Impact of Obesity on Atrial Electrophysiological Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Study Selection
2.3. Quality Assessment
3. Results
3.1. Obesity and Conduction Abnormalities
3.2. Obesity and Low-Voltage Areas
3.3. Obesity and Atrial Complex Fractionated Electrograms
3.4. Obesity, Conduction Abnormalities, and Development of Early Post-Operative AF (EPOAF)
3.5. Obesity, Voltage Abnormalities and Development of Early Post-Operative AF (EPOAF)
3.6. Reversibility of Obesity-Induced Electropathology
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, M.; Wang, H.; Chen, J.; Zhao, L. Epicardial adipose tissue and atrial fibrillation: Possible mechanisms, potential therapies, and future directions. Pacing Clin. Electrophysiol. 2020, 43, 133–145. [Google Scholar] [CrossRef]
- Wong, C.X.; Ganesan, A.N.; Selvanayagam, J.B. Epicardial fat and atrial fibrillation: Current evidence, potential mechanisms, clinical implications, and future directions. Eur. Heart J. 2017, 38, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Ghattas, K.N.; Ilyas, S.; Al-Refai, R.; Maharjan, R.; Diaz Bustamante, L.; Khan, S. Obesity and Atrial Fibrillation: Should We Screen for Atrial Fibrillation in Obese Individuals? A Comprehensive Review. Cureus 2020, 12, e10471. [Google Scholar] [CrossRef] [PubMed]
- Goudis, C.A.; Korantzopoulos, P.; Ntalas, I.V.; Kallergis, E.M.; Ketikoglou, D.G. Obesity and atrial fibrillation: A comprehensive review of the pathophysiological mechanisms and links. J. Cardiol. 2015, 66, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, A.R.; Lavie, C.J.; DiNicolantonio, J.J.; O’Keefe, J.; Morin, D.P.; Khatib, S.; Messerli, F.H.; Milani, R.V. Cardiometabolic risk factors and atrial fibrillation. Rev. Cardiovasc. Med. 2013, 14, e73–e81. [Google Scholar] [CrossRef] [PubMed]
- Schram-Serban, C.; Heida, A.; Roos-Serote, M.C.; Knops, P.; Kik, C.; Brundel, B.; Bogers, A.J.; de Groot, N.M. Heterogeneity in Conduction Underlies Obesity-Related Atrial Fibrillation Vulnerability. Circ. Arrhythm. Electrophysiol. 2020, 13, e008161. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawahi, M.; Proietti, R.; Thanassoulis, G. Pericardial fat and atrial fibrillation: Epidemiology, mechanisms and interventions. Int. J. Cardiol. 2015, 195, 98–103. [Google Scholar] [CrossRef]
- Al Chekakie, M.O.; Welles, C.C.; Metoyer, R.; Ibrahim, A.; Shapira, A.R.; Cytron, J.; Santucci, P.; Wilber, D.J.; Akar, J.G. Pericardial fat is independently associated with human atrial fibrillation. J. Am. Coll. Cardiol. 2010, 56, 784–788. [Google Scholar] [CrossRef] [Green Version]
- Vroomen, M.; Olsthoorn, J.R.; Maesen, B.; L’espoir, V.; La Meir, M.; Das, M.; Maessen, J.G.; Crijns, H.J.G.M.; Verheule, S.; Pison, L. Quantification of epicardial adipose tissue in patients undergoing hybrid ablation for atrial fibrillation. Eur. J. Cardiothorac. Surg. 2019, 56, 79–86. [Google Scholar] [CrossRef]
- Shin, S.Y.; Yong, H.S.; Lim, H.E.; Na, J.O.; Choi, C.U.; Choi, J.I.; Kim, S.H.; Kim, J.W.; Kim, E.J.; Park, S.W.; et al. Total and interatrial epicardial adipose tissues are independently associated with left atrial remodeling in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 2011, 22, 647–655. [Google Scholar] [CrossRef]
- Yorgun, H.; Canpolat, U.; Aytemir, K.; Hazırolan, T.; Şahiner, L.; Kaya, E.B.; Kabakci, G.; Tokgözoğlu, L.; Özer, N.; Oto, A. Association of epicardial and peri-atrial adiposity with the presence and severity of non-valvular atrial fibrillation. Int. J. Cardiovasc. Imaging 2015, 31, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Van Rosendael, A.R.; Dimitriu-Leen, A.C.; van Rosendael, P.J.; Leung, M.; Smit, J.M.; Saraste, A.; Knuuti, J.; van der Geest, R.J.; van der Arend, B.W.; van Zwet, E.W.; et al. Association Between Posterior Left Atrial Adipose Tissue Mass and Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2017, 10, e004614. [Google Scholar] [CrossRef] [PubMed]
- Mahabadi, A.A.; Lehmann, N.; Kälsch, H.; Bauer, M.; Dykun, I.; Kara, K.; Moebus, S.; Jöckel, K.-H.; Erbel, R.; Möhlenkamp, S. Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 863–869. [Google Scholar] [CrossRef]
