The Inclusion of Underrepresented Populations in Cardiovascular Genetics and Epidemiology
Abstract
:1. The Current State of Cardiovascular Genetic Epidemiology for Common Traits and Diseases
2. Methodology
3. Barriers to Inclusion for Diverse Populations
3.1. Mistrust
3.2. Identifying and Reaching Populations
3.3. Organizational Constraints: Diversity and Funding
3.4. Appropriate Handling of Biodata
3.5. Constraints of Genetic Analysis
4. Increasing Diversity in Cardiogenetics Studies
5. Strategies for the Inclusion of Underrepresented Populations
5.1. Addressing Barriers for Individuals
5.2. Novel Technological Strategies
5.3. Collaborating with Communities
5.4. Promoting Diverse Research Teams
5.5. Safe Research Processes
5.6. Support for Diverse Genetics Studies
6. Study Limitations
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases (accessed on 2 December 2023).
- Thakker, P.D.; Braverman, A.C. Cardiogenetics: Genetic Testing in the Diagnosis and Management of Patients with Aortic Disease. Heart 2021, 107, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Said, M.A.; Verweij, N.; van der Harst, P. Associations of Combined Genetic and Lifestyle Risks With Incident Cardiovascular Disease and Diabetes in the UK Biobank Study. JAMA Cardiol. 2018, 3, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Jurgens, S.J.; Erdmann, J.; Bezzina, C.R. Genome-Wide Association Studies of Cardiovascular Disease. Physiol. Rev. 2023, 103, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Schunkert, H. Genetics of Coronary Artery Disease in the Post-GWAS Era. J. Intern. Med. 2021, 290, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, N.; Giambartolomei, C.; de Vries, P.S.; Finan, C.; Bis, J.C.; Huntley, R.P.; Lovering, R.C.; Tajuddin, S.M.; Winkler, T.W.; Graff, M.; et al. GWAS and Colocalization Analyses Implicate Carotid Intima-Media Thickness and Carotid Plaque Loci in Cardiovascular Outcomes. Nat. Commun. 2018, 9, 5141. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Mak, T.S.-H.; O’Reilly, P.F. Tutorial: A Guide to Performing Polygenic Risk Score Analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.M.; Vassos, E. Polygenic Risk Scores: From Research Tools to Clinical Instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Phulka, J.S.; Ashraf, M.; Bajwa, B.K.; Pare, G.; Laksman, Z. Current State and Future of Polygenic Risk Scores in Cardiometabolic Disease: A Scoping Review. Circ. Genom. Precis. Med. 2023, 16, 286–313. [Google Scholar] [CrossRef]
- Kwon, O.-S.; Hong, M.; Kim, T.-H.; Hwang, I.; Shim, J.; Choi, E.-K.; Lim, H.E.; Yu, H.T.; Uhm, J.-S.; Joung, B.; et al. Genome-Wide Association Study-Based Prediction of Atrial Fibrillation Using Artificial Intelligence. Open Heart 2022, 9, e001898. [Google Scholar] [CrossRef]
- Tada, H.; Shiffman, D.; Smith, J.G.; Sjögren, M.; Lubitz, S.A.; Ellinor, P.T.; Louie, J.Z.; Catanese, J.J.; Engström, G.; Devlin, J.J.; et al. Twelve-Single Nucleotide Polymorphism Genetic Risk Score Identifies Individuals at Increased Risk for Future Atrial Fibrillation and Stroke. Stroke 2014, 45, 2856–2862. [Google Scholar] [CrossRef]
- Abraham, G.; Havulinna, A.S.; Bhalala, O.G.; Byars, S.G.; De Livera, A.M.; Yetukuri, L.; Tikkanen, E.; Perola, M.; Schunkert, H.; Sijbrands, E.J.; et al. Genomic Prediction of Coronary Heart Disease. Eur. Heart J. 2016, 37, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, E.; Gudbjartsson, D.F.; Helgadottir, A.; Gudnason, T.; Gudbjartsson, T.; Eyjolfsson, K.; Patel, R.S.; Ghasemzadeh, N.; Thorleifsson, G.; Quyyumi, A.A.; et al. Common Sequence Variants Associated With Coronary Artery Disease Correlate With the Extent of Coronary Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Brautbar, A.; Pompeii, L.A.; Dehghan, A.; Ngwa, J.S.; Nambi, V.; Virani, S.S.; Rivadeneira, F.; Uitterlinden, A.G.; Hofman, A.; Witteman, J.C.M.; et al. A Genetic Risk Score Based on Direct Associations with Coronary Heart Disease Improves Coronary Heart Disease Risk Prediction in the Atherosclerosis Risk in Communities (ARIC), but Not in the Rotterdam and Framingham Offspring, Studies. Atherosclerosis 2012, 223, 421–426. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Lin, Y.-J.; Lin, M.-C.; Liang, W.-M.; Chen, C.-C.; Chen, C.-H.; Wu, J.-Y.; Lin, T.-H.; Liao, C.-C.; Huang, S.-M.; et al. Genetic Risk Score Constructed from Common Genetic Variants Is Associated with Cardiovascular Disease Risk in Type 2 Diabetes Mellitus. J. Gene Med. 2021, 23, e3305. [Google Scholar] [CrossRef]
- Ganna, A.; Magnusson, P.K.E.; Pedersen, N.L.; de Faire, U.; Reilly, M.; Arnlöv, J.; Sundström, J.; Hamsten, A.; Ingelsson, E. Multilocus Genetic Risk Scores for Coronary Heart Disease Prediction. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2267–2272. [Google Scholar] [CrossRef]
- Hindy, G.; Aragam, K.G.; Ng, K.; Chaffin, M.; Lotta, L.A.; Baras, A.; Regeneron Genetics Center; Drake, I.; Orho-Melander, M.; Melander, O.; et al. Genome-Wide Polygenic Score, Clinical Risk Factors, and Long-Term Trajectories of Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2738–2746. [Google Scholar] [CrossRef]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, C.; Lu, M.; Jorgenson, E.; Martínez, M.; Lluis-Ganella, C.; Subirana, I.; Salas, E.; Elosua, R. Clinical Utility of Multimarker Genetic Risk Scores for Prediction of Incident Coronary Heart Disease: A Cohort Study Among Over 51 000 Individuals of European Ancestry. Circ. Cardiovasc. Genet. 2016, 9, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Emdin, C.A.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016, 375, 2349–2358. [Google Scholar] [CrossRef]
