teboul, J.L. Understanding the carbon dioxide gaps. Curr. Opin. Crit. Care 2018, 24, 181–189. [Google Scholar] [CrossRef]
- Vallet, B.; Pinsky, M.R.; Cecconi, M. Resuscitation of patients with septic shock: Please “mind the gap”! Intensive Care Med. 2013, 39, 1653–1655. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.R.; Cecconi, M.; Chew, M.S.; De Backer, D.; Douglas, I.; Edwards, M.; Hamzaoui, O.; Hernandez, G.; Martin, G.; Monnet, X.; et al. Effective hemodynamic monitoring. Crit. Care 2022, 26, 294. [Google Scholar] [CrossRef]
- Singh, Y.; Villaescusa, J.U.; da Cruz, E.M.; Tibby, S.M.; Bottari, G.; Saxena, R.; Guillen, M.; Herce, J.L.; Di Nardo, M.; Cecchetti, C.; et al. Recommendations for hemodynamic monitoring for critically ill children-expert consensus statement issued by the cardiovascular dynamics section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit. Care 2020, 24, 620. [Google Scholar] [CrossRef]
- Douglas, A.R.; Jones, N.L.; Reed, J.W. Calculation of whole blood CO2 content. J. Appl. Physiol. (1985) 1988, 65, 473–477. [Google Scholar] [CrossRef]
- Gavelli, F.; Teboul, J.L.; Monnet, X. How can CO2-derived indices guide resuscitation in critically ill patients? J. Thorac. Dis. 2019, 11, S1528–S1537. [Google Scholar] [CrossRef]
- Ltaief, Z.; Schneider, A.G.; Liaudet, L. Pathophysiology and clinical implications of the veno-arterial PCO2 gap. Crit. Care 2021, 25, 318. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Madrinan, H.J. Combination of O2 and CO2-derived variables to detect tissue hypoxia in the critically ill patient. J. Thorac. Dis. 2019, 11, S1544–S1550. [Google Scholar] [CrossRef] [PubMed]
- Alegria, L.; Vera, M.; Dreyse, J.; Castro, R.; Carpio, D.; Henriquez, C.; Gajardo, D.; Bravo, S.; Araneda, F.; Kattan, E.; et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: A proof-of-concept study. Ann. Intensive Care 2017, 7, 29. [Google Scholar] [CrossRef]
- Rhodes, L.A.; Erwin, W.C.; Borasino, S.; Cleveland, D.C.; Alten, J.A. Central Venous to Arterial CO2 Difference after Cardiac Surgery in Infants and Neonates. Pediatr. Crit. Care Med. 2017, 18, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Bautista-Rincon, D.F.; Umana, M.; Tafur, J.D.; Gutierrez, A.; Garcia, A.F.; Bermudez, W.; Granados, M.; Arango-Davila, C.; Hernandez, G. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit. Care 2013, 17, R294. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Hernandez, G.; Cecconi, M. Understanding the venous-arterial CO(2) to arterial-venous O(2) content difference ratio. Intensive Care Med. 2016, 42, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Teboul, J.L.; Scheeren, T. Understanding the Haldane effect. Intensive Care Med. 2017, 43, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Umana, M.; Bermudez, W.; Bautista-Rincon, D.F.; Hernandez, G.; Bruhn, A.; Granados, M.; Salazar, B.; Arango-Davila, C.; De Backer, D. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015, 41, 796–805. [Google Scholar] [CrossRef]
- Viale, J.P. The venous-arterial partial pressure of carbon dioxide as a new monitoring of circulatory disorder: No so simple. J. Clin. Monit. Comput. 2016, 30, 757–760. [Google Scholar] [CrossRef]
- Nusmeier, A.; van der Hoeven, J.G.; Lemson, J. Cardiac output monitoring in pediatric patients. Expert Rev. Med. Devices 2010, 7, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Durand, P.; Chevret, L.; Essouri, S.; Haas, V.; Devictor, D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med. 2008, 34, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Knirsch, W.; Kretschmar, O.; Tomaske, M.; Stutz, K.; Nagdyman, N.; Balmer, C.; Schmitz, A.; Bettex, D.; Berger, F.; Bauersfeld, U.; et al. Cardiac output measurement in children: Comparison of the Ultrasound Cardiac Output Monitor with thermodilution cardiac output measurement. Intensive Care Med. 2008, 34, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Tibby, S.M.; Hatherill, M.; Murdoch, I.A. Use of transesophageal Doppler ultrasonography in ventilated pediatric patients: Derivation of cardiac output. Crit. Care Med. 2000, 28, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Working Group on Non-invasive Haemodynamic Monitoring in Paediatrics; Knirsch, W.; Kretschmar, O.; Tomaske, M.; Stutz, K.; Nagdyman, N.; Balmer, C.; Schmitz, A.; Berger, F.; Bauersfeld, U.; et al. Comparison of cardiac output measurement using the CardioQP oesophageal Doppler with cardiac output measurement using thermodilution technique in children during heart catheterisation. Anaesthesia 2008, 63, 851–855. [Google Scholar] [CrossRef]
