Empagliflozin and Dapagliflozin Improve Endothelial Function in Mexican Patients with Type 2 Diabetes Mellitus: A Double-Blind Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Adherence and Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation Diabetes Atlas. IDF Diabetes Atlas. 2017. Available online: http://www.diabetesatlas.org/ (accessed on 7 June 2022).
- Hernández-Ávila, M.; Gutiérrez, J.P.; Reynoso-Noverón, N. Diabetes mellitus in Mexico. Status of the epidemic. Salud Publica Mex. 2013, 55 (Suppl. 2), S129–S136. [Google Scholar] [CrossRef] [PubMed]
- El-Daly, M.; Venu, V.K.P.; Saifeddine, M.; Mihara, K.; Kang, S.; Fedak, P.W.; Alston, L.A.; Hirota, S.A.; Ding, H.; Triggle, C.R.; et al. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vasc. Pharmacol. 2018, 109, 56–71. [Google Scholar] [CrossRef]
- Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2008, 26, 77–82. [Google Scholar] [CrossRef]
- Papatheodorou, K.; Banach, M.; Edmonds, M.; Papanas, N.; Papazoglou, D. Complications of Diabetes. J. Diabetes Res. 2015, 2015, 189525. [Google Scholar] [CrossRef]
- Park, S.; Kang, H.-J.; Jeon, J.-H.; Kim, M.-J.; Lee, I.-K. Recent advances in the pathogenesis of microvascular complications in diabetes. Arch. Pharmacal Res. 2019, 42, 252–262. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Hilliard, M.E.; Isaacs, D.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S158–S190. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Hilliard, M.E.; Isaacs, D.; et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes-2023. Diabetes Care 2022, 46 (Suppl. 1), S49–S67. [Google Scholar] [CrossRef]
- Anderson, E.A.; Mark, A.L. Flow-mediated and reflex changes in large peripheral artery tone in humans. Circulation 1989, 79, 93–100. [Google Scholar] [CrossRef]
- Gori, T.; von Henning, U.; Muxel, S.; Schaefer, S.; Fasola, F.; Vosseler, M.; Schnorbus, B.; Binder, H.; Parker, J.D.; Münzel, T. Both flow-mediated dilation and constriction are associated with changes in blood flow and shear stress: Two complementary perspectives on endothelial function. Clin. Hemorheol. Microcirc. 2016, 64, 255–266. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Flow-Mediated Vasodilation of the Brachial Artery. The American College of Cardiology. J. Am. Coll. Cardiol. 2002, 29, 257–265. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Leiter, L.A.; de Bruin, T.W.; Gause-Nilsson, I.; Sugg, J.; Parikh, S.J. Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: A 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care 2015, 38, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Irace, C.; Casciaro, F.; Scavelli, F.B.; Oliverio, R.; Cutruzzolà, A.; Cortese, C.; Gnasso, A. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc. Diabetol. 2018, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, T.; Spizzo, I.; Liu, H.; Hu, Y.; Simpson, R.W.; Widdop, R.E.; Dear, A.E. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A potential mechanism for inhibition of atherogenesis. Diabetes Vasc. Dis. Res. 2018, 15, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Jeyaseelan, L.; Rao, P.S. Methods of determining sample sizes in clinical trials. Indian Pediatr. 1989, 26, 115–121. [Google Scholar] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42 (Suppl. S1),, S13–S28. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Uthman, L.; Baartscheer, A.; Bleijlevens, B.; Schumacher, C.A.; Fiolet, J.W.T.; Koeman, A.; Jancev, M.; Hollmann, M.W.; Weber, N.C.; Coronel, R.; et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018, 61, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shin, S.E.; Seo, M.S.; An, J.R.; Choi, I.-W.; Jung, W.-K.; Firth, A.L.; Lee, D.-S.; Yim, M.-J.; Choi, G.; et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018, 197, 46–55. [Google Scholar] [CrossRef]
- Lee, D.M.; Battson, M.L.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Weir, T.L.; Gentile, C.L. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc. Diabetol. 2018, 17, 62. [Google Scholar] [CrossRef]
- Uthman, L.; Baartscheer, A.; Schumacher, C.A.; Fiolet, J.W.T.; Kuschma, M.C.; Hollmann, M.W.; Coronel, R.; Weber, N.C.; Zuurbier, C.J. Direct Cardiac Actions of Sodium Glucose Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart Failure in Diabetic Patients. Front. Physiol. 2018, 9, 1575. [Google Scholar] [CrossRef] [PubMed]
- Tekin, B.G.; Pektaş, E. Investigation of MHR-nephropathy relationship and the effect of SGLT2is on MHR in patients with type 2 diabetes. Ir. J. Med. Sci. 2024, 193, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Tahara, A. SGLT2 inhibitor ipragliflozin exerts antihyperglycemic effects via the blood glucose-dependent increase in urinary glucose excretion in type 2 diabetic mice. Eur. J. Pharmacol. 2021, 910, 174486. [Google Scholar] [CrossRef] [PubMed]
Placebo | Dapagliflozin | Empagliflozin | p * | |
---|---|---|---|---|
Age | 49 ± 4.02 | 52.30 ± 6.99 | 48.40 ± 7.72 | 0.267 |
Sex, female/male | 7/3 | 5/5 | 6/4 | |
BMI, kg/m2 | 30.8 ± 3.26 | 28.67 ± 3.44 | 30.23 ± 3.83 | 0.527 |
Glucose, mg/dL | 176.90 ± 59.80 | 175.97 ± 40.65 | 227.22 ± 65.13 | 0.018 |
HbA1c, % | 8.91 ± 0.94 | 8.1 ± 0.81 | 8.9 ± 0.83 | 0.101 |
TG, mg/dL | 140.57 ± 34.10 | 145.80 ± 41.68 | 131.89 ± 33.71 | 0.759 |
SBP, mmHg | 120.90 ± 8.5 | 126.70 ± 11.79 | 127.60 ± 21.35 | 0.587 |
DPB, mmHg | 79.10 ± 6.26 | 87.10 ± 20.25 | 82.30 ± 10.38 | 0.490 |
FMD, % | 5.10 ± 1.97 | 6.51 ± 1.52 | 4.62 ± 1.32 | 0.031 |
Minimum diameter, mm | 3.66 ± 0.80 | 3.77 ± 0.45 | 4.62 ± 1.24 | 0.100 |
Maximum diameter, mm | 3.83 ± 0.87 | 3.72 ± 0.36 | 4.08 ± 0.87 | 0.686 |
Average Flow, L | 4.91 ± 2.16 | 4.69 ± 1.96 | 4.50 ± 2.48 | 0.867 |
bIMT, mm | 0.27 ± 0.12 | 0.29 ± 0.07 | 0.26 ± 0.06 | 0.119 |
Placebo | Dapagliflozin | Empagliflozin | p * | |
---|---|---|---|---|
Age | 49 ± 4.02 | 52.30 ± 6.99 | 48.40 ± 7.72 | 0.267 |
Sex, female/male | 7/3 | 5/5 | 6/4 | - |
BMI, % | 30.6 ± 3.48 | 28.67 ± 3.44 | 29.36 ± 4.01 | 0.527 |
Glucose, mg/dL | 177.39 ± 56.79 | 136.10 ± 40.64 | 170.70 ± 39.17 | 0.058 |
