Preventing and Managing Radial Artery Occlusion following Transradial Procedures: Strategies and Considerations
Abstract
:1. Introduction
2. Anatomy of the Radial Artery
3. RAO Pathophysiology
4. RAO Diagnosis
5. RAO Inducing Factors
6. RAO Preventive Strategies
- i.
- Repeated radial punctures and Doppler evaluation
- ii.
- Sheath Size
- iii.
- Vasodilators
- iv.
- Anticoagulation
- v.
- Hemostasis Methods
7. New Approaches: Access through the Distal Part of the Radial
8. RAO Treatment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, P.J.; Shah, B.; Tamis-Holland, J.E.; Bittl, J.A.; Cohen, M.G.; Safirstein, J.; Drachman, D.E.; Valle, J.A.; Rhodes, D.; Gilchrist, I.C.; et al. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Interv. 2018, 11, e000035. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, Y.; Bell, M.R.; Gulati, R. Transradial Artery Access Complications. Circ. Cardiovasc. Interv. 2019, 12, e007386. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.L.; de Andrade, P.B.; Dangas, G.; Joaquim, R.M.; da Silva, T.R.; Vieira, R.G.; Pereira, V.C.; Sousa, A.G.; Feres, F.; Costa, J.R. Randomized Clinical Trial on Prevention of Radial Occlusion After Transradial Access Using Nitroglycerin. JACC Cardiovasc. Interv. 2022, 15, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.K.; Sharma, A.K.; Nayak, G.R.; Chaudhary, G.K.; Chandra, S.; Pradhan, A.; Vishwakarma, P.; Bhandari, M.; Sethi, R.; India, L. Factors influencing radial artery occlusion after transradial coronary intervention in the Indian population. Anatol. J. Cardiol. 2022, 26, 105–111. [Google Scholar] [CrossRef]
- Mohsen, A.; Alqasrawi, M.; Shantha, G.P.S.; DeZorzi, C.; Panaich, S. Comparison of Radial Artery Occlusion Following Transradial Access for Percutaneous Coronary Intervention Using Sheath-based versus Sheathless Technique. Sci. Rep. 2018, 8, 12026. [Google Scholar] [CrossRef] [Green Version]
- Munir, U.; Khan, R.; Nazeer, N.; Akhter, J.; Hassan, A.U.; Hanif, B. Frequency and Predictors of Radial Artery Occlusion in Patients Undergoing Percutaneous Coronary Intervention. Cureus 2022, 14, e25505. [Google Scholar] [CrossRef] [PubMed]
- Ognerubov, D.V.; Sedaghat, A.; Provatorov, S.I.; Tereshchenko, A.S.; Bertrand, O.F.; Bernat, I.; Arutyunyan, G.K.; Pogorelova, O.A.; Tripoten, M.I.; Balakhonova., T.V.; et al. A Randomized Trial Comparing Short versus Prolonged Hemostasis with Rescue Recanalization by Ipsilateral Ulnar Artery Compression: Impact on Radial Artery Occlusion—The RESCUE-RAO Trial. J. Interv. Cardiol. 2020, 2020, 7928961. [Google Scholar] [CrossRef]
- Pacchioni, A.; Ferro, J.; Pesarini, G.; Mantovani, R.; Mugnolo, A.; Bellamoli, M.; Penzo, C.; Marchese, G.; Benedetto, D.; Turri, R.; et al. The Activated Clotting Time Paradox. Circ. Cardiovasc. Interv. 2019, 12, e008045. [Google Scholar] [CrossRef]
- Sinha, S.K.; Jha, M.J.; Mishra, V.; Thakur, R.; Goel, A.; Kumar, S.S.; Singh, A.K.; Sachan, M.; Varma, C.M.; Krishna, V. Radial Artery Occlusion—Incidence, Predictors and Long-term outcome after TRAnsradial Catheterization: Clinico-Doppler ultrasound-based study (RAIL-TRAC study). Acta Cardiol. 2017, 72, 318–327. [Google Scholar] [CrossRef]
- Sgueglia, G.A.; Di Giorgio, A.; Gaspardone, A.; Babunashvili, A. Anatomic Basis and Physiological Rationale of Distal Radial Artery Access for Percutaneous Coronary and Endovascular Procedures. JACC Cardiovasc. Interv. 2018, 11, 2113–2119. [Google Scholar] [CrossRef]
- Coleman, S.S.; Anson, B.J. Arterial patterns in the hand based upon a study of 650 specimens. Plast. Reconstr. Surg. 1961, 113, 409–424. [Google Scholar] [CrossRef]