- Chu, C.Y.; Lee, W.-H.; Hsu, P.-C.; Lee, M.-K.; Lee, H.-H.; Chiu, C.-A.; Lin, T.-H.; Lee, C.-S.; Yen, H.-W.; Voon, W.-C.; et al. Association of Increased Epicardial Adipose Tissue Thickness With Adverse Cardiovascular Outcomes in Patients with Atrial Fibrillation. Medicine 2016, 95, e2874. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.N.; Redheuil, A.; Gandjbakhch, E. Cardiac adipose tissue and atrial fibrillation: The perils of adiposity. Cardiovasc. Res. 2016, 109, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Hatem, S.N.; Sanders, P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 2014, 102, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batal, O.; Schoenhagen, P.; Shao, M.; Ayyad, A.E.; Van Wagoner, D.R.; Halliburton, S.S.; Tchou, P.J.; Chung, M.K. Left atrial epicardial adiposity and atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2010, 3, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Date, T.; Tokuda, M.; Aramaki, Y.; Inada, K.; Matsuo, S.; Shibayama, K.; Miyanaga, S.; Miyazaki, H.; Sugimoto, K.-I.; et al. Hypoxemia in inferior pulmonary veins in supine position is dependent on obesity. Am. J. Respir. Crit. Care Med. 2008, 178, 295–299. [Google Scholar] [CrossRef]
- Pathak, R.K.; Mahajan, R.; Lau, D.H.; Sanders, P. The implications of obesity for cardiac arrhythmia mechanisms and management. Can. J. Cardiol. 2015, 31, 203–210. [Google Scholar] [CrossRef]
- Haemers, P.; Hamdi, H.; Guedj, K.; Suffee, N.; Farahmand, P.; Popovic, N.; Claus, P.; LePrince, P.; Nicoletti, A.; Jalife, J.; et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur. Heart J. 2017, 38, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Burstein, B.; Nattel, S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 2008, 51, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Greif, M.; von Ziegler, F.; Wakili, R.; Tittus, J.; Becker, C.; Helbig, S.; Laubender, R.P.; Schwarz, W.; D’anastasi, M.; Schenzle, J.; et al. Increased pericardial adipose tissue is correlated with atrial fibrillation and left atrial dilatation. Clin. Res. Cardiol. 2013, 102, 555–562. [Google Scholar] [CrossRef]
- Ayer, J.G.; Almafragy, H.S.; Patel, A.A.; Hellyer, R.L.; Celermajer, D.S. Body mass index is an independent determinant of left atrial size. Heart Lung Circ. 2008, 17, 19–24. [Google Scholar] [CrossRef]
- Ybarra, J.; Resmini, E.; Planas, F.; Navarro-López, F.; Webb, S.; Pou, J.M.; Santos, A.; Ballesta-López, C. Relationship between adiponectin and left atrium size in uncomplicated obese patients: Adiponectin, a link between fat and heart. Obes. Surg. 2009, 19, 1324–1332. [Google Scholar] [CrossRef]
- Sevinc, D.; Pasaoglu, L.; Coskun, R.; Atci, N.; Alimli, A. Relationships between left atrial pericardial fat and permanent atrial fibrillation: Results of a case-control study. Diagn. Interv. Imaging 2016, 97, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Gaborit, B.; Sengenes, C.; Ancel, P.; Jacquier, A.; Dutour, A. Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat? Compr. Physiol. 2017, 7, 1051–1082. [Google Scholar]
- Hohl, M.; Lau, D.H.; Müller, A.; Elliott, A.D.; Linz, B.; Mahajan, R.; Hendriks, J.M.L.; Böhm, M.; Schotten, U.; Sanders, P.; et al. Concomitant Obesity and Metabolic Syndrome Add to the Atrial Arrhythmogenic Phenotype in Male Hypertensive Rats. J. Am. Heart Assoc. 2017, 6, e006717. [Google Scholar] [CrossRef] [PubMed]
- Okumura, Y.; Watanabe, I.; Nagashima, K.; Sonoda, K.; Sasaki, N.; Kogawa, R.; Takahashi, K.; Iso, K.; Ohkubo, K.; Nakai, T.; et al. Effects of a high-fat diet on the electrical properties of porcine atria. J. Arrhythm. 2015, 31, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, R.; Nelson, A.; Pathak, R.K.; Middeldorp, M.E.; Wong, C.X.; Twomey, D.J.; Carbone, A.; Teo, K.; Agbaedeng, T.; Linz, D.; et al. Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat. JACC Clin. Electrophysiol. 2018, 4, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Manavis, J.; Wood, J.P.; Finnie, J.W.; Samuel, C.S.; Royce, S.G.; Twomey, D.J.; et al. Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. J. Am. Coll. Cardiol. 2015, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Munger, T.M.; Dong, Y.X.; Masaki, M.; Oh, J.K.; Mankad, S.V.; Borlaug, B.A.; Asirvatham, S.J.; Shen, W.K.; Lee, H.C.; Bielinski, S.J.; et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. J. Am. Coll. Cardiol. 