Sonothrombolysis for Ischemic Stroke
Abstract
:1. Introduction
2. Recanalization after Ischemic Stroke
3. Ultrasound
4. In Vitro and In Vivo Effects of Ultrasound on Clots
5. Microbubbles
6. Transcranial Ultrasound Imaging
7. Clinical Case Series
8. Case-Controlled Studies and Non-Randomized Clinical Trials
Author | Daffertshofer M, et al. [72] | Perren F, et al. [74] | Rubiera M, et al. [75] | Dinia L, et al. [76] | Bardon P, et al. [77] | Dwedar AZ, et al. [78] | Reinhard M, et al. [79] |
---|---|---|---|---|---|---|---|
Year of publication | 2005 | 2008 | 2008 | 2009 | 2012 | 2014 | 2015 |
Number of patients | 26 (14 vs. 12) | 26 (11 vs. 15) | 138 (91 vs. 47) | 236 (138 vs. 98 historic controls) | 49 (12 bilateral TCD vs. 37 unilateral TCD) | 42 (21 vs. 21) | 132 (73 EVT vs. 59 ST) |
Age (yr) | 70.4 ± 9.7 | 61 ± 27 | Average 64.1 ± 9.4 Range 47–78 vs. Average 62.2 ± 12.1 Range 32–78 | Mean 59.2 ± 10.6 vs. 59.2 ± 9.3 Range 40–70 | Median 71 (IQR 60–78) vs. 75 (IQR 61–82) | ||
Time window | Mean 2.42 ± 0.50 h (range 0.50–4.35 h) | ≤3 h | 178 min (mean) | ≤3 h | Mean 133.8 ± 58.4 min vs. 142.3 ± 56.6 min | Mean 5.02 ± 1.2 h vs. 8.0 ± 2.2 h | Median 117 min (IQR 95–116) vs. 105 (IQR 83–148) and 234 (IQR 187–325) til DSA |
Stroke type | ‘Vascular obstruction’ | MCA occlusion | MCA occlusion | MCA occlusion | M1 or carotid T occlusion | ||
Technique | TCD | TCCD | TCD | TCD | TCD | TCD | TCD |
Frequency | 300 kHz | 2 MHz | 2 MHz | 2 MHz | 2 MHz | 2 MHz | 1.6 MHz |
Concomitant thrombolysis | Yes | Yes, plus Sonovue contrast agent perfusion | Yes, plus Levovist (galactose-based air-filled MB) | Yes, plus 3 doses of 2.5 g of MB after tPA bolus | No vs. yes | No | Yes |
Comparator | No USG | No Sonovue | Sonovue (sulfur hexafluoride-filled MB) instead of Levovist | Historic controls | 60-min bilateral 2-MHz pulsed-wave Doppler monitoring of the area of occlusion vs. standard sonothrombolysis | Patients who did not receive 1 h continuous TCD | Thrombectomy |
Outcome | Partial or complete recanalization—28.6 vs. 50% (p = 0.2629) | Recanalization 64% vs. 53% Patients who received ECA improved their NIHSS significantly more than those who were only TCCD monitored (Mann–Whitney U = 48.0; p = 0.050), and their flow signal improved more (Mann–Whitney U = 40.0; p < 0.03). | Recanalization rates after 1 h (32.2% vs. 35.6%), 2 h (50.0% vs. 46.7%) and 6 h (63.8% vs. 54.5%) (p > 0.3). Clinical improvement (NIHSS decrease ≥ 4 points) at 24 h (54.9% vs. 51.1%), (p = 0.400) mRS ≤ 2 at 3 mo—44% vs. 48.5% | Recanalization rates higher in the MB compared with the control group at 1, 2, 6, and 12 h (p < 0.05). MB administration associated with higher degree of clinical improvement at 24 h (54.9% vs. 31.1%, p = 0.004) | Complete recanalization found in 30.0% of Group 1 and 32.4% of Group 2 Independent at 90 days—58.3% in Group 1 vs. 59.5% in Group 2 | Mean flow velocity (MFV) in MCA one after the initial study, at 20 and 60 min—change in MFV after insonation for Group 1 in comparison to Group 2 at 3 time points was significantly high (p < 0.001). | Functional independence (mRS 0–2) higher for EVT (adjusted OR 3.89 (95% CI 1.36–12.58)) Ordinal mRS analysis favored EVT (adjusted common OR 1.70 (95% CI 0.88–3.31)). |