TG, mg/dL | 234.56 ± 34.10 | 145.80 ± 41.68 | 109.97 ± 11.83 | 0.042 |
SBP, mmHg | 116.4 ± 7.67 | 108.97 ± 18.32 | 116.18 ± 10.04 | 0.741 |
DBP, mmHg | 77.20 ± 5.34 | 73.38 ± 7.31 | 73.30 ± 8.17 | 0.436 |
FMD, % | 5.02 ± 1.95 | 7.42 ± 1.55 | 7.22 ± 1.63 | 0.010 |
Minimum diameter, mm | 3.84 ± 0.80 | 4.02 ± 0.46 | 4.08 ± 0.86 | 0.083 |
Maximum diameter, mm | 4.12 ± 0.96 | 4.00 ± 0.38 | 4.30 ± 0.90 | 0.765 |
Average Flow, L | 4.91 ± 1.88 | 5.48 ± 1.35 | 5.65 ± 3.21 | 0.764 |
bIMT, mm | 0.30 ± 0.11 | 0.28 ± 0.04 | 0.28 ± 0.04 | 0.561 |
A | B | C | |||||||
---|---|---|---|---|---|---|---|---|---|
Test Statistic | Std Test Statistic | p * | Test Statistic | Std Test Statistic | p * | Z | p.unadj | p adj * | |
Placebo-Dapagliflozin | −8.4 | −2.13 | 0.098 | −10.6 | −2.695 | 0.021 | 2.007049 | 0.045 | 0.045 |
Placebo-Empagliflozin | 1.05 | 0.267 | 1.000 | −10.1 | −2.567 | 0.031 | 4.814376 | <0.001 | <0.001 |
Empagliflozin-Dapagliflozin | 9.45 | 0.016 | 0.049 | 0.5 | 0.127 | 1.000 | −2.807327 | 0.005 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balleza Alejandri, L.R.; Grover Páez, F.; González Campos, E.; Ramos Becerra, C.G.; Cardona Muñóz, E.G.; Pascoe González, S.; Ramos Zavala, M.G.; Reynoso Roa, A.S.; Suárez Rico, D.O.; Beltrán Ramírez, A.; et al. Empagliflozin and Dapagliflozin Improve Endothelial Function in Mexican Patients with Type 2 Diabetes Mellitus: A Double-Blind Clinical Trial. J. Cardiovasc. Dev. Dis. 2024, 11, 182. https://doi.org/10.3390/jcdd11060182
Balleza Alejandri LR, Grover Páez F, González Campos E, Ramos Becerra CG, Cardona Muñóz EG, Pascoe González S, Ramos Zavala MG, Reynoso Roa AS, Suárez Rico DO, Beltrán Ramírez A, et al. Empagliflozin and Dapagliflozin Improve Endothelial Function in Mexican Patients with Type 2 Diabetes Mellitus: A Double-Blind Clinical Trial. Journal of Cardiovascular Development and Disease. 2024; 11(6):182. https://doi.org/10.3390/jcdd11060182
Chicago/Turabian StyleBalleza Alejandri, Luis Ricardo, Fernando Grover Páez, Erick González Campos, Carlos G. Ramos Becerra, Ernesto Germán Cardona Muñóz, Sara Pascoe González, María Guadalupe Ramos Zavala, Africa Samantha Reynoso Roa, Daniel Osmar Suárez Rico, Alberto Beltrán Ramírez, and et al. 2024. "Empagliflozin and Dapagliflozin Improve Endothelial Function in Mexican Patients with Type 2 Diabetes Mellitus: A Double-Blind Clinical Trial" Journal of Cardiovascular Development and Disease 11, no. 6: 182. https://doi.org/10.3390/jcdd11060182
APA StyleBalleza Alejandri, L. R., Grover Páez, F., González Campos, E., Ramos Becerra, C. G., Cardona Muñóz, E. G., Pascoe González, S., Ramos Zavala, M. G., Reynoso Roa, A. S., Suárez Rico, D. O., Beltrán Ramírez, A., García Galindo, J. J., Cardona Müller, D., & Galán Ruíz, C. Y. (2024). Empagliflozin and Dapagliflozin Improve Endothelial Function in Mexican Patients with Type 2 Diabetes Mellitus: A Double-Blind Clinical Trial. Journal of Cardiovascular Development and Disease, 11(6), 182. https://doi.org/10.3390/jcdd11060182