- Lee, J.; Kiiskinen, T.; Mars, N.; Jukarainen, S.; Ingelsson, E.; Neale, B.; Ripatti, S.; Natarajan, P.; Ganna, A. Clinical Conditions and Their Impact on Utility of Genetic Scores for Prediction of Acute Coronary Syndrome. Circ. Genom. Precis. Med. 2021, 14, e003283. [Google Scholar] [CrossRef]
- Levin, M.G.; Kember, R.L.; Judy, R.; Birtwell, D.; Williams, H.; Arany, Z.; Giri, J.; Guerraty, M.; Cappola, T.; Regeneron Genetics Center; et al. Genomic Risk Stratification Predicts All-Cause Mortality After Cardiac Catheterization. Circ. Genom. Precis. Med. 2018, 11, e002352. [Google Scholar] [CrossRef]
- Mega, J.L.; Stitziel, N.O.; Smith, J.G.; Chasman, D.I.; Caulfield, M.; Devlin, J.J.; Nordio, F.; Hyde, C.; Cannon, C.P.; Sacks, F.; et al. Genetic Risk, Coronary Heart Disease Events, and the Clinical Benefit of Statin Therapy: An Analysis of Primary and Secondary Prevention Trials. Lancet 2015, 385, 2264–2271. [Google Scholar] [CrossRef]
- Natarajan, P.; Young, R.; Stitziel, N.O.; Padmanabhan, S.; Baber, U.; Mehran, R.; Sartori, S.; Fuster, V.; Reilly, D.F.; Butterworth, A.; et al. Polygenic Risk Score Identifies Subgroup With Higher Burden of Atherosclerosis and Greater Relative Benefit From Statin Therapy in the Primary Prevention Setting. Circulation 2017, 135, 2091–2101. [Google Scholar] [CrossRef]
- Neumann, J.T.; Riaz, M.; Bakshi, A.; Polekhina, G.; Thao, L.T.P.; Nelson, M.R.; Woods, R.L.; Abraham, G.; Inouye, M.; Reid, C.M.; et al. Prognostic Value of a Polygenic Risk Score for Coronary Heart Disease in Individuals Aged 70 Years and Older. Circ. Genom. Precis. Med. 2022, 15, e003429. [Google Scholar] [CrossRef]
- Riveros-Mckay, F.; Weale, M.E.; Moore, R.; Selzam, S.; Krapohl, E.; Sivley, R.M.; Tarran, W.A.; Sørensen, P.; Lachapelle, A.S.; Griffiths, J.A.; et al. Integrated Polygenic Tool Substantially Enhances Coronary Artery Disease Prediction. Circ. Genom. Precis. Med. 2021, 14, e003304. [Google Scholar] [CrossRef]
- Schnitzer, F.; Forer, L.; Schönherr, S.; Gieger, C.; Grallert, H.; Kronenberg, F.; Peters, A.; Lamina, C. Association between a Polygenic and Family Risk Score on the Prevalence and Incidence of Myocardial Infarction in the KORA-F3 Study. Atherosclerosis 2022, 352, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.S.; Gao, H.; Morieri, M.L.; Skupien, J.; Marvel, S.; Paré, G.; Mannino, G.C.; Buranasupkajorn, P.; Mendonca, C.; Hastings, T.; et al. Genetic Predictors of Cardiovascular Mortality During Intensive Glycemic Control in Type 2 Diabetes: Findings From the ACCORD Clinical Trial. Diabetes Care 2016, 39, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Melander, O.; Louie, J.Z.; Catanese, J.J.; Rowland, C.M.; Devlin, J.J.; Kathiresan, S.; Shiffman, D. Risk Prediction by Genetic Risk Scores for Coronary Heart Disease Is Independent of Self-Reported Family History. Eur. Heart J. 2016, 37, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Tcheandjieu, C.; Zhu, X.; Hilliard, A.T.; Clarke, S.L.; Napolioni, V.; Ma, S.; Lee, K.M.; Fang, H.; Chen, F.; Lu, Y.; et al. Large-Scale Genome-Wide Association Study of Coronary Artery Disease in Genetically Diverse Populations. Nat. Med. 2022, 28, 1679–1692. [Google Scholar] [CrossRef] [PubMed]
- Rutten-Jacobs, L.C.; Larsson, S.C.; Malik, R.; Rannikmäe, K.; Consortium, M.; Consortium, I.S.G.; Sudlow, C.L.; Dichgans, M.; Markus, H.S.; Traylor, M. Genetic Risk, Incident Stroke, and the Benefits of Adhering to a Healthy Lifestyle: Cohort Study of 306 473 UK Biobank Participants. BMJ 2018, 363, k4168. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.W.; Shcherbina, A.; Justesen, J.M.; Turakhia, M.; Perez, M.; Wand, H.; Tcheandjieu, C.; Clarke, S.L.; Rivas, M.A.; Ashley, E.A. Combining Clinical and Polygenic Risk Improves Stroke Prediction Among Individuals With Atrial Fibrillation. Circ. Genom. Precis. Med. 2021, 14, e003168. [Google Scholar] [CrossRef]
- Lu, X.; Niu, X.; Shen, C.; Liu, F.; Liu, Z.; Huang, K.; Wang, L.; Li, J.; Hu, D.; Zhao, Y.; et al. Development and Validation of a Polygenic Risk Score for Stroke in the Chinese Population. Neurology 2021, 97, e619–e628. [Google Scholar] [CrossRef]
- Jung, K.J.; Hwang, S.; Lee, S.; Kim, H.C.; Jee, S.H. Traditional and Genetic Risk Score and Stroke Risk Prediction in Korea. Korean Circ. J. 2018, 48, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim-Verbaas, C.A.; Fornage, M.; Bis, J.C.; Choi, S.H.; Psaty, B.M.; Meigs, J.B.; Rao, M.; Nalls, M.; Fontes, J.D.; O’Donnell, C.J.; et al. Predicting Stroke through Genetic Risk Functions: The CHARGE Risk Score Project. Stroke 2014, 45, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, T.; Kamatani, Y.; Takahashi, A.; Hata, J.; Furukawa, R.; Shiwa, Y.; Yamaji, T.; Hara, M.; Tanno, K.; Ohmomo, H.; et al. Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score. Stroke 2017, 48, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Cárcel-Márquez, J.; Muiño, E.; Gallego-Fabrega, C.; Cullell, N.; Lledós, M.; Llucià-Carol, L.; Sobrino, T.; Campos, F.; Castillo, J.; Freijo, M.; et al. A Polygenic Risk Score Based on a Cardioembolic Stroke Multitrait Analysis Improves a Clinical Prediction Model for This Stroke Subtype. Front. Cardiovasc. Med. 2022, 9, 940696. [Google Scholar] [CrossRef]