Adverse events | Bleeding in MRI—92.9% vs. 33.3% (p < 0.01) | Symptomatic intracranial hemorrhage 9% vs. 7% | Symptomatic intracranial hemorrhage rate (3.3% vs. 2.1%, p = 0.580) | MB administration associated with an increased risk of hemorrhagic infarction (HI1-HI2 (21% vs. 12%, p = 0.026) Parenchymal hematoma (PH1-PH2 and symptomatic intracranial hemorrhage)—similar in both groups | Symptomatic intracranial hemorrhage—2.7% of the Group 2 | Nil | Symptomatic intracerebral hemorrhage—4.1% In EVT group |
9. Randomized Controlled Trials
10. Progress in Ultrasound Delivery to Patients
11. Stroke Prevention
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L. Time is brain—Quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef] [PubMed]
- Kassem-Moussa, H.; Graffagnino, C. Nonocclusion and spontaneous recanalization rates in acute ischemic stroke: A review of cerebral angiography studies. Arch. Neurol. 2002, 59, 1870–1873. [Google Scholar] [CrossRef] [PubMed]
- Vang, C.; Dunbabin, D.; Kilpatrick, D. Effects of spontaneous recanalization on functional and electrophysiological recovery in acute ischemic stroke. Stroke 1999, 30, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Camara, R.; Matei, N.; Zhang, J.H. Evolution of the stroke paradigm: A review of delayed recanalization. J. Cereb. Blood Flow Metab. 2021, 41, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Gourdin, M.J.; Bree, B.; De Kock, M. The impact of ischaemia-reperfusion on the blood vessel. Eur. J. Anaesthesiol. 2009, 26, 537–547. [Google Scholar] [CrossRef]
- Kovacs, I.B.; Yamamoto, J. Spontaneous thrombolysis: A forgotten determinant of life or death. Clin. Appl. Thromb. Hemost. 2006, 12, 358–363. [Google Scholar] [CrossRef]
- Mican, J.; Toul, M.; Bednar, D.; Damborsky, J. Structural Biology and Protein Engineering of Thrombolytics. Comput. Struct. Biotechnol. J. 2019, 17, 917–938. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Murray, V.; Berge, E.; del Zoppo, G.J. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst. Rev. 2014, 2014, CD000213. [Google Scholar] [CrossRef]
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Zheng, M.; Li, L.; Chen, L.; Li, B.; Feng, C. Mechanical thrombectomy combined with intravenous thrombolysis for acute ischemic stroke: A systematic review and meta-analyses. Sci. Rep. 2023, 13, 8597. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Lodhi, A.; Akhtar, I.N.; Ma, X.; Kherani, D.; Kwok, C.S.; Ford, D.E.; Hanley, D.F.; Hassan, A.E.; Nguyen, T.N.; et al. Mechanical thrombectomy with intra-arterial thrombolysis versus mechanical thrombectomy alone in patients with acute ischemic stroke: A systematic review and meta-analysis. Int. J. Stroke 2024, 19, 16–28. [Google Scholar] [CrossRef]
- Atchley, T.J.; Estevez-Ordonez, D.; Laskay, N.M.B.; Tabibian, B.E.; Harrigan, M.R. Endovascular Thrombectomy for the Treatment of Large Ischemic Stroke: A Systematic Review and Meta-Analysis of Randomized Control Trials. Neurosurgery 2024, 94, 29–37. [Google Scholar] [CrossRef]
- Grogan, S.P.; Mount, C.A. Ultrasound Physics and Instrumentation. [Updated 27 March 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570593/ (accessed on 13 February 2024).