2012, 60, 851–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalliah, C.J.; Bell, J.R.; Raaijmakers, A.J.; Waddell, H.M.; Wells, S.P.; Bernasochi, G.B.; Montgomery, M.K.; Binny, S.; Watts, T.; Joshi, S.B.; et al. Epicardial Adipose Tissue Accumulation Confers Atrial Conduction Abnormality. J. Am. Coll. Cardiol. 2020, 76, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Temiz, F.; Güneş, H.; Güneş, H. Evaluation of Atrial Electromechanical Delay in Children with Obesity. Medicina 2019, 55, 228. [Google Scholar] [CrossRef] [Green Version]
- Vaidean, G.D.; Manczuk, M.; Magnani, J.W. Atrial electrocardiography in obesity and hypertension: Clinical insights from the Polish-Norwegian Study (PONS). Obesity 2016, 24, 2608–2614. [Google Scholar] [CrossRef] [Green Version]
- Shirani, J.; Roberts, W.C. Clinical, electrocardiographic and morphologic features of massive fatty deposits (“lipomatous hypertrophy”) in the atrial septum. J. Am. Coll. Cardiol. 1993, 22, 226–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.K.; Chen, Y.C.; Chen, J.H.; Chen, S.A.; Chen, Y.J. Adipocytes modulate the electrophysiology of atrial myocytes: Implications in obesity-induced atrial fibrillation. Basic Res. Cardiol. 2012, 107, 293. [Google Scholar] [CrossRef]
- Takahashi, K.; Sasano, T.; Sugiyama, K.; Kurokawa, J.; Tamura, N.; Soejima, Y.; Sawabe, M.; Isobe, M.; Furukawa, T. High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b. J. Mol. Cell Cardiol. 2016, 90, 38–46. [Google Scholar] [CrossRef]
- Schram-Serban, C.; van Schie, M.S.; Knops, P.; Kik, C.; Bogers, A.J.; de Groot, N.M. Low-voltage potentials contribute to postoperative atrial fibrillation development in obese patients. Heart Rhythm. 2022, 19, 710–718. [Google Scholar] [CrossRef]
- Klein, C.; Brunereau, J.; Lacroix, D.; Ninni, S.; Brigadeau, F.; Klug, D.; Longere, B.; Montaigne, D.; Pontana, F.; Coisne, A. Left atrial epicardial adipose tissue radiodensity is associated with electrophysiological properties of atrial myocardium in patients with atrial fibrillation. Eur. Radiol. 2019, 29, 3027–3035. [Google Scholar] [CrossRef]
- O’connell, R.P.; Musa, H.; Gomez, M.S.M.; Avula, U.M.; Herron, T.J.; Kalifa, J.; Anumonwo, J.M.B. Free Fatty Acid Effects on the Atrial Myocardium: Membrane Ionic Currents Are Remodeled by the Disruption of T-Tubular Architecture. PLoS ONE 2015, 10, e0133052. [Google Scholar] [CrossRef] [Green Version]
- Lioni, L.; Korantzopoulos, P.; Letsas, K.P. Catheter Ablation of Atrial Fibrillation in Overweight and Obese Patients. J. Atr. Fibrillation 2011, 4, 1216. [Google Scholar]
- Kanazawa, H.; Yamabe, H.; Enomoto, K.; Koyama, J.; Morihisa, K.; Hoshiyama, T.; Matsui, K.; Ogawa, H. Importance of pericardial fat in the formation of complex fractionated atrial electrogram region in atrial fibrillation. Int. J. Cardiol. 2014, 174, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.; Rizzi, P.; Mewton, N.; Strauss, D.G.; Liu, C.Y.; Volpe, G.J.; Marchlinski, F.E.; Spooner, P.; Berger, R.D.; Kellman, P.; et al. Number of P-wave fragmentations on P-SAECG correlates with infiltrated atrial fat. Ann. Noninvasive Electrocardiol. 2014, 19, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Dublin, S.; French, B.; Glazer, N.L.; Wiggins, K.L.; Lumley, T.; Psaty, B.M.; Smith, N.L.; Heckbert, S.R. Risk of new-onset atrial fibrillation in relation to body mass index. Arch. Intern. Med. 2006, 166, 2322–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusayama, T.; Furusho, H.; Kashiwagi, H.; Kato, T.; Murai, H.; Usui, S.; Kaneko, S.; Takamura, M. Inflammation of left atrial epicardial adipose tissue is associated with paroxysmal atrial fibrillation. J. Cardiol. 2016, 68, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable Risk Factors and Atrial Fibrillation. Circulation 2017, 136, 583–596. [Google Scholar] [CrossRef]
- Chalazan, B.; Dickerman, D.; Sridhar, A.; Farrell, M.; Gayle, K.; Samuels, D.C.; Shoemaker, B.; Darbar, D. Relation of Body Mass Index to Symptom Burden in Patients withAtrial Fibrillation. Am. J. Cardiol. 2018, 122, 235–241. [Google Scholar] [CrossRef]