- Warren, H.R.; Evangelou, E.; Cabrera, C.P.; Gao, H.; Ren, M.; Mifsud, B.; Ntalla, I.; Surendran, P.; Liu, C.; Cook, J.P.; et al. Genome-Wide Association Analysis Identifies Novel Blood Pressure Loci and Offers Biological Insights into Cardiovascular Risk. Nat. Genet. 2017, 49, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Vaura, F.; Kauko, A.; Suvila, K.; Havulinna, A.S.; Mars, N.; Salomaa, V.; FinnGen; Cheng, S.; Niiranen, T. Polygenic Risk Scores Predict Hypertension Onset and Cardiovascular Risk. Hypertension 2021, 77, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Maj, C.; Salvi, E.; Citterio, L.; Borisov, O.; Simonini, M.; Glorioso, V.; Barlassina, C.; Glorioso, N.; Thijs, L.; Kuznetsova, T.; et al. Dissecting the Polygenic Basis of Primary Hypertension: Identification of Key Pathway-Specific Components. Front. Cardiovasc. Med. 2022, 9, 814502. [Google Scholar] [CrossRef] [PubMed]
- Kurniansyah, N.; Goodman, M.O.; Kelly, T.N.; Elfassy, T.; Wiggins, K.L.; Bis, J.C.; Guo, X.; Palmas, W.; Taylor, K.D.; Lin, H.J.; et al. A Multi-Ethnic Polygenic Risk Score Is Associated with Hypertension Prevalence and Progression throughout Adulthood. Nat. Commun. 2022, 13, 3549. [Google Scholar] [CrossRef]
- Juhola, J.; Oikonen, M.; Magnussen, C.G.; Mikkilä, V.; Siitonen, N.; Jokinen, E.; Laitinen, T.; Würtz, P.; Gidding, S.S.; Taittonen, L.; et al. Childhood Physical, Environmental, and Genetic Predictors of Adult Hypertension: The Cardiovascular Risk in Young Finns Study. Circulation 2012, 126, 402–409. [Google Scholar] [CrossRef]
- Giontella, A.; Sjögren, M.; Lotta, L.A.; Overton, J.D.; Baras, A.; Regeneron Genetics Center; Minuz, P.; Fava, C.; Melander, O. Clinical Evaluation of the Polygenetic Background of Blood Pressure in the Population-Based Setting. Hypertension 2021, 77, 169–177. [Google Scholar] [CrossRef]
- El Rouby, N.; McDonough, C.W.; Gong, Y.; McClure, L.A.; Mitchell, B.D.; Horenstein, R.B.; Talbert, R.L.; Crawford, D.C.; eMERGE Network; Gitzendanner, M.A.; et al. Genome-Wide Association Analysis of Common Genetic Variants of Resistant Hypertension. Pharmacogenomics J. 2019, 19, 295–304. [Google Scholar] [CrossRef] [PubMed]
- International Consortium for Blood Pressure Genome-Wide Association Studies; Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; et al. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Paranjpe, I.; Tsao, N.L.; De Freitas, J.K.; Judy, R.; Chaudhary, K.; Forrest, I.S.; Jaladanki, S.K.; Paranjpe, M.; Sharma, P.; CBIPM Genomics Team; et al. Derivation and Validation of Genome-Wide Polygenic Score for Ischemic Heart Failure. J. Am. Heart Assoc. 2021, 10, e021916. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xiao, L.; Sun, Y.; Hu, D.; Chen, Y.; Wang, Y.; Wang, D.W. Multivariable Prognostic Model for Heart Failure in Chinese Han Population-Based Setting. ESC Heart Fail. 2022, 9, 2388–2398. [Google Scholar] [CrossRef]
- Hu, D.; Xiao, L.; Li, S.; Hu, S.; Sun, Y.; Wang, Y.; Wang, D.W. Prediction of HF-Related Mortality Risk Using Genetic Risk Score Alone and in Combination With Traditional Risk Factors. Front. Cardiovasc. Med. 2021, 8, 634966. [Google Scholar] [CrossRef] [PubMed]
- Aung, N.; Vargas, J.D.; Yang, C.; Cabrera, C.P.; Warren, H.R.; Fung, K.; Tzanis, E.; Barnes, M.R.; Rotter, J.I.; Taylor, K.D.; et al. Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation 2019, 140, 1318–1330. [Google Scholar] [CrossRef]
- Rosenberg, N.A.; Huang, L.; Jewett, E.M.; Szpiech, Z.A.; Jankovic, I.; Boehnke, M. Genome-Wide Association Studies in Diverse Populations. Nat. Rev. Genet. 2010, 11, 356–366. [Google Scholar] [CrossRef]
- Martin, A.R.; Gignoux, C.R.; Walters, R.K.; Wojcik, G.L.; Neale, B.M.; Gravel, S.; Daly, M.J.; Bustamante, C.D.; Kenny, E.E. Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am. J. Hum. Genet. 2017, 100, 635–649. [Google Scholar] [CrossRef]
- Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical Use of Current Polygenic Risk Scores May Exacerbate Health Disparities. Nat. Genet. 2019, 51, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Dikilitas, O.; Schaid, D.J.; Kosel, M.L.; Carroll, R.J.; Chute, C.G.; Denny, J.A.; Fedotov, A.; Feng, Q.; Hakonarson, H.; Jarvik, G.P.; et al. Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups. Am. J. Hum. Genet. 2020, 106, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Dikilitas, O.; Schaid, D.J.; Tcheandjieu, C.; Clarke, S.L.; Assimes, T.L.; Kullo, I.J. Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations. Curr. Cardiol. Rep. 2022, 24, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.; Shen, H.; Gelaye, B.; Meijsen, J.; Ressler, K.; Feldman, M.; Peterson, R.; Domingue, B. Analysis of Polygenic Risk Score Usage and Performance in Diverse Human Populations. Nat. Commun. 2019, 10, 3328. [Google Scholar] [CrossRef]