- Gergely, M.; Ablonczy, L.; Kramer, S.; Szekely, E.A.; Sapi, E.; Gal, J.; Szatmari, A.; Szekely, A. Comparison of transpulmonary thermodilution, transthoracic echocardiography and conventional hemodynamic monitoring in neonates and infants after open heart surgery: A preliminary study. Minerva Anestesiol. 2012, 78, 1101–1108. [Google Scholar]
- Grindheim, G.; Eidet, J.; Bentsen, G. Transpulmonary thermodilution (PiCCO) measurements in children without cardiopulmonary dysfunction: Large interindividual variation and conflicting reference values. Paediatr. Anaesth. 2016, 26, 418–424. [Google Scholar] [CrossRef]
- Pauli, C.; Fakler, U.; Genz, T.; Hennig, M.; Lorenz, H.P.; Hess, J. Cardiac output determination in children: Equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med. 2002, 28, 947–952. [Google Scholar] [CrossRef]
- Proulx, F.; Lemson, J.; Choker, G.; Tibby, S.M. Hemodynamic monitoring by transpulmonary thermodilution and pulse contour analysis in critically ill children. Pediatr. Crit. Care Med. 2011, 12, 459–466. [Google Scholar] [CrossRef]
- Mansfield, R.C.; Kaza, N.; Charalambous, A.; Milne, A.C.; Sathiyamurthy, S.; Banerjee, J. Cardiac Output Measurement in Neonates and Children Using Noninvasive Electrical Bioimpedance Compared With Standard Methods: A Systematic Review and Meta-Analysis. Crit. Care Med. 2022, 50, 126–137. [Google Scholar] [CrossRef]
- Nassar, B.; Mallat, J. Usefulness of venous-to-arterial partial pressure of CO2 difference to assess oxygen supply to demand adequacy: Effects of dobutamine. J. Thorac. Dis. 2019, 11, S1574–S1578. [Google Scholar] [CrossRef] [PubMed]
- Mallat, J.; Benzidi, Y.; Salleron, J.; Lemyze, M.; Gasan, G.; Vangrunderbeeck, N.; Pepy, F.; Tronchon, L.; Vallet, B.; Thevenin, D. Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine. Intensive Care Med. 2014, 40, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Teboul, J.L.; Mercat, A.; Lenique, F.; Berton, C.; Richard, C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: Effects of dobutamine. Crit. Care Med. 1998, 26, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Vallet, B.; Teboul, J.L.; Cain, S.; Curtis, S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J. Appl. Physiol. (1985) 2000, 89, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Vincent, J.L.; Gris, P.; Leon, M.; Coffernils, M.; Kahn, R.J. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992, 101, 509–515. [Google Scholar] [CrossRef]
- Grundler, W.; Weil, M.H.; Rackow, E.C. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 1986, 74, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Weil, M.H.; Rackow, E.C.; Trevino, R.; Grundler, W.; Falk, J.L.; Griffel, M.I. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N. Engl. J. Med. 1986, 315, 153–156. [Google Scholar] [CrossRef]
- Mecher, C.E.; Rackow, E.C.; Astiz, M.E.; Weil, M.H. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit. Care Med. 1990, 18, 585–589. [Google Scholar] [CrossRef]
- Van der Linden, P.; Rausin, I.; Deltell, A.; Bekrar, Y.; Gilbart, E.; Bakker, J.; Vincent, J.L. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth. Analg. 1995, 80, 269–275. [Google Scholar] [CrossRef]
- De Backer, D.; Creteur, J.; Preiser, J.C.; Dubois, M.J.; Vincent, J.L. Microvascular blood flow is altered in patients with sepsis. Am. J. Respir. Crit. Care Med. 2002, 166, 98–104. [Google Scholar] [CrossRef]