- Garg, N.; Umamaheswar, K.L.; Kapoor, A.; Tewari, S.; Khanna, R.; Kumar, S.; Goel, P.K. Incidence and predictors of forearm hematoma during the transradial approach for percutaneous coronary interventions. Indian Heart J. 2019, 71, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Tsigkas, G.; Papageorgiou, A.; Moulias, A.; Kalogeropoulos, A.P.; Papageorgopoulou, C.; Apostolos, A.; Papanikolaou, A.; Vasilagkos, G.; Davlouros, P. Distal or Traditional Transradial Access Site for Coronary Procedures. JACC Cardiovasc. Interv. 2022, 15, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.B.; Patel, V.; Pancholy, S.A.; Patel, A.T.; Patel, G.A.; Shah, S.C.; Patel, T.M. Comparison of Diagnostic Accuracy of Digital Plethysmography Versus Duplex Ultrasound in Detecting Radial Artery Occlusion After Transradial Access. Cardiovasc. Revasculariz. Med. 2021, 27, 52–56. [Google Scholar] [CrossRef]
- Jirous, S.; Bernat, I.; Slezak, D.; Miklik, R.; Rokyta, R. Post-procedural radial artery occlusion and patency detection using duplex ultrasound vs. the reverse Barbeau test. Eur. Heart J. Suppl. 2020, 22, F23–F29. [Google Scholar] [CrossRef]
- Alberti, M.; Bucca, G.; Somenzi, A.; Mellino, A.; Gamberini, S.; Daniele, B.; Giancola, F.; Bonomi, A.; Moro, M. [Radial artery occlusion after a radial access procedure: Pilot study comparing eco Doppler and Inverse Barbeau Test assessments]. Assist Inferm Ric. 2021, 40, 213–220. [Google Scholar] [CrossRef]
- Indolfi, C.; Passafaro, F.; Sorrentino, S.; Spaccarotella, C.; Mongiardo, A.; Torella, D.; Polimeni, A.; Sabatino, J.; Curcio, A.; De Rosa, S. Hand Laser Perfusion Imaging to Assess Radial Artery Patency: A Pilot Study. J. Clin. Med. 2018, 7, 319. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yin, D.; Feng, L.; Song, W.; Wang, H.; Zhu, C.; Dou, K. Early radial artery occlusion following the use of a transradial 7-French sheath for complex coronary interventions in Chinese patients. Catheter. Cardiovasc. Interv. 2021, 97, 1063–1071. [Google Scholar] [CrossRef]
- Buturak, A.; Gorgulu, S.; Norgaz, T.; Voyvoda, N.; Sahingoz, Y.; Degirmencioglu, A.; Dagdelen, S. The long-term incidence and predictors of radial artery occlusion following a transradial coronary procedure. Cardiol. J. 2014, 21, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Aykan, A.; Gökdeniz, T.; Gül, I.; Kalaycıoğlu, E.; Çetin, M.; Hatem, E.; Çavuşoğlu, I.G.; Karabay, C.Y.; Güler, A.; Aykan, D.A.; et al. Comparison of low dose versus standard dose heparin for radial approach in elective coronary angiography? Int. J. Cardiol. 2015, 187, 389–392. [Google Scholar] [CrossRef]
- Ognerubov, D.V.; Provatorov, S.I.; Tereshchenko, A.S.; Romasov, I.V.; Pogorelova, O.A.; Tripoten, M.I.; Balakhonova, T.V.; Merkulov, E.V.; Samko, A.N. Rate of Complications at Early Removal of Compression Bandage after Transradial Coronary Angiography. Kardiologiia 2019, 59, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Sadaka, M.A.; Etman, W.; Ahmed, W.; Kandil, S.; Eltahan, S. Incidence and predictors of radial artery occlusion after transradial coronary catheterization. Egypt. Heart J. 2019, 71, 12. [Google Scholar] [CrossRef] [Green Version]