- Loh, M.; Zhang, W.; Ng, H.K.; Schmid, K.; Lamri, A.; Tong, L.; Ahmad, M.; Lee, J.-J.; Ng, M.C.Y.; Petty, L.E.; et al. Identification of Genetic Effects Underlying Type 2 Diabetes in South Asian and European Populations. Commun. Biol. 2022, 5, 329. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Zekavat, S.M.; Collins, R.L.; Roselli, C.; Natarajan, P.; Lichtman, J.H.; D’Onofrio, G.; Mattera, J.; Dreyer, R.; et al. Whole-Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized With Early-Onset Myocardial Infarction. Circulation 2019, 139, 1593–1602. [Google Scholar] [CrossRef]
- Gola, D.; Erdmann, J.; Läll, K.; Mägi, R.; Müller-Myhsok, B.; Schunkert, H.; König, I.R. Population Bias in Polygenic Risk Prediction Models for Coronary Artery Disease. Circ. Genom. Precis. Med. 2020, 13, e002932. [Google Scholar] [CrossRef]
- Fatumo, S.; Chikowore, T.; Choudhury, A.; Ayub, M.; Martin, A.R.; Kuchenbaecker, K. A Roadmap to Increase Diversity in Genomic Studies. Nat. Med. 2022, 28, 243–250. [Google Scholar] [CrossRef]
- Zhang, T.; Tsang, W.; Wijeysundera, H.C.; Ko, D.T. Reporting and Representation of Ethnic Minorities in Cardiovascular Trials: A Systematic Review. Am. Heart J. 2013, 166, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, R.; Nicholls, S.J.; Nerlekar, N.; Scherer, D.J.; Chandramouli, C.; Lam, C.S.P.; Muthalaly, R.; Tan, S.; Wong, C.X.; Chew, D.P.; et al. Asia-Pacific Investigators and Asian Enrollment in Cardiometabolic Trials: Insights From Publications Between 2011 and 2020. JACC Asia 2023, 3, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Vilcant, V.; Ceron, C.; Verma, G.; Zeltser, R.; Makaryus, A.N. Inclusion of Under-Represented Racial and Ethnic Groups in Cardiovascular Clinical Trials. Heart Lung Circ. 2022, 31, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Popejoy, A.B.; Fullerton, S.M. Genomics Is Failing on Diversity. Nature 2016, 538, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Landry, L.G.; Ali, N.; Williams, D.R.; Rehm, H.L.; Bonham, V.L. Lack of Diversity In Genomic Databases Is A Barrier To Translating Precision Medicine Research Into Practice. Health Aff. 2018, 37, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Caron, N.R.; Chongo, M.; Hudson, M.; Arbour, L.; Wasserman, W.W.; Robertson, S.; Correard, S.; Wilcox, P. Indigenous Genomic Databases: Pragmatic Considerations and Cultural Contexts. Front. Public Health 2020, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Bentley, A.R.; Callier, S.; Rotimi, C.N. Diversity and Inclusion in Genomic Research: Why the Uneven Progress? J. Community Genet. 2017, 8, 255–266. [Google Scholar] [CrossRef]
- Paskett, E.D.; Reeves, K.W.; McLaughlin, J.M.; Katz, M.L.; McAlearney, A.S.; Ruffin, M.T.; Halbert, C.H.; Merete, C.; Davis, F.; Gehlert, S. Recruitment of Minority and Underserved Populations in the United States: The Centers for Population Health and Health Disparities Experience. Contemp. Clin. Trials 2008, 29, 847–861. [Google Scholar] [CrossRef]
- Swanson, G.M.; Ward, A.J. Recruiting Minorities Into Clinical Trials Toward a Participant-Friendly System. JNCI J. Natl. Cancer Inst. 1995, 87, 1747–1759. [Google Scholar] [CrossRef]
- Brown, B.A.; Long, H.L.; Weitz, T.A.; Milliken, N. Challenges of Recruitment: Focus Groups with Research Study Recruiters. Women Health 2001, 31, 153–166. [Google Scholar] [CrossRef]
- Blanchard, J.W.; Tallbull, G.; Wolpert, C.; Powell, J.; Foster, M.W.; Royal, C. Barriers and Strategies Related to Qualitative Research on Genetic Ancestry Testing in Indigenous Communities. J. Empir. Res. Hum. Res. Ethics Int. J. 2017, 12, 169–179. [Google Scholar] [CrossRef]
- George, S.; Duran, N.; Norris, K. A Systematic Review of Barriers and Facilitators to Minority Research Participation Among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am. J. Public Health 2014, 104, e16–e31. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.G.; Howerton, M.W.; Lai, G.Y.; Gary, T.L.; Bolen, S.; Gibbons, M.C.; Tilburt, J.; Baffi, C.; Tanpitukpongse, T.P.; Wilson, R.F.; et al. Barriers to Recruiting Underrepresented Populations to Cancer Clinical Trials: A Systematic Review. Cancer 2008, 112, 228–242. [Google Scholar] [CrossRef]
- Ejiogu, N.; Norbeck, J.H.; Mason, M.A.; Cromwell, B.C.; Zonderman, A.B.; Evans, M.K. Recruitment and Retention Strategies for Minority or Poor Clinical Research Participants: Lessons from the Healthy Aging in Neighborhoods of Diversity across the Life Span Study. Gerontologist 2011, 51 (Suppl. 1), S33–S45. [Google Scholar] [CrossRef]
- Wilets, I.; O’Rourke, M.; Nassisi, D. How Patients and Visitors to an Urban Emergency Department View Clinical Research. Acad. Emerg. Med. 2003, 10, 1081–1085. [Google Scholar] [CrossRef]
- Schmotzer, G.L. Barriers and Facilitators to Participation of Minorities in Clinical Trials. Ethn. Dis. 2012, 22, 226–230. [Google Scholar]
- Scharff, D.P.; Mathews, K.J.; Jackson, P.; Hoffsuemmer, J.; Martin, E.; Edwards, D. More than Tuskegee: Understanding Mistrust about Research Participation. J. Health Care Poor Underserved 2010, 21, 879–897. [Google Scholar] [CrossRef]
- Bates, B.R.; Harris, T.M. The Tuskegee Study of Untreated Syphilis and Public Perceptions of Biomedical Research: A Focus Group Study. J. Natl. Med. Assoc. 2004, 96, 1051–1064. [Google Scholar]