- Goldman, D.E.; Lepeschkin, W.W. Injury to living cells in standing sound waves. J. Cell Comp. Physiol. 1952, 40, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Miller, D.L.; Brayman, A.A. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 1996, 22, 1131–1154. [Google Scholar] [CrossRef] [PubMed]
- Burstein, M.; Lewi, S. Action des ultrasons sur le caillot plasmatique [Effect of ultrasonics on plasma clot]. C. R. Seances Soc. Biol. Fil. 1951, 145, 1599–1600. [Google Scholar]
- Burstein, M.; Lewi, S. Sur les propriétés physiques du caillot plasmatique; compressibilité et rétraction par ultrasons [The physical properties of the plasma clot; compressibility and retraction by ultrasonics]. C. R. Seances Soc. Biol. Fil. 1952, 146, 1544–1546. [Google Scholar] [PubMed]
- Howkins, S.D.; Weinstock, A. The effect of focused ultrasound on human blood. Ultrasonics 1970, 8, 174–176. [Google Scholar] [CrossRef]
- Francis, C.W.; Suchkova, V.N. Ultrasound and thrombolysis. Vasc. Med. 2001, 6, 181–187. [Google Scholar] [CrossRef]
- Francis, C.W. Ultrasound-enhanced thrombolysis. Echocardiography 2001, 18, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Bader, K.B.; Gruber, M.J.; Holland, C.K. Shaken and stirred: Mechanisms of ultrasound-enhanced thrombolysis. Ultrasound Med. Biol. 2015, 41, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sobbe, A.; Stumpff, U.; Trübestein, G.; Figge, H.; Kozuschek, W. Die Ultraschall Auflösung von Thromben [Thrombolysis by ultrasound (author’s transl)]. Klin. Wochenschr. 1974, 52, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Ehringer, H.; Fischer, M. Erfolgreiche thrombolytische Therapie bei subakuten arteriellen Thrombosen. Vorläufiger Bericht. [Successful thrombolytic therapy in subacute arterial thrombosis. Preliminary report]. Med. Welt. 1968, 32, 1726–1728. [Google Scholar] [PubMed]
- Luo, H.; Nishioka, T.; Fishbein, M.C.; Cercek, B.; Forrester, J.S.; Kim, C.J.; Berglund, H.; Siegel, R.J. Transcutaneous ultrasound augments lysis of arterial thrombi in vivo. Circulation 1996, 94, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Burgess, A.; Huang, Y.; Waspe, A.C.; Ganguly, M.; Goertz, D.E.; Hynynen, K. High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke. PLoS ONE 2012, 7, e42311. [Google Scholar] [CrossRef] [PubMed]
- Daffertshofer, M.; Huang, Z.; Fatar, M.; Popolo, M.; Schroeck, H.; Kuschinsky, W.; Moskowitz, M.A.; Hennerici, M.G. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci. Lett. 2004, 361, 115–119. [Google Scholar] [CrossRef]
- Damianou, C.; Hadjisavvas, V.; Mylonas, N.; Couppis, A.; Ioannides, K. MRI-guided sonothrombolysis of rabbit carotid artery. J. Stroke Cerebrovasc. Dis. 2014, 23, e113–e121. [Google Scholar] [CrossRef]
- Damianou, C.; Hadjisavvas, V.; Ioannides, K. In Vitro and In Vivo evaluation of a magnetic resonance imaging-guided focused ultrasound system for dissolving clots in combination with thrombolytic drugs. J. Stroke Cerebrovasc. Dis. 2014, 23, 1956–1964. [Google Scholar] [CrossRef]