- Pancholy, S.B.; Bertrand, O.F.; Patel, T. Comparison of A Priori Versus Provisional Heparin Therapy on Radial Artery Occlusion After Transradial Coronary Angiography and Patent Hemostasis (from the PHARAOH Study). Am. J. Cardiol. 2012, 110, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.; Coppola, J.; Patel, T.; Roke-Thomas, M. Prevention of radial artery occlusion-Patent hemostasis evaluation trial (PROPHET study): A randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter. Cardiovasc. Interv. 2008, 72, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Tebaldi, M.; Biscaglia, S.; Tumscitz, C.; Del Franco, A.; Gallo, F.; Spitaleri, G.; Fileti, L.; Serenelli, M.; Tonet, E.; Erriquez, A.; et al. Comparison of Verapamil versus Heparin as Adjunctive Treatment for Transradial Coronary Procedures: The VERMUT Study. Cardiology 2018, 140, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Lin, Q.; Zhu, Q.; Zhou, X.; Fang, Y.; Wang, L.; Xiang, G.; Zheng, K.I.; Huang, W.; Shan, P. Short-Term Postoperative Use of Rivaroxaban to Prevent Radial Artery Occlusion After Transradial Coronary Procedure: The RESTORE Randomized Trial. Circ. Cardiovasc. Interv. 2022, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Dharma, S.; Kedev, S.; Patel, T.; Sukmawan, R.; Gilchrist, I.C.; Rao, S.V. Post-procedural/pre-hemostasis intra-arterial nitroglycerin after transradial catheterization: A gender based analysis. Cardiovasc. Revasculariz. Med. 2016, 17, 10–14. [Google Scholar] [CrossRef]
- Nguyen, P.; Makris, A.; Hennessy, A.; Jayanti, S.; Wang, A.; Park, K.; Chen, V.; Nguyen, T.; Lo, S.; Xuan, W.; et al. Standard versus ultrasound-guided radial and femoral access in coronary angiography and intervention (SURF): A randomised controlled trial. Eurointervention 2019, 15, e522–e530. [Google Scholar] [CrossRef] [Green Version]
- Seto, A.H.; Roberts, J.S.; Abu-Fadel, M.S.; Czak, S.J.; Latif, F.; Jain, S.P.; Raza, J.A.; Mangla, A.; Panagopoulos, G.; Patel, P.M.; et al. Real-Time Ultrasound Guidance Facilitates Transradial Access. JACC Cardiovasc. Interv. 2015, 8, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Dharma, S.; Kedev, S.; Patel, T.; Kiemeneij, F.; Gilchrist, I.C. A novel approach to reduce radial artery occlusion after transradial catheterization: Postprocedural/prehemostasis intra-arterial nitroglycerin. Catheter. Cardiovasc. Interv. 2015, 85, 818–825. [Google Scholar] [CrossRef]
- Dahm, J.B.; Vogelgesang, D.; Hummel, A.; Staudt, A.; Völzke, H.; Felix, S.B. A randomized trial of 5 vs. 6 French transradial percutaneous coronary interventions. Catheter. Cardiovasc. Interv. 2002, 57, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Uhlemann, M.; Möbius-Winkler, S.; Mende, M.; Eitel, I.; Fuernau, G.; Sandri, M.; Adams, V.; Thiele, H.; Linke, A.; Schuler, G.; et al. The Leipzig Prospective Vascular Ultrasound Registry in Radial Artery Catheterization. JACC Cardiovasc. Interv. 2012, 5, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Wei, Q.; Cai, J.; Wang, Y.; Fu, X. Comparison of long-term radial artery occlusion following trans-radial coronary intervention using 6-french versus 7-french sheaths. Cardiol. J. 2021, 28, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Horie, K.; Tada, N.; Isawa, T.; Matsumoto, T.; Taguri, M.; Kato, S.; Honda, T.; Ootomo, T.; Inoue, N. A randomised comparison of incidence of radial artery occlusion and symptomatic radial artery spasm associated with elective transradial coronary intervention using 6.5 Fr SheathLess Eaucath Guiding Catheter vs. 6.0 Fr Glidesheath Slender. Eurointervention 2018, 13, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Isawa, T.; Horie, K.; Taguri, M.; Ootomo, T. Access-site complications of transradial percutaneous coronary intervention using sheathless guiding catheters for acute coronary syndrome: A prospective cohort study with radial ultrasound follow-up. Cardiovasc. Interv. Ther. 2020, 35, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Aminian, A.; Saito, S.; Takahashi, A.; Bernat, I.; Jobe, R.; Kajiya, T.; Gilchrist, I.; Louvard, Y.; Kiemeneij, F.; Van Royen, N.; et al. Comparison of a new slender 6 Fr sheath with a standard 5 Fr sheath for transradial coronary angiography and intervention: RAP and BEAT (Radial Artery Patency and Bleeding, Efficacy, Adverse evenT), a randomised multicentre trial. Eurointervention 2017, 13, e549–e556. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ke, Z.; Xiao, J.; Lin, M.; Huang, X.; Yan, C.; Ye, S.; Tan, X. Subcutaneous Injection of Nitroglycerin at the Radial Artery Puncture Site Reduces the Risk of Early Radial Artery Occlusion After Transradial Coronary Catheterization. Circ. Cardiovasc. Interv. 2018, 11, e006571. [Google Scholar] [CrossRef]
- Beyer, A.T.; Ng, R.; Singh, A.; Zimmet, J.; Shunk, K.; Yeghiazarians, Y.; Ports, T.A.; Boyle, A.J. Topical nitroglycerin and lidocaine to dilate the radial artery prior to transradial cardiac catheterization: A randomized, placebo-controlled, double-blind clinical trial. Int. J. Cardiol. 2013, 168, 2575–2578. [Google Scholar] [CrossRef]
- Ezhumalai, B.; Satheesh, S.; Jayaraman, B. Effects of subcutaneously infiltrated nitroglycerin on diameter, palpability, ease-of-puncture and pre-cannulation spasm of radial artery during transradial coronary angiography. Indian Heart J. 2014, 66, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Doubell, J.; Kyriakakis, C.; Weich, H.; Herbst, P.; Pecoraro, A.; Moses, J.; Griffiths, B.; Snyman, H.W.; Kabwe, L.; Du Toit, R.; et al. Radial artery dilatation to improve access and lower complications during coronary angiography: The RADIAL trial. Eurointervention 2021, 16, 1349–1355. [Google Scholar] [CrossRef]
- Rao, S.V.; Wegermann, Z.K. Pumping up best practices in radial artery access: Prolonged occlusion flow-mediated dilation improves radial artery access success. Eurointervention 2021, 16, 1299–1300. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.B. Comparison of the Effect of Intra-Arterial Versus Intravenous Heparin on Radial Artery Occlusion After Transradial Catheterization. Am. J. Cardiol. 2009, 104, 1083–1085. [Google Scholar] [CrossRef] [PubMed]
- Degirmencioglu, A.; Buturak, A.; Zencirci, E.; Karakus, G.; Güvenc, T.S.; Akyol, A.; Esen, A.; Demirci, Y.; Sipahi, I.; Dagdelen, S.; et al. Comparison of Effects of Low- versus High-Dose Heparin on Access-Site Complications during Transradial Coronary Angiography: A Double-Blind Randomized Study. Cardiology 2015, 131, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Hahalis, G.; Xathopoulou, I.; Tsigkas, G.; Almpanis, G.; Christodoulou, I.; Grapsas, N.; Davlouros, P.; Koniari, I.; Deftereos, S.; Raisakis, K.; et al. A comparison of low versus standard heparin dose for prevention of forearm artery occlusion after 5 French coronary angiography. Int. J. Cardiol. 2015, 187, 404–410. [Google Scholar] [CrossRef]
- Hahalis, G.N.; Leopoulou, M.; Tsigkas, G.; Xanthopoulou, I.; Patsilinakos, S.; Patsourakos, N.G.; Ziakas, A.; Kafkas, N.; Koutouzis, M.; Tsiafoutis, I.; et al. Multicenter Randomized Evaluation of High Versus Standard Heparin Dose on Incident Radial Arterial Occlusion After Transradial Coronary Angiography. JACC Cardiovasc. Interv. 2018, 11, 2241–2250. [Google Scholar] [CrossRef]