- Buseh, A.G.; Underwood, S.M.; Stevens, P.E.; Townsend, L.; Kelber, S.T. Black African Immigrant Community Leaders’ Views on Participation in Genomics Research and DNA Biobanking. Nurs. Outlook 2013, 61, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Bussey-Jones, J.; Garrett, J.; Henderson, G.; Moloney, M.; Blumenthal, C.; Corbie-Smith, G. The Role of Race and Trust in Tissue/Blood Donation for Genetic Research. Genet. Med. 2010, 12, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Bowekaty, M.B.; Davis, D.S. Cultural Issues in Genetic Research with American Indian and Alaskan Native People. IRB Ethics Hum. Res. 2003, 25, 12–15. [Google Scholar] [CrossRef]
- Royal, C.D.; Novembre, J.; Fullerton, S.M.; Goldstein, D.B.; Long, J.C.; Bamshad, M.J.; Clark, A.G. Inferring Genetic Ancestry: Opportunities, Challenges, and Implications. Am. J. Hum. Genet. 2010, 86, 661–673. [Google Scholar] [CrossRef]
- Devlin, A.; Gonzalez, E.; Ramsey, F.; Esnaola, N.; Fisher, S. The Effect of Discrimination on Likelihood of Participation in a Clinical Trial. J. Racial Ethn. Health Disparities 2020, 7, 1124–1129. [Google Scholar] [CrossRef]
- Harry, D.; Kaneche, L.M. Asserting Tribal Sovereignty over Cultural Property: Moving towards Protection of Genetic Material and Indigenous Knowledge. Seattle J. Soc. Just. 2006, 5, 27. [Google Scholar]
- Lawrence, J. The Indian Health Service and the Sterilization of Native American Women. Am. Indian Q. 2000, 24, 400–419. [Google Scholar] [CrossRef]
- Garrison, N.A. Genomic Justice for Native Americans: Impact of the Havasupai Case on Genetic Research. Sci. Technol. Hum. Values 2013, 38, 201–223. [Google Scholar] [CrossRef]
- Dalton, R. Tribe Blasts “exploitation” of Blood Samples. Nature 2002, 420, 111–112. [Google Scholar] [CrossRef]
- Cochran, P.A.L.; Marshall, C.A.; Garcia-Downing, C.; Kendall, E.; Cook, D.; McCubbin, L.; Gover, R.M.S. Indigenous Ways of Knowing: Implications for Participatory Research and Community. Am. J. Public Health 2008, 98, 22–27. [Google Scholar] [CrossRef]
- Corbie-Smith, G.; Moody-Ayers, S.; Thrasher, A.D. Closing the Circle Between Minority Inclusion in Research and Health Disparities. Arch. Intern. Med. 2004, 164, 1362–1364. [Google Scholar] [CrossRef] [PubMed]
- Popejoy, A.B.; Crooks, K.R.; Fullerton, S.M.; Hindorff, L.A.; Hooker, G.W.; Koenig, B.A.; Pino, N.; Ramos, E.M.; Ritter, D.I.; Wand, H.; et al. Clinical Genetics Lacks Standard Definitions and Protocols for the Collection and Use of Diversity Measures. Am. J. Hum. Genet. 2020, 107, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Valantine, H.A.; Collins, F.S. National Institutes of Health Addresses the Science of Diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 12240–12242. [Google Scholar] [CrossRef] [PubMed]
- McGee, R.; Saran, S.; Krulwich, T.A. Diversity in the Biomedical Research Workforce: Developing Talent. Mt. Sinai J. Med. 2012, 79, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Diversity and STEM: Women, Minorities, and Persons with Disabilities 2023|NSF-National Science Foundation. Available online: https://ncses.nsf.gov/pubs/nsf23315/report (accessed on 2 December 2023).
- Green, E.D.; Gunter, C.; Biesecker, L.G.; Francesco, V.D.; Easter, C.L.; Feingold, E.A.; Felsenfeld, A.L.; Kaufman, D.J.; Ostrander, E.A.; Pavan, W.J.; et al. Strategic Vision for Improving Human Health at The Forefront of Genomics. Nature 2020, 586, 683–692. [Google Scholar] [CrossRef]
- Hindorff, L.A.; Bonham, V.L.; Brody, L.C.; Ginoza, M.E.C.; Hutter, C.M.; Manolio, T.A.; Green, E.D. Prioritizing Diversity in Human Genomics Research. Nat. Rev. Genet. 2018, 19, 175–185. [Google Scholar] [CrossRef]
- Sahota, P.C. Body Fragmentation: Native American Community Members’ Views on Specimen Disposition in Biomedical/Genetics Research. AJOB Empir. Bioeth. 2014, 5, 19–30. [Google Scholar] [CrossRef]
- Aramoana, J.; Koea, J.; CommNETS Collaboration. An Integrative Review of the Barriers to Indigenous Peoples Participation in Biobanking and Genomic Research. JCO Glob. Oncol. 2020, 6, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Tiffin, N. Potential Risks and Solutions for Sharing Genome Summary Data from African Populations. BMC Med. Genom. 2019, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Arbour, L.; Cook, D. DNA on Loan: Issues to Consider When Carrying out Genetic Research with Aboriginal Families and Communities. Community Genet. 2006, 9, 153–160. [Google Scholar] [CrossRef]
- Rotimi, C.N.; Tekola-Ayele, F.; Baker, J.L.; Shriner, D. The African Diaspora: History, Adaptation and Health. Curr. Opin. Genet. Dev. 2016, 41, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, D.; Choudhury, A.; Basu, A.; Ramsay, M. Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset. Genome Biol. Evol. 2016, 8, 3460–3470. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, S.; Srivastava, D. Genetics of Human Cardiovascular Disease. Cell 2012, 148, 1242–1257. [Google Scholar] [CrossRef] [PubMed]
- Arbour, L.; Asuri, S.; Whittome, B.; Polanco, F.; Hegele, R.A. The Genetics of Cardiovascular Disease in Canadian and International Aboriginal Populations. Can. J. Cardiol. 2015, 31, 1094–1115. [Google Scholar] [CrossRef] [PubMed]
- Silent Genomes Project|BC Children’s Hospital Research Institute. Available online: https://www.bcchr.ca/silent-genomes-project (accessed on 3 December 2023).