- Abed, H.S.; Samuel, C.S.; Lau, D.H.; Kelly, D.J.; Royce, S.G.; Alasady, M.; Mahajan, R.; Kuklik, P.; Zhang, Y.; Brooks, A.G.; et al. Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation. Heart Rhythm. 2013, 10, 90–100. [Google Scholar] [CrossRef]
- Tsang, T.S.; Barnes, M.E.; Miyasaka, Y.; Cha, S.S.; Bailey, K.R.; Verzosa, G.C.; Seward, J.B.; Gersh, B.J. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: A longitudinal cohort study of 21 years. Eur. Heart J. 2008, 29, 2227–2233. [Google Scholar] [CrossRef]
- Zacharias, A.; Schwann, T.A.; Riordan, C.J.; Durham, S.J.; Shah, A.S.; Habib, R.H. Obesity and risk of new-onset atrial fibrillation after cardiac surgery. Circulation 2005, 112, 3247–3255. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.X.; Sullivan, T.; Sun, M.T.; Mahajan, R.; Pathak, R.K.; Middeldorp, M.; Twomey, D.; Ganesan, A.N.; Rangnekar, G.; Roberts-Thomson, K.C.; et al. Obesity and the Risk of Incident, Post-Operative, and Post-Ablation Atrial Fibrillation: A Meta-Analysis of 626,603 Individuals in 51 Studies. JACC Clin. Electrophysiol. 2015, 1, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Kogo, H.; Sezai, A.; Osaka, S.; Shiono, M.; Tanaka, M. Does Epicardial Adipose Tissue Influence Postoperative Atrial Fibrillation? Ann. Thorac. Cardiovasc. Surg. 2019, 25, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serban, C.; Arinze, J.T.; Starreveld, R.; Lanters, E.A.; Yaksh, A.; Kik, C.; Acardag, Y.; Knops, P.; Bogers, A.J.; de Groot, N.M. The impact of obesity on early postoperative atrial fibrillation burden. J. Thorac. Cardiovasc. Surg. 2020, 159, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Maradia, K.; Chen, R.; Curtis, A.B. Relation of obesity to recurrence rate and burden of atrial fibrillation. Am. J. Cardiol. 2011, 107, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.M.; Friedman, P.A.; Asirvatham, S.J.; Shen, W.-K.; Munger, T.M.; Rea, R.F.; Brady, P.A.; Jahangir, A.; Monahan, K.H.; Hodge, D.O.; et al. Catheter ablation for atrial fibrillation in patients with obesity. Circulation 2008, 117, 2583–2590. [Google Scholar] [CrossRef] [Green Version]
- Chao, T.F.; Hung, C.-L.; Tsao, H.-M.; Lin, Y.-J.; Yun, C.-H.; Lai, Y.-H.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; et al. Epicardial adipose tissue thickness and ablation outcome of atrial fibrillation. PLoS ONE 2013, 8, e74926. [Google Scholar] [CrossRef]
- Dereli, S.; Bayramoğlu, A.; Yontar, O.C.; Cerşit, S.; Gürsoy, M.O. Epicardial fat thickness: A new predictor of successful electrical cardioversion and atrial fibrillation recurrence. Echocardiography 2018, 35, 1926–1931. [Google Scholar] [CrossRef]
- Okabe, T.; Buck, B.; Hayes, S.A.; Harfi, T.T.; Afzal, M.R.; Tyler, J.; Houmsse, M.; Kalbfleisch, S.J.; Weiss, R.; Hummel, J.D.; et al. Extreme Obesity is Associated with Low Success Rate of Atrial Fibrillation Catheter Ablation. J. Atr. Fibrillation 2020, 12, 2242. [Google Scholar]
- Pathak, R.K.; Middeldorp, M.E.; Lau, D.H.; Mehta, A.B.; Mahajan, R.; Twomey, D.; Alasady, M.; Hanley, L.; Antic, N.A.; McEvoy, R.D.; et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: The ARREST-AF cohort study. J. Am. Coll. Cardiol. 2014, 64, 2222–2231. [Google Scholar] [CrossRef]
- Glover, B.M.; Hong, K.L.; Dagres, N.; Arbelo, E.; Laroche, C.; Riahi, S.; Bertini, M.; Mikhaylov, E.N.; Galvin, J.; Kiliszek, M.; et al. Impact of body mass index on the outcome of catheter ablation of atrial fibrillation. Heart 2019, 105, 244–250. [Google Scholar] [CrossRef]
- Letsas, K.P.; Siklódy, C.H.; Korantzopoulos, P.; Weber, R.; Bürkle, G.; Mihas, C.C.; Kalusche, D.; Arentz, T. The impact of body mass index on the efficacy and safety of catheter ablation of atrial fibrillation. Int. J. Cardiol. 2013, 164, 94–98. [Google Scholar] [CrossRef]