- Besli, F.; Gungoren, F.; Tanriverdi, Z.; Tascanov, M.B.; Fedai, H.; Akcali, H.; Demirbag, R. The high dose unfractionated heparin is related to less radial artery occlusion rates after diagnostic cardiac catheterisation: A single centre experience. Acta Cardiol. 2021, 76, 168–174. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Chang, W.-T.; Ho, C.-H.; Hong, C.-S.; Shih, J.-Y.; Wu, W.-S.; Chen, Z.-C.; Chou, M.-T. Radial artery occlusion with a kaolin-filled pad after transradial cardiac catheterization. Medicine 2018, 97, e13134. [Google Scholar] [CrossRef]
- Due-Tønnessen, N.; Egeland, C.H.; Meyerdierks, O.J.; Opdahl, A. Is radial artery occlusion and local vascular complications following transradial coronary procedures affected by the type of haemostasis device used? A non-inferiority Randomized Controlled Trial (RadCom trial). Eur. J. Cardiovasc. Nurs. 2021, 20, 580–587. [Google Scholar] [CrossRef]
- Sanghvi, K.A.; Montgomery, M.; Varghese, V. Effect of hemostatic device on radial artery occlusion: A randomized comparison of compression devices in the radial hemostasis study. Cardiovasc. Revasculariz. Med. 2018, 19, 934–938. [Google Scholar] [CrossRef]
- Patel, G.; Shah, S.; Patel, B.A.; Patel, T.M. Randomized COmparison of Isolated Radial Artery ComPrEssioN Versus Radial and Ipsilateral Ulnar Artery Compression in Achieving Radial Artery Patency: The OPEN-Radial Trial. J. Invasive Cardiol. 2020, 32, 476–482. [Google Scholar]
- Lavi, S.; Cheema, A.; Yadegari, A.; Israeli, Z.; Levi, Y.; Wall, S.; Alemayehu, M.; Parviz, Y.; Murariu, B.; McPherson, T.; et al. Randomized Trial of Compression Duration After Transradial Cardiac Catheterization and Intervention. J. Am. Heart Assoc. 2017, 6, e005029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petroglou, D.; Didagelos, M.; Chalikias, G.; Tziakas, D.; Tsigkas, G.; Hahalis, G.; Koutouzis, M.; Ntatsios, A.; Tsiafoutis, I.; Hamilos, M.; et al. Manual Versus Mechanical Compression of the Radial Artery After Transradial Coronary Angiography. JACC Cardiovasc. Interv. 2018, 11, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Artani, A.; Baloch, F.; Artani, M.; Fatima, H.; Salam, A.; Ahmed, S. Role of trans-radial band protocols in radial artery occlusion: Randomized trial. Asian Cardiovasc. Thorac. Ann. 2021, 30, 409–415. [Google Scholar] [CrossRef]
- Al Riyami, H.; Al Riyami, A.; Nadar, S.K. Comparison between two protocols for deflation of the TR band following coronary procedures via the radial route. J. Saudi Heart Assoc. 2020, 32, 10–56. [Google Scholar] [CrossRef]
- Dangoisse, V.; Guédès, A.; Chenu, P.; Hanet, C.; Albert, C.; Robin, V.; Tavier, L.; Dury, C.; Piraux, O.; Domange, J.; et al. Usefulness of a Gentle and Short Hemostasis Using the Transradial Band Device after Transradial Access for Percutaneous Coronary Angiography and Interventions to Reduce the Radial Artery Occlusion Rate (from the Prospective and Randomized CRASOC I, II, and III Studies). Am. J. Cardiol. 2017, 120, 374–379. [Google Scholar] [CrossRef]
- Pancholy, S.B.; Bernat, I.; Bertrand, O.F.; Patel, T.M. Prevention of Radial Artery Occlusion After Transradial Catheterization. JACC Cardiovasc. Interv. 2016, 9, 1992–1999. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Abbas, E.; Bakr, A.H.; Demitry, S.R.; Algowhary, M.I. Prevention of radial artery occlusion by simultaneous ulnar and radial compression (PRO-SURC). A randomized duplex ultrasound follow-up study. Int. J. Cardiol. 2022, 363, 23–29. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Izumikawa, T.; Hashimoto, S.; Yamada, T.; Taniguchi, N.; Nakajima, S.; Hata, T.; Takahashi, A. Efficacy and safety of the distal transradial approach in coronary angiography and percutaneous coronary intervention: A Japanese multicenter experience. Cardiovasc. Interv. Ther. 2020, 35, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Eid-Lidt, G.; Rodríguez, A.R.; Castellanos, J.J.; Pasos, J.I.F.; López, K.E.E.; Gaspar, J. Distal Radial Artery Approach to Prevent Radial Artery Occlusion Trial. JACC Cardiovasc. Interv. 2021, 14, 378–385. [Google Scholar] [CrossRef]