- Aotearoa New Zealand Genomic Variome|Genomics Aotearoa. Available online: https://www.genomics-aotearoa.org.nz/our-work/health-projects/aotearoa-nz-genomic-variome (accessed on 3 December 2023).
- Denny, J.C.; Rutter, J.L.; Goldstein, D.B.; Philippakis, A.; Smoller, J.W.; Jenkins, G.; Dishman, E. The “All of Us” Research Program. N. Engl. J. Med. 2019, 381, 668–676. [Google Scholar] [CrossRef]
- Giri, A.; Hellwege, J.N.; Keaton, J.M.; Park, J.; Qiu, C.; Warren, H.R.; Torstenson, E.S.; Kovesdy, C.P.; Sun, Y.V.; Wilson, O.D.; et al. Trans-Ethnic Association Study of Blood Pressure Determinants in over 750,000 Individuals. Nat. Genet. 2019, 51, 51–62. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic Analysis of Quantitative Traits in the Japanese Population Links Cell Types to Complex Human Diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef]
- Kathiresan, N.; Cho, S.M.J.; Bhattacharya, R.; Truong, B.; Hornsby, W.; Natarajan, P. Representation of Race and Ethnicity in the Contemporary US Health Cohort All of Us Research Program. JAMA Cardiol. 2023, 8, 859–864. [Google Scholar] [CrossRef]
- Legget, M.E.; Cameron, V.A.; Poppe, K.K.; Aish, S.; Earle, N.; Choi, Y.; Bradbury, K.E.; Wall, C.; Stewart, R.; Kerr, A.; et al. The Multi-Ethnic New Zealand Study of Acute Coronary Syndromes (MENZACS): Design and Methodology. Cardiogenetics 2021, 11, 84–97. [Google Scholar] [CrossRef]
- Wojcik, G.L.; Graff, M.; Nishimura, K.K.; Tao, R.; Haessler, J.; Gignoux, C.R.; Highland, H.M.; Patel, Y.M.; Sorokin, E.P.; Avery, C.L.; et al. Genetic Analyses of Diverse Populations Improves Discovery for Complex Traits. Nature 2019, 570, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Spracklen, C.N.; Zhang, W.; Ng, M.C.Y.; Petty, L.E.; Kitajima, H.; Yu, G.Z.; Rüeger, S.; Speidel, L.; Kim, Y.J.; et al. Multi-Ancestry Genetic Study of Type 2 Diabetes Highlights the Power of Diverse Populations for Discovery and Translation. Nat. Genet. 2022, 54, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Kullo, I.J.; Dikilitas, O. Polygenic Risk Scores for Diverse Ancestries. J. Am. Coll. Cardiol. 2020, 76, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Menon, R.; Mishra, S.; Patel, A.P.; Chaffin, M.; Tanneeru, D.; Deshmukh, M.; Mathew, O.; Apte, S.; Devanboo, C.S.; et al. Validation of a Genome-Wide Polygenic Score for Coronary Artery Disease in South Asians. J. Am. Coll. Cardiol. 2020, 76, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Ito, K.; Terao, C.; Akiyama, M.; Horikoshi, M.; Momozawa, Y.; Matsunaga, H.; Ieki, H.; Ozaki, K.; Onouchi, Y.; et al. Population-Specific and Trans-Ancestry Genome-Wide Analyses Identify Distinct and Shared Genetic Risk Loci for Coronary Artery Disease. Nat. Genet. 2020, 52, 1169–1177. [Google Scholar] [CrossRef]
- Vais, S.; Thomson, L.; Williams, A.; Sobota, A. Rethinking Rideshares: A Transportation Assistance Pilot for Pediatric Patients with Sickle Cell Disease. J. Health Care Poor Underserved 2020, 31, 1457–1470. [Google Scholar] [CrossRef]
- Chaiyachati, K.H.; Hubbard, R.A.; Yeager, A.; Mugo, B.; Shea, J.A.; Rosin, R.; Grande, D. Rideshare-Based Medical Transportation for Medicaid Patients and Primary Care Show Rates: A Difference-in-Difference Analysis of a Pilot Program. J. Gen. Intern. Med. 2018, 33, 863–868. [Google Scholar] [CrossRef]
- Nipp, R.D.; Lee, H.; Powell, E.; Birrer, N.E.; Poles, E.; Finkelstein, D.; Winkfield, K.; Percac-Lima, S.; Chabner, B.; Moy, B. Financial Burden of Cancer Clinical Trial Participation and the Impact of a Cancer Care Equity Program. Oncologist 2016, 21, 467–474. [Google Scholar] [CrossRef]
- Thakur, N.; Lovinsky-Desir, S.; Appell, D.; Bime, C.; Castro, L.; Celedón, J.C.; Ferreira, J.; George, M.; Mageto, Y.; Mainous, A.G., III; et al. Enhancing Recruitment and Retention of Minority Populations for Clinical Research in Pulmonary, Critical Care, and Sleep Medicine: An Official American Thoracic Society Research Statement. Am. J. Respir. Crit. Care Med. 2021, 204, e26–e50. [Google Scholar] [CrossRef]
- Ibrahim, S.; Sidani, S. Strategies to Recruit Minority Persons: A Systematic Review. J. Immigr. Minor. Health 2014, 16, 882–888. [Google Scholar] [CrossRef]
- Samayoa, C.; Santoyo-Olsson, J.; Escalera, C.; Stewart, A.L.; Ortiz, C.; Márquez-Magaña, L.; Urias, A.; Gonzalez, N.; Cervantes, S.A.; Torres-Nguyen, A.; et al. Participant-Centered Strategies for Overcoming Barriers to Biospecimen Collection among Spanish-Speaking Latina Breast Cancer Survivors. Cancer Epidemiol. Biomark. Prev. 2020, 29, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, A.E.; Bastani, R.; Vida, P.; Warda, U.S. Strategies to Recruit and Retain Older Filipino-American Immigrants for a Cancer Screening Study. J. Community Health 2005, 30, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.C.; Jenkins, S.; Lackore, K.; Johnson, J.; Jones, C.; Cooper, L.A.; Radecki Breitkopf, C.; Hayes, S.N.; Patten, C. mHealth Intervention Promoting Cardiovascular Health Among African-Americans: Recruitment and Baseline Characteristics of a Pilot Study. JMIR Res. Protoc. 2018, 7, e31. [Google Scholar] [CrossRef] [PubMed]