- Faroux, L.; Lesaffre, F.; Blanpain, T.; Mora, C.; Nazeyrollas, P.; Metz, D. Impact of Obesity on Overall Radiation Exposure for Patients Who Underwent Radiofrequency Ablation of Atrial Fibrillation. Am. J. Cardiol. 2019, 124, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Mohanty, P.; Di Biase, L.; Bai, R.; Dixon, A.; Burkhardt, D.; Gallinghouse, J.G.; Horton, R.; Sanchez, J.E.; Bailey, S.; et al. Influence of body mass index on quality of life in atrial fibrillation patients undergoing catheter ablation. Heart Rhythm. 2011, 8, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Mohanty, P.; Natale, V.; Trivedi, C.; Gianni, C.; Burkhardt, J.D.; Sanchez, J.E.; Horton, R.; Gallinghouse, G.J.; Hongo, R.; et al. Impact of weight loss on ablation outcome in obese patients with longstanding persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 2018, 29, 246–253. [Google Scholar] [CrossRef]
- Masuda, M.; Mizuno, H.; Enchi, Y.; Minamiguchi, H.; Konishi, S.; Ohtani, T.; Yamaguchi, O.; Okuyama, Y.; Nanto, S.; Sakata, Y. Abundant epicardial adipose tissue surrounding the left atrium predicts early rather than late recurrence of atrial fibrillation after catheter ablation. J. Interv. Card. Electrophysiol. 2015, 44, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.R.; Reynolds, M.R. Body Mass Index, Quality of Life, and Catheter Ablation in Patients with Atrial Fibrillation. J. Atr. Fibrillation 2012, 5, 426. [Google Scholar]
- Mangiafico, V.; Saberwal, B.; Lavalle, C.; Raharja, A.; Ahmed, Z.; Papageorgiou, N.; Ahsan, S. Impact of obesity on atrial fibrillation ablation. Arch. Cardiovasc. Dis. 2020, 113, 551–563. [Google Scholar] [CrossRef]
- Guijian, L.; Jinchuan, Y.; Rongzeng, D.; Jun, Q.; Jun, W.; Wenqing, Z. Impact of body mass index on atrial fibrillation recurrence: A meta-analysis of observational studies. Pacing Clin. Electrophysiol. 2013, 36, 748–756. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, H.; Guo, L.; Hong, K. Relationship between epicardial adipose tissue volume and atrial fibrillation: A systematic review and meta-analysis. Herz 2016, 41, 421–427. [Google Scholar] [CrossRef]
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef]
- Abed, H.S.; Wittert, G.A. Obesity and atrial fibrillation. Obes. Rev. 2013, 14, 929–938.e2. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J.; Wang, N.; Meigs, J.B.; Hoffmann, U.; Massaro, J.M.; Fox, C.S.; Magnani, J.W. Pericardial fat is associated with atrial conduction: The Framingham Heart Study. J. Am. Heart Assoc. 2014, 3, e000477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnani, J.W.; Lopez, F.L.; Soliman, E.Z.; Maclehose, R.F.; Crow, R.S.; Alonso, A. P wave indices, obesity, and the metabolic syndrome: The atherosclerosis risk in communities study. Obesity 2012, 20, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Fu, Z.; Korantzopoulos, P.; Zhang, X.; Wang, S.; Li, G. Effect of obesity on p-wave parameters in a Chinese population. Ann. Noninvasive Electrocardiol. 2010, 15, 259–263. [Google Scholar] [CrossRef]
- Babcock, M.J.; Soliman, E.Z.; Ding, J.; AKronmal, R.; Goff, D.C., Jr. Pericardial fat and atrial conduction abnormalities in the Multiethnic Study of Atherosclerosis (MESA). Obesity 2011, 19, 179–184. [Google Scholar] [CrossRef]
- Sim, I.; Bishop, M.; O’neill, M.; Williams, S.E. Left atrial voltage mapping: Defining and targeting the atrial fibrillation substrate. J. Interv. Card. Electrophysiol. 2019, 56, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Platonov, P.G.; Mitrofanova, L.B.; Orshanskaya, V.; Ho, S.Y. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J. Am. Coll. Cardiol. 2011, 58, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- Latchamsetty, R.; Morady, F. Complex fractionated atrial electrograms: A worthwhile target for ablation of atrial fibrillation? Circ. Arrhythm. Electrophysiol. 2011, 4, 117–118. [Google Scholar] [CrossRef] [Green Version]
- Esato, M.; Shimizu, A.; Chun, Y.-H.; Tatsuno, H.; Yamagata, T.; Matsuzaki, M. Electrophysiologic effects of a class I antiarrhythmic agent, cibenzoline, on the refractoriness and conduction of the human atrium in vivo. J. Cardiovasc. Pharmacol. 1996, 28, 321–327. [Google Scholar] [CrossRef]
- Wang, T.J.; Parise, H.; Levy, D.; D’Agostino, R.B., Sr.; Wolf, P.A.; Vasan, R.S.; Benjamin, E.J. Obesity and the risk of new-onset atrial fibrillation. JAMA 2004, 292, 2471–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, K.; Khuong, J.N.; Xu, J.; Kanagaratnam, A.; Yan, T.D. Obesity and postoperative atrial fibrillation in patients undergoing cardiac surgery: Systematic review and meta-analysis. Int. J. Cardiol. 2016, 217, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Csige, I.; Ujvárosy, D.; Szabó, Z.; Lőrincz, I.; Paragh, G.; Harangi, M.; Somodi, S. The Impact of Obesity on the Cardiovascular System. J. Diabetes Res. 2018, 2018, 3407306. [Google Scholar] [CrossRef] [Green Version]