- Koutouzis, M.; Kontopodis, E.; Tassopoulos, A.; Tsiafoutis, I.; Katsanou, K.; Rigatou, A.; Didagelos, M.; Andreou, K.; Lazaris, E.; Oikonomidis, N.; et al. Distal Versus Traditional Radial Approach for Coronary Angiography. Cardiovasc. Revasculariz. Med. 2019, 20, 678–680. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, X.; Chen, R.; Liu, H.; Pang, X.; Chen, J.; Dong, S. Feasibility and Safety of the Distal Transradial Artery for Coronary Diagnostic or Interventional Catheterization. J. Interv. Cardiol. 2020, 2020, 4794838. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wei, X.; Xie, Z.; Jia, S.; Xu, S.; Wang, K. Feasibility of Distal Radial Access for Coronary Angiography and Percutaneous Coronary Intervention: A Single Center Experience. Cardiology 2021, 146, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Malik, J. A Comparative Study of TR band and PreludeSYNC Hemostasis Compression Device After Transradial Coronary Catheterization. Anatol. J. Cardiol. 2021, 25, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zuo, K.; Yang, Y.; Gao, Y.; Liu, L.; Ding, X.; Wang, L.; Xu, L. Distal Transradial Access: A Safe and Feasible Approach for Coronary Catheterization in Cases of Total Radial Artery Occlusion. J. Cardiovasc. Transl. Res. 2022, 15, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.D.P.; Navarro, E.C.; Kiemeneij, F. Distal transradial access as default approach for coronary angiography and interventions. Cardiovasc. Diagn. Ther. 2019, 9, 513–519. [Google Scholar] [CrossRef]
- Oliveira, M.D.; Navarro, E.C.; Caixeta, A. Distal transradial access for coronary procedures: A prospective cohort of 3,683 all-comers patients from the DISTRACTION registry. Cardiovasc. Diagn. Ther. 2022, 12, 208–219. [Google Scholar] [CrossRef]
- Bernat, I.; Bertrand, O.F.; Rokyta, R.; Kacer, M.; Pesek, J.; Koza, J.; Smid, M.; Bruhova, H.; Sterbakova, G.; Stepankova, L.; et al. Efficacy and Safety of Transient Ulnar Artery Compression to Recanalize Acute Radial Artery Occlusion After Transradial Catheterization. Am. J. Cardiol. 2011, 107, 1698–1701. [Google Scholar] [CrossRef]
- Balaban, Y.; Elevli, M.G. It is both possible and safe to perform coronary angiography through the same radial artery, after retrograde recanalization of radial artery occlusion, following a previous coronary angiography. J. Interv. Cardiol. 2018, 31, 957–963. [Google Scholar] [CrossRef]
- Didagelos, M.; Pagiantza, A.; Zegkos, T.; Zarra, K.; Angelopoulos, V.; Kouparanis, A.; Peteinidou, E.; Kassimis, G.; Karvounis, H.; Ziakas, A. Low Molecular Weight Heparin in Improving RAO After Transradial Coronary Catheterization. JACC Cardiovasc. Interv. 2022, 15, 1686–1688. [Google Scholar] [CrossRef]
- Didagelos, M.; Pagiantza, A.; Zegkos, T.; Papanastasiou, C.; Zarra, K.; Angelopoulos, V.; Kouparanis, A.; Peteinidou, E.; Sianos, G.; Karvounis, H.; et al. Low-molecular-weight heparin in radial artery occlusion treatment: The LOW-RAO randomized study. Futur. Cardiol. 2022, 18, 91–100. [Google Scholar] [CrossRef]