- Admon, L.; Haefner, J.K.; Kolenic, G.E.; Chang, T.; Davis, M.M.; Moniz, M.H. Recruiting Pregnant Patients for Survey Research: A Head to Head Comparison of Social Media-Based Versus Clinic-Based Approaches. J. Med. Internet Res. 2016, 18, e326. [Google Scholar] [CrossRef] [PubMed]
- Huffman, L.E.; Wilson, D.K.; Kitzman-Ulrich, H.; Lyerly, J.E.; Gause, H.M.; Resnicow, K. Associations between Culturally Relevant Recruitment Strategies and Participant Interest, Enrollment and Generalizability in a Weight-Loss Intervention for African American Families. Ethn. Dis. 2016, 26, 295–304. [Google Scholar] [CrossRef]
- Martinez, O.; Wu, E.; Shultz, A.Z.; Capote, J.; López Rios, J.; Sandfort, T.; Manusov, J.; Ovejero, H.; Carballo-Dieguez, A.; Chavez Baray, S.; et al. Still a Hard-to-Reach Population? Using Social Media to Recruit Latino Gay Couples for an HIV Intervention Adaptation Study. J. Med. Internet Res. 2014, 16, e113. [Google Scholar] [CrossRef]
- Topolovec-Vranic, J.; Natarajan, K. The Use of Social Media in Recruitment for Medical Research Studies: A Scoping Review. J. Med. Internet Res. 2016, 18, e286. [Google Scholar] [CrossRef]
- Gelinas, L.; Pierce, R.; Winkler, S.; Cohen, I.G.; Lynch, H.F.; Bierer, B.E. Using Social Media as a Research Recruitment Tool: Ethical Issues and Recommendations. Am. J. Bioeth. 2017, 17, 3–14. [Google Scholar] [CrossRef]
- Sung, N.S.; Crowley, W.F.; Genel, M.; Salber, P.; Sandy, L.; Sherwood, L.M.; Johnson, S.B.; Catanese, V.; Tilson, H.; Getz, K.; et al. Central Challenges Facing the National Clinical Research Enterprise. JAMA 2003, 289, 1278–1287. [Google Scholar] [CrossRef]
- Claw, K.G.; Anderson, M.Z.; Begay, R.L.; Tsosie, K.S.; Fox, K.; Garrison, N.A. A Framework for Enhancing Ethical Genomic Research with Indigenous Communities. Nat. Commun. 2018, 9, 2957. [Google Scholar] [CrossRef]
- James, R.D.; Yu, J.-H.; Henrikson, N.B.; Bowen, D.J.; Fullerton, S.M. Strategies and Stakeholders: Minority Recruitment in Cancer Genetics Research. Community Genet. 2008, 11, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Andrasik, M.P.; Broder, G.B.; Wallace, S.E.; Chaturvedi, R.; Michael, N.L.; Bock, S.; Beyrer, C.; Oseso, L.; Aina, J.; Lucas, J.; et al. Increasing Black, Indigenous and People of Color Participation in Clinical Trials through Community Engagement and Recruitment Goal Establishment. PLoS ONE 2021, 16, e0258858. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, M.; Ammerman, A.; Eng, E.; Garlehner, G.; Lohr, K.N.; Griffith, D.; Rhodes, S.; Samuel-Hodge, C.; Maty, S.; Lux, L.; et al. Community-Based Participatory Research: Assessing the Evidence: Summary. In AHRQ Evidence Report Summaries; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2004. [Google Scholar]
- Guillemin, M.; Gillam, L.; Barnard, E.; Stewart, P.; Walker, H.; Rosenthal, D. “We’re Checking Them out”: Indigenous and Non-Indigenous Research Participants’ Accounts of Deciding to Be Involved in Research. Int. J. Equity Health 2016, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Mainous, A.G.; Kelliher, A.; Warne, D. Recruiting Indigenous Patients Into Clinical Trials: A Circle of Trust. Ann. Fam. Med. 2023, 21, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.A.; Powell-Young, Y.M.; Torres, E.R.; Spruill, I.J. A Systematic Review of Strategies That Increase the Recruitment and Retention of African American Adults in Genetic and Genomic Studies. ABNF J. 2011, 22, 84–88. [Google Scholar]
- Arbour, L.; Rezazadeh, S.; Eldstrom, J.; Weget-Simms, G.; Rupps, R.; Dyer, Z.; Tibbits, G.; Accili, E.; Casey, B.; Kmetic, A.; et al. A KCNQ1 V205M Missense Mutation Causes a High Rate of Long QT Syndrome in a First Nations Community of Northern British Columbia: A Community-Based Approach to Understanding the Impact. Genet. Med. 2008, 10, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Cueva, M.; Kuhnley, R.; Revels, L.; Schoenberg, N.E.; Dignan, M. Digital Storytelling: A Tool for Health Promotion and Cancer Awareness in Rural Alaskan Communities. Int. J. Circumpolar Health 2015, 74, 28781. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Bridges, J.F.P.; Mack, J.W.; Gray, S.W.; Trent, J.M.; George, S.; Crossnohere, N.L.; Paskett, E.D.; Painter, C.A.; Wagle, N.; et al. A Framework for Promoting Diversity, Equity, and Inclusion in Genetics and Genomics Research. JAMA Health Forum 2022, 3, e220603. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.W.; Bloch, C.W.; Schiebinger, L. Making Gender Diversity Work for Scientific Discovery and Innovation. Nat. Hum. Behav. 2018, 2, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Alshebli, B.; Rahwan, T.; Woon, W. Ethnic Diversity Increases Scientific Impact. arXiv Eprints 2018. Available online: https://www.researchgate.net/publication/323598224_Ethnic_Diversity_Increases_Scientific_Impact (accessed on 23 December 2023).