- European Heart Rhythm Association; European Association for Cardio-Thoracic Surgery; Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace 2010, 12, 1360–1420. [Google Scholar] [PubMed]
- Lau, D.H.; Schotten, U.; Mahajan, R.; Antic, N.A.; Hatem, S.N.; Pathak, R.K.; Hendriks, J.M.L.; Kalman, J.M.; Sanders, P. Novel mechanisms in the pathogenesis of atrial fibrillation: Practical applications. Eur. Heart J. 2016, 37, 1573–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, N.M.S.; Shah, D.; Boyle, P.M.; Anter, E.; Clifford, G.D.; Deisenhofer, I.; Deneke, T.; van Dessel, P.; Doessel, O.; Dilaveris, P.; et al. Critical appraisal of technologies to assess electrical activity during atrial fibrillation: A position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology. Europace 2022, 24, 313–330. [Google Scholar]
- Sun, K.; Halberg, N.; Khan, M.; Magalang, U.J.; Scherer, P.E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell Biol. 2013, 33, 904–917. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R.; Lau, D.H.; Brooks, A.G.; Shipp, N.J.; Wood, J.P.M.; Manavis, J.; Samuel, C.S.; Patel, K.P.; Finnie, J.W.; Alasady, M.; et al. Atrial Fibrillation and Obesity: Reverse Remodeling of Atrial Substrate With Weight Reduction. JACC Clin. Electrophysiol. 2021, 7, 630–641. [Google Scholar] [CrossRef]
Atrial Electrophysiological Abnormalities | Author | Title | Type of Study | Research Methods |
---|---|---|---|---|
Conduction abnormalities | Schram-Serban, C., et al. [6] | Heterogeneity in Conduction Underlies Obesity-Related Atrial Fibrillation Vulnerability | Human | Epicardial high resolution mapping. In obese patients, the overall incidence of CD (3.1% vs. 2.6%; p = 0.002), CB (1.8% vs. 1.2%; p < 0.001), and cCDCB (2.6% versus 1.9%; p < 0.001) was higher and CD (p = 0.012) and cCDCB (p < 0.001) lines were longer. |
Hohl, M., et al. [27] | Concomitant Obesity and Metabolic Syndrome Add to the Atrial Arrhythmogenic Phenotype in Male Hypertensive Rats | Experimental (Muridae) | Telemetric monitoring (implantation of telemetric sensors) Increase in total atrial activation time and percentage of regions with slow conduction during rapid pacing. Longer-induced AF episodes in the obese group. | |
Okumura, Y., et al. [28] | Effects of a high-fat diet on the electrical properties of porcine atria | Experimental (Suidae) | Endocardial mapping. ERPs of the pulmonary vein were shorter (p < 0.05), and AF lasted longer in the high fat diet group than in the control group (80 (45–1350) vs. 22 (3–30) s, p = 0.0212). | |
Mahajan, R., et al. [30] | Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat | Human | Endocardial mapping Obesity was associated with reduced global conduction velocity (0.86 ± 0.31 m/s vs. 1.26 ± 0.29 m/s; p < 0.001), increased fractionation (54 ± 17% vs. 25 ± 10%; p < 0.001), and regional alteration in voltage (p < 0.001). Greater voltage heterogeneity (p = 0.001) and increased low-voltage areas (13.9% vs. 3.4%; p < 0.001) in the obese group. | |
Mahajan, R., et al. [29] | Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity | Experimental (Ovis) | Endocardial mapping Chronically obese sheep demonstrated increased conduction heterogeneity (p < 0.001); increased fractionated electrograms (p < 0.001); decreased posterior LA voltage (p < 0.001); and increased voltage heterogeneity (p < 0.001). Obesity was associated with more episodes (p = 0.02), prolongation (p = 0.01), and greater cumulative duration (p = 0.02) of AF. | |
Munger, T.M., et al. [31] | Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation | Human | Endocardial mapping At a 600 ms pacing cycle length, obese patients had a shorter effective refractory period (ERP) in the left atrium (251 ± 25 ms vs. 233 ± 32 ms, p = 0.04), and in the proximal (207 ± 33 ms vs. 248 ± 34 ms, p < 0.001) and distal (193 ± 33 ms vs. 248 ± 44 ms, p < 0.001) PV than normal BMI patients. | |