- Steinmetz, M.; Radecke, T.; Boss, T.; Stumpf, M.J.; Lortz, J.; Nickenig, G.; Kania, A.; Rassaf, T.; Rammos, C.; Schaefer, C.A. Radial artery occlusion after cardiac catheterization and impact of medical treatment. Vasa 2020, 49, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Zankl, A.R.; Andrassy, M.; Volz, C.; Ivandic, B.; Krumsdorf, U.; Katus, H.A.; Blessing, E. Radial artery thrombosis following transradial coronary angiography: Incidence and rationale for treatment of symptomatic patients with low-molecular-weight heparins. Clin. Res. Cardiol. 2010, 99, 841–847. [Google Scholar] [CrossRef] [PubMed]
- TCT-525: Impact of Low Molecular Weight Heparin on Reperfusion Rates in Patients with Radial Artery Occlusion after Cardiac Catheterization. Results and Follow-Up in 113 patients. J. Am. Coll. Cardiol. 2011, 58, B143. [CrossRef] [Green Version]
- Roy, S.; Choxi, R.; Wasilewski, M.; Jovin, I.S. Novel oral anticoagulants in the treatment of radial artery occlusion. Catheter. Cardiovasc. Interv. 2021, 98, 1133–1137. [Google Scholar] [CrossRef]
- Lin, Y.; Bei, W.; Liu, H.; Liu, Q.; Yuan, J.; Wu, M.; Sun, X.; Dong, S. Retrograde recanalization of radial artery occlusion via the distal transradial artery: A single-center experience. Front. Cardiovasc. Med. 2022, 9, 985092. [Google Scholar] [CrossRef]
- Achim, A.; Kákonyi, K.; Jambrik, Z.; Olajos, D.; Nemes, A.; Bertrand, O.F.; Ruzsa, Z. Distal Radial Artery Access for Recanalization of Radial Artery Occlusion and Repeat Intervention: A Single Center Experience. J. Clin. Med. 2022, 11, 6916. [Google Scholar] [CrossRef] [PubMed]
Patient Related Risk Factors | Procedure Related Risk Factors | |
---|---|---|
Modifiable | Non Modifiable | Modifiable |
Diabetes Mellitus | Age | Sheath to Artery Mismatch |
Dyslipidemia | Female Sex | Anticoagulation |
Peripheral Arterial Disease | Radial Artery Diameter | Multiple Punctures |
Multivessel CAD | Low BMI | Long Procedural Time |
Reduced Renal Function | Previous Catheterization | Use of Multiple Catheters |
Long Hemostasis Time | ||
Occlusive Hemostasis | ||
Radial Artery Spasm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsigkas, G.; Papanikolaou, A.; Apostolos, A.; Kramvis, A.; Timpilis, F.; Latta, A.; Papafaklis, M.I.; Aminian, A.; Davlouros, P. Preventing and Managing Radial Artery Occlusion following Transradial Procedures: Strategies and Considerations. J. Cardiovasc. Dev. Dis. 2023, 10, 283. https://doi.org/10.3390/jcdd10070283
Tsigkas G, Papanikolaou A, Apostolos A, Kramvis A, Timpilis F, Latta A, Papafaklis MI, Aminian A, Davlouros P. Preventing and Managing Radial Artery Occlusion following Transradial Procedures: Strategies and Considerations. Journal of Cardiovascular Development and Disease. 2023; 10(7):283. https://doi.org/10.3390/jcdd10070283
Chicago/Turabian StyleTsigkas, Grigorios, Amalia Papanikolaou, Anastasios Apostolos, Angelos Kramvis, Filippos Timpilis, Anastasia Latta, Michail I. Papafaklis, Adel Aminian, and Periklis Davlouros. 2023. "Preventing and Managing Radial Artery Occlusion following Transradial Procedures: Strategies and Considerations" Journal of Cardiovascular Development and Disease 10, no. 7: 283. https://doi.org/10.3390/jcdd10070283
APA StyleTsigkas, G., Papanikolaou, A., Apostolos, A., Kramvis, A., Timpilis, F., Latta, A., Papafaklis, M. I., Aminian, A., & Davlouros, P. (2023). Preventing and Managing Radial Artery Occlusion following Transradial Procedures: Strategies and Considerations. Journal of Cardiovascular Development and Disease, 10(7), 283. https://doi.org/10.3390/jcdd10070283