- De Backer, D.; Creteur, J.; Dubois, M.J.; Sakr, Y.; Koch, M.; Verdant, C.; Vincent, J.L. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit. Care Med. 2006, 34, 403–408. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Donadello, K.; Taccone, F.S.; Ospina-Tascon, G.; Salgado, D.; Vincent, J.L. Microcirculatory alterations: Potential mechanisms and implications for therapy. Ann. Intensive Care 2011, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Ospina-Tascon, G.; Salgado, D.; Favory, R.; Creteur, J.; Vincent, J.L. Monitoring the microcirculation in the critically ill patient: Current methods and future approaches. Intensive Care Med. 2010, 36, 1813–1825. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Umana, M.; Bermudez, W.F.; Bautista-Rincon, D.F.; Valencia, J.D.; Madrinan, H.J.; Hernandez, G.; Bruhn, A.; Arango-Davila, C.; De Backer, D. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016, 42, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Mallat, J.; Pepy, F.; Lemyze, M.; Gasan, G.; Vangrunderbeeck, N.; Tronchon, L.; Vallet, B.; Thevenin, D. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: A prospective observational study. Eur. J. Anaesthesiol. 2014, 31, 371–380. [Google Scholar] [CrossRef]
- Mekontso-Dessap, A.; Castelain, V.; Anguel, N.; Bahloul, M.; Schauvliege, F.; Richard, C.; Teboul, J.L. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002, 28, 272–277. [Google Scholar] [CrossRef]
- van Beest, P.A.; Lont, M.C.; Holman, N.D.; Loef, B.; Kuiper, M.A.; Boerma, E.C. Central venous-arterial pCO(2) difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013, 39, 1034–1039. [Google Scholar] [CrossRef]
- Muller, G.; Mercier, E.; Vignon, P.; Henry-Lagarrigue, M.; Kamel, T.; Desachy, A.; Botoc, V.; Plantefeve, G.; Frat, J.P.; Bellec, F.; et al. Prognostic significance of central venous-to-arterial carbon dioxide difference during the first 24 hours of septic shock in patients with and without impaired cardiac function. Br. J. Anaesth. 2017, 119, 239–248. [Google Scholar] [CrossRef]
- Mukai, A.; Suehiro, K.; Kimura, A.; Funai, Y.; Matsuura, T.; Tanaka, K.; Yamada, T.; Mori, T.; Nishikawa, K. Comparison of the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery. J. Clin. Monit. Comput. 2020, 34, 41–53. [Google Scholar] [CrossRef]
- Robin, E.; Futier, E.; Pires, O.; Fleyfel, M.; Tavernier, B.; Lebuffe, G.; Vallet, B. Central venous-to-arterial carbon dioxide difference as a prognostic tool in high-risk surgical patients. Crit. Care 2015, 19, 227. [Google Scholar] [CrossRef]
- Shaban, M.; Salahuddin, N.; Kolko, M.R.; Sharshir, M.; AbuRageila, M.; AlHussain, A. The Predictive Ability of PV-ACO2 Gap and PV-ACO2/CA-VO2 Ratio in Shock: A Prospective, Cohort Study. Shock 2017, 47, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Zante, B.; Reichenspurner, H.; Kubik, M.; Schefold, J.C.; Kluge, S. Increased admission central venous-arterial CO2 difference predicts ICU-mortality in adult cardiac surgery patients. Heart Lung 2019, 48, 421–427. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.I.; Brodie, D.; Schmidt, M.; Hay, K.; Shekar, K. Elevated Venous to Arterial Carbon Dioxide Gap and Anion Gap Are Associated with Poor Outcome in Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation Support. ASAIO J. 2021, 67, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Al Duhailib, Z.; Hegazy, A.F.; Lalli, R.; Fiorini, K.; Priestap, F.; Iansavichene, A.; Slessarev, M. The Use of Central Venous to Arterial Carbon Dioxide Tension Gap for Outcome Prediction in Critically Ill Patients: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sarmiento, J.; Carcillo, J.A.; Diaz Del Castillo, A.M.E.; Barrera, P.; Orozco, R.; Rodriguez, M.A.; Gualdron, N. Venous-arterial CO2 difference in children with sepsis and its correlation with myocardial dysfunction. Qatar Med. J. 2019, 2019, 18. [Google Scholar] [CrossRef]
- Furqan, M.; Hashmat, F.; Amanullah, M.; Khan, M.; Durani, H.K.; Anwar ul, H. Venoarterial PCO2 difference: A marker of postoperative cardiac output in children with congenital heart disease. J. Coll. Physicians Surg. Pak. 2009, 19, 640–643. [Google Scholar] [CrossRef]
- Akamatsu, T.; Inata, Y.; Tachibana, K.; Hatachi, T.; Takeuchi, M. Elevated Central Venous to Arterial CO2 Difference Is Not Associated With Poor Clinical Outcomes after Cardiac Surgery With Cardiopulmonary Bypass in Children. Pediatr. Crit. Care Med. 2017, 18, 859–862. [Google Scholar] [CrossRef]
- Insom, G.; Marinari, E.; Scolari, A.F.; Garisto, C.; Vitale, V.; Di Chiara, L.; Ricci, Z. Veno-arterial CO2 difference and cardiac index in children after cardiac surgery. Cardiol. Young 2021, 31, 597–601. [Google Scholar] [CrossRef]
- Hemodynamic monitoring; Springer: Berlin/Heidelberg, Germany, 2019.