Nalliah, C.J., et al. [32] | Epicardial Adipose Tissue Accumulation Confers Atrial Conduction Abnormality | Human | High-density epicardial electrophysiological mapping Higher local epicardial adipose tissue volume clinically correlated with slowed conduction, greater electrogram fractionation, and increased fibrosis. Cardiomyocyte culture studies using multielectrode arrays showed that cardiac adipose tissue-secreted factors slowed conduction velocity. | |
Temiz, F., et al. [33] | Evaluation of Atrial Electromechanical Delay in Children with Obesity | Human | Transthoracic echo and tissue Doppler echocardiography. Obese patients had significantly lengthened P wave on surface ECG to the beginning of the late diastolic wave (PA) lateral, PA septum, and intra- and inter-atrial electromechanical delays when compared with the control group (p < 0.001, p = 0.001, p < 0.001, and p < 0.001, respectively). | |
Vaidean, G.D., et al. [34] | Atrial electrocardiography in obesity and hypertension: Clinical insights from the Polish-Norwegian Study (PONS). | Human | Digital standard 12-lead resting ECG. Each 5-unit increment in the body mass index (BMI) increased P wave duration by 1.9 ms (95% CI 1.5–2.2) and PR interval by 2.4 ms (95% CI 1.9–3.0), with similar trends for central obesity, even among those without obesity by BMI. | |
Lin, Y.K., et al. [36] | Adipocytes modulate the electrophysiology of atrial myocytes: implications in obesity-induced atrial fibrillation | Experimental (Leporidae) | Whole-cell patch clamp. Compared to the control LA myocytes (n = 22), LA myocytes incubated with epicardial (n = 17), retrosternal (n = 18), or abdominal adipocytes (n = 22) had longer (80 ± 3, 109 ± 6, 109 ± 6, and 110 ± 7 ms, p < 0.001) 90% AP durations (APD(90)). Epicardial adipocyte-incubated LA myocytes had larger late sodium currents, L-type calcium currents, and transient outward potassium currents, but smaller delayed rectifier potassium and inward rectifier potassium currents than the control LA myocytes. | |
Friedman, D.J., et al. [73] | Pericardial fat is associated with atrial conduction: the Framingham Heart Study | Human | Standard 12-lead resting ECG. Each 1-SD increase in pericardial fat was significantly associated with PR interval (β = 1.7 ms, p = 0.049), P-duration (β = 2.3 ms, p < 0.001), and P-terminal (β = 297 μV·ms, p < 0.001) among women; and P-duration (β = 1.2 ms, p = 0.002), P-amplitude (β = -2.5 μV, p < 0. 001), and P-terminal (β = 160 μV·ms, p = 0.002) among men. | |
Magnani, J.W., et al. [74] | P wave indices, obesity, and the metabolic syndrome: the atherosclerosis risk in communities study | Human | Standard 12-lead resting ECG. In multivariable analyses, there was significant, progressive increases in PR interval, P wave maximum duration, and P wave terminal force with BMI 25–30 kg/m2 and BMI ≥ 30 kg/m2 compared to the reference group < 25 kg/m2 (p < 0.0001 in trends for all P wave indices). | |
Liu, T., et al. [75] | Effect of obesity on P wave parameters in a Chinese population | Human | Standard 12-lead resting ECG. P(max) (111.9 +/− 9.3 vs. 101.1 +/− 6.0 ms, p < 0.01) and P wave duration and dispersion (P(d)) (47.9 +/− 9.3 vs. 31.8 +/− 6.9 ms, p < 0.01) were significantly prolonged in the obese group. P(min) was similar between the two groups. The prevalence of the inter-atrial block was significantly greater in the obese subjects. Pearson’s correlation analysis showed that there were positive correlations between P(d) and BMI (r = 0.6, p < 0.001), as well as between P(d) and the left atrial diameter (r = 0.366, p < 0.05) | |
Babcock, M.J., et al. [76] | Pericardial fat and atrial conduction abnormalities in the Multiethnic Study of Atherosclerosis (MESA). | Human | Standard 12-lead resting ECG. All P wave indexes were significantly associated with pericardial fat (Pfat) in unadjusted analyses. After demographics adjustment, P-duration (1.68 (0.87, 2.49)) and P-terminal (0.16 (0.04, 0.28)), but not PR-duration (1.11 (−0.52, 2.74)) were associated with Pfat. No associations were significant after adjustment for BMI, waist circumference, or cardiovascular disease risk factors. | |