- Swartz, T.H.; Palermo, A.-G.S.; Masur, S.K.; Aberg, J.A. The Science and Value of Diversity: Closing the Gaps in Our Understanding of Inclusion and Diversity. J. Infect. Dis. 2019, 220 (Suppl. 2), S33–S41. [Google Scholar] [CrossRef]
- Gomez, L.E.; Bernet, P. Diversity Improves Performance and Outcomes. J. Natl. Med. Assoc. 2019, 111, 383–392. [Google Scholar] [CrossRef]
- Guglielmi, G. Facing up to Injustice in Genome Science. Nature 2019, 568, 290–293. [Google Scholar] [CrossRef]
- Bonham, V.L.; Green, E.D. The Genomics Workforce Must Become More Diverse: A Strategic Imperative. Am. J. Hum. Genet. 2021, 108, 3–7. [Google Scholar] [CrossRef]
- Garrison, N.A.; Hudson, M.; Ballantyne, L.L.; Garba, I.; Martinez, A.; Taualii, M.; Arbour, L.; Caron, N.R.; Rainie, S.C. Genomic Research Through an Indigenous Lens: Understanding the Expectations. Annu. Rev. Genom. Hum. Genet. 2019, 20, 495–517. [Google Scholar] [CrossRef]
- Salowe, R.J.; Lee, R.; Zenebe-Gete, S.; Vaughn, M.; Gudiseva, H.V.; Pistilli, M.; Kikut, A.; Becker, E.; Collins, D.W.; He, J.; et al. Recruitment Strategies and Lessons Learned from a Large Genetic Study of African Americans. PLOS Glob. Public Health 2022, 2, e0000416. [Google Scholar] [CrossRef] [PubMed]
- Simonin-Wilmer, I.; Orozco-del-Pino, P.; Bishop, D.T.; Iles, M.M.; Robles-Espinoza, C.D. An Overview of Strategies for Detecting Genotype-Phenotype Associations Across Ancestrally Diverse Populations. Front. Genet. 2021, 12, 703901. [Google Scholar] [CrossRef] [PubMed]
Authors | Study Type | Key Findings |
---|---|---|
Azzopardi et al. [61] | Systematic Review | The authors performed a systematic review of cardiometabolic trials between 2011 and 2020, finding a low overall proportion of Asian participants at 8.3% with a marginal increase over time. Regional enrollment was disproportionate when compared to burden of disease between regions. |
Duncan et al. [55] | Review | Analyzing PRS studies from 2008 to 2017, the authors found 67% of studies were derived from European ancestry cohorts, with only 3.8% from African, Hispanic, or Indigenous participant cohorts. |
Fatumo et al. [59] | Review | The authors illustrate how the vast majority of GWASs, 86%, are derived from European ancestry cohorts as of 2021, which is an increase from 81% in 2016. Studies with multi-ancestry cohorts have increased slightly, but the proportion of GWASs including underrepresented populations has plateaued or decreased since 2016. Underrepresented populations include East Asian, South Asian, African, Hispanic/Latino, Greater Middle Eastern, Oceanic, and Other (including Indigenous populations). |
Landry et al. [64] | Review | The authors analyzed data from two public genomic databases, finding the majority of genetic studies were based on European ancestry cohorts, with Asian populations comprising the next largest proportion and the rest underrepresented minority groups (often <5%). For some diseases, no GWASs of underrepresented populations were present. Cardiovascular disease studies represented minorities slightly better, with 12% of GWASs from underrepresented populations and 68% from European. |
Popejoy & Fullerton [63] | Review | The authors analyze published GWASs, finding 81% are derived from European ancestry cohorts in 2016 compared to 96% in 2009. The authors note that this improvement in diversity has largely been driven by the inclusion of East Asian studies. |
Phulka et al. [8] | Scoping Review | Focusing on the clinical utility of cardiometabolic PRSs, the authors found limited ancestral diversity in PRSs with the majority being derived from European ancestry cohorts. For example, 29 of 37 published PRSs for coronary heart disease were developed from European ancestry cohorts. |
Vilcant et al. [62] | Review | The authors reviewed landmark cardiovascular trials between 1986 and 2019, finding that percentages of non-White participants did not significantly change over time, with an average of approximately 20%. The findings indicate a lack of improvement in cardiovascular trial participant diversity. |
Zhang et al. [60] | Systematic Review | The authors reviewed major cardiovascular RCTs published between 1997 and 2010, finding a median enrollment rate of 86% White participants. White participant enrollment was overrepresented in CAD clinical trials when compared to population prevalence, and African Americans were underrepresented. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chappell, E.; Arbour, L.; Laksman, Z. The Inclusion of Underrepresented Populations in Cardiovascular Genetics and Epidemiology. J. Cardiovasc. Dev. Dis. 2024, 11, 56. https://doi.org/10.3390/jcdd11020056
Chappell E, Arbour L, Laksman Z. The Inclusion of Underrepresented Populations in Cardiovascular Genetics and Epidemiology. Journal of Cardiovascular Development and Disease. 2024; 11(2):56. https://doi.org/10.3390/jcdd11020056
Chicago/Turabian StyleChappell, Elias, Laura Arbour, and Zachary Laksman. 2024. "The Inclusion of Underrepresented Populations in Cardiovascular Genetics and Epidemiology" Journal of Cardiovascular Development and Disease 11, no. 2: 56. https://doi.org/10.3390/jcdd11020056
APA StyleChappell, E., Arbour, L., & Laksman, Z. (2024). The Inclusion of Underrepresented Populations in Cardiovascular Genetics and Epidemiology. Journal of Cardiovascular Development and Disease, 11(2), 56. https://doi.org/10.3390/jcdd11020056