- Herve, P.; Simonneau, G.; Girard, P.; Cerrina, J.; Mathieu, M.; Duroux, P. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: Glucose versus fat. Crit. Care Med. 1985, 13, 537–540. [Google Scholar] [CrossRef]
- Marcinek, D.J.; Kushmerick, M.J.; Conley, K.E. Lactic acidosis in vivo: Testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J. Appl. Physiol. 2010, 108, 1479–1486. [Google Scholar] [CrossRef]
- He, H.W.; Liu, D.W.; Long, Y.; Wang, X.T. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J. Crit. Care 2016, 31, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, J.; Espinal, C.; Saludes, P.; Cortes, E.; Perez-Madrigal, A.; Gruartmoner, G. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference (P(cva)CO(2)/C(av)O(2)) reflects microcirculatory oxygenation alterations in early septic shock. J. Crit. Care 2019, 53, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Julien, F.; Ait-Hamou, N.; Lequoy, M.; Gosset, C.; Jozwiak, M.; Persichini, R.; Anguel, N.; Richard, C.; Teboul, J.L. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit. Care Med. 2013, 41, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Jakob, S.M.; Groeneveld, A.B.; Teboul, J.L. Venous-arterial CO2 to arterial-venous O2 difference ratio as a resuscitation target in shock states? Intensive Care Med. 2015, 41, 936–938. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, X.; Xu, L.; Li, Z. Early post-operative P(V-A)CO(2)/C(A-V)O(2) predicts subsequent acute kidney injury after complete repair of tetralogy of Fallot. Cardiol. Young 2022, 32, 558–563. [Google Scholar] [CrossRef]
- Sharma, A.; Chakraborty, R.; Sharma, K.; Sethi, S.K.; Raina, R. Development of acute kidney injury following pediatric cardiac surgery. Kidney Res. Clin. Pract. 2020, 39, 259–268. [Google Scholar] [CrossRef]
Insom et al. [78] Cardiol Young 2021 | Rhodes et al. [35] PCCM 2017 | Akamatsu et al. [77] PCCM 2017 | |
---|---|---|---|
N patients | 40 patients | 139 patients | 114 patients |
Age (days/months) | Median 215 days (range 3–5600) | Median 12 days (IQR 6–38) | Median 15.5 months (IQR 7–34) |
Population | CICU | CICU | CICU |
Outcome measured | Composite outcome
| Composite outcome:
|
|
∆PCO2 measured (mmHg) | Median 9 mmHg (range 1–25) | Median 5.9 mmHg (IQR 3.8–9.2) | Not reported ∆PCO2 analyzed as a dichotomous variable >6 mmHg or <6 mmHg |
Association ∆PCO2-outcome | Significant association OR 1.13 (95% CI 1.01–1.35) | Significant association
| No significant association |
Commentary | Higher values of ∆PCO2 are associated with more complex clinical course. | Underline role for ∆PCO2 monitoring in CICU Suggest an association between ∆PCO2 and outcome. | Population separated into 2 groups: ∆PCO2 > 6 mmHg or <6 mmHg and no difference between both groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cousin, V.L.; Joye, R.; Wacker, J.; Beghetti, M.; Polito, A. Use of CO2-Derived Variables in Cardiac Intensive Care Unit: Pathophysiology and Clinical Implications. J. Cardiovasc. Dev. Dis. 2023, 10, 208. https://doi.org/10.3390/jcdd10050208
Cousin VL, Joye R, Wacker J, Beghetti M, Polito A. Use of CO2-Derived Variables in Cardiac Intensive Care Unit: Pathophysiology and Clinical Implications. Journal of Cardiovascular Development and Disease. 2023; 10(5):208. https://doi.org/10.3390/jcdd10050208
Chicago/Turabian StyleCousin, Vladimir L., Raphael Joye, Julie Wacker, Maurice Beghetti, and Angelo Polito. 2023. "Use of CO2-Derived Variables in Cardiac Intensive Care Unit: Pathophysiology and Clinical Implications" Journal of Cardiovascular Development and Disease 10, no. 5: 208. https://doi.org/10.3390/jcdd10050208
APA StyleCousin, V. L., Joye, R., Wacker, J., Beghetti, M., & Polito, A. (2023). Use of CO2-Derived Variables in Cardiac Intensive Care Unit: Pathophysiology and Clinical Implications. Journal of Cardiovascular Development and Disease, 10(5), 208. https://doi.org/10.3390/jcdd10050208