Voltage abnormalities | Mahajan, R., et al. [30] | Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat | Human | Endocardial mapping (See above) |
Schram-Serban, C., et al. [38] | Low-voltage potentials contribute to postoperative atrial fibrillation development in obese patients | Human | Epicardial high resolution mapping. Compared with nonobese patients, obese patients have potentials with lower voltages (median of medians) (4.5 mV [0.4–16.2 mV] vs. 5.5 mV [0.8–18.0 mV]; p < 0.001), especially at Bachmann’s Bundle (4.1 mV [0.4–12.3 mV] vs. 6.2 mV [1.0–14.3 mV]; p < 0.001) and left atrium (5.1 mV [0.5–10.1 mV] vs. 6.2 mV [0.8–15.9 mV]; p = 0.003). The percentage of low-voltage potentials was higher in obese (median 3.6% [0.0–77.1%]) than in nonobese (median 2.3% [0.0–57.9%]) patients (p < 0.001). | |
Klein, C., et al. [39] | Left atrial epicardial adipose tissue radiodensity is associated with electrophysiological properties of atrial myocardium in patients with atrial fibrillation | Human | Endocardial mapping. Patients with left atrial (LA) low-voltage zones (LVZ) presented significantly lower LA epicardial adipose tissue radiodensity than patients with no LA-LVZ (−101.8 ± 12.5 HU vs. −90.4 ± 6.3 HU, p = 0.004). | |
Mahajan, R., et al. [29] | Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity | Experimental (Ovis) | Endocardial mapping (See above) | |
Lin, Y.K., et al. [36] | Adipocytes modulate the electrophysiology of atrial myocytes: implications in obesity-induced atrial fibrillation | Experimental (Leporidae) | Whole-cell patch clamp (See above) | |
O’Connell, R.P., et al. [40] | Free Fatty Acid Effects on the Atrial Myocardium: Membrane Ionic Currents Are Remodeled by the Disruption of T-Tubular Architecture | Experimental (Ovis) | Isolated myocytes using the Langendorff retrograde perfusion method. Stearic acid disrupts t-tubular architecture and remodels properties of membrane ionic currents in sheep atrial myocytes. | |
Complex fractionated electrograms | Okumura, Y., et al. [28] | Effects of a high-fat diet on the electrical properties of porcine atria | Experimental (Suidae) | Endocardial mapping. Effective refractory periods of the pulmonary vein (PV) were shorter (p < 0.05), and AF lasted longer in the high fat diet group than in the control group (80 (45–1350) vs. 22 (3–30) s, p = 0.0212). |
Mahajan, R., et al. [30] | Electroanatomical Remodeling of the Atria in Obesity: Impact of Adjacent Epicardial Fat | Human | Endocardial mapping. (See above) | |
Mahajan, R., et al. [29] | Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity | Experimental (Ovis) | Endocardial mapping. (See above) | |
Kanazawa, H., et al. [42] | Importance of pericardial fat in the formation of complex fractionated atrial electrogram region in atrial fibrillation | Human | Endocardial mapping. Total cardiac pericardial fat (PF) volume correlated with AF (odds ratio [OR]: 1.024, p < 0.001). Total cardiac PF volume and total CFAE area were both independently associated with persistence of AF (OR: 1.018, p = 0.018, OR: 1.144, p = 0.002, respectively). Multivariate linear regression analysis identified total cardiac PF volume as a significant and independent determinant of total CFAE area (r = 0.488, p < 0.001). Regional PF volume correlated with local CFAE area in each LA area. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schram Serban, C.; de Groot, N.M.S. Impact of Obesity on Atrial Electrophysiological Substrate. J. Cardiovasc. Dev. Dis. 2023, 10, 342. https://doi.org/10.3390/jcdd10080342
Schram Serban C, de Groot NMS. Impact of Obesity on Atrial Electrophysiological Substrate. Journal of Cardiovascular Development and Disease. 2023; 10(8):342. https://doi.org/10.3390/jcdd10080342
Chicago/Turabian StyleSchram Serban, Corina, and Natasja M. S. de Groot. 2023. "Impact of Obesity on Atrial Electrophysiological Substrate" Journal of Cardiovascular Development and Disease 10, no. 8: 342. https://doi.org/10.3390/jcdd10080342
APA StyleSchram Serban, C., & de Groot, N. M. S. (2023). Impact of Obesity on Atrial Electrophysiological Substrate. Journal of Cardiovascular Development and Disease, 10(8), 342. https://doi.org/10.3390/jcdd10080342