- Eggers, J.; Ossadnik, S.; Seidel, G. Enhanced clot dissolution in vitro by 1.8-MHz pulsed ultrasound. Ultrasound Med. Biol. 2009, 35, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.C.; Hynynen, K.; Goertz, D.E. Pulsed focused ultrasound-induced displacements in confined in vitro blood clots. IEEE Trans. Biomed. Eng. 2012, 59, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, T.; Raman, R.; Fisher, D.J.; Ahadi, G.; Zadicario, E.; Voie, A. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis. J. Ther. Ultrasound 2013, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Daffertshofer, M.; Hennerici, M.G. Sonothrombolysis: Experimental evidence. Front. Neurol. Neurosci. 2006, 21, 140–149. [Google Scholar] [CrossRef]
- Rosenschein, U.; Furman, V.; Kerner, E.; Fabian, I.; Bernheim, J.; Eshel, Y. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: Preclinical results. Circulation 2000, 102, 238–245. [Google Scholar] [CrossRef]
- Maxwell, A.D.; Cain, C.A.; Duryea, A.P.; Yuan, L.; Gurm, H.S.; Xu, Z. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy—Histotripsy. Ultrasound Med. Biol. 2009, 35, 1982–1994. [Google Scholar] [CrossRef]
- Ahadi, G.; Welch, C.S.; Grimm, M.J.; Fisher, D.J.; Zadicario, E.; Ernström, K.; Voie, A.H.; Hölscher, T. Transcranial sonothrombolysis using high-intensity focused ultrasound: Impact of increasing output power on clot fragmentation. J. Ther. Ultrasound 2013, 1, 22. [Google Scholar] [CrossRef]
- Chen, X.; Leeman, J.E.; Wang, J.; Pacella, J.J.; Villanueva, F.S. New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging. Ultrasound Med. Biol. 2014, 40, 258–262. [Google Scholar] [CrossRef]
- Weiss, H.L.; Selvaraj, P.; Okita, K.; Matsumoto, Y.; Voie, A.; Hoelscher, T.; Szeri, A.J. Mechanical clot damage from cavitation during sonothrombolysis. J. Acoust. Soc. Am. 2013, 133, 3159–3175. [Google Scholar] [CrossRef]
- Petit, B.; Bohren, Y.; Gaud, E.; Bussat, P.; Arditi, M.; Yan, F.; Tranquart, F.; Allémann, E. Sonothrombolysis: The contribution of stable and inertial cavitation to clot lysis. Ultrasound Med. Biol. 2015, 41, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Yiallouras, C.; Damianou, C. The Enhancing Effect of Focused Ultrasound on TNK-Tissue Plasminogen Activator-Induced Thrombolysis Using an In Vitro Circulating Flow Model. J. Stroke Cerebrovasc. Dis. 2016, 25, 2891–2899. [Google Scholar] [CrossRef]
- Braun, T.; Sünner, L.; Hachenberger, M.; Müller, C.; Wietelmann, A.; Juenemann, M.; Pons-Kühnemann, J.; Kaps, M.; Gerriets, T.; Tschernatsch, M.; et al. Microbubble-mediated sonothrombolysis with BR38 of a venous full blood thrombus in a rat embolic stroke model. Ann. Transl. Med. 2021, 9, 1061. [Google Scholar] [CrossRef]
- Auboire, L.; Sennoga, C.A.; Hyvelin, J.M.; Ossant, F.; Escoffre, J.M.; Tranquart, F.; Bouakaz, A. Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies. PLoS ONE 2018, 13, e0191788. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.N. Overview of echo-enhanced vascular ultrasound imaging for clinical diagnosis in neurosonology. J. Neuroimaging 1997, 7 (Suppl. 1), S2–S14. [Google Scholar] [PubMed]
- Nedelmann, M.; Ritschel, N.; Doenges, S.; Langheinrich, A.C.; Acker, T.; Reuter, P.; Yeniguen, M.; Pukropski, J.; Kaps, M.; Mueller, C.; et al. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 2010, 30, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.T.; Flores, R.; Hamilton, E.; Roberson, P.K.; Borrelli, M.J.; Culp, W.C. Microbubbles improve sonothrombolysis in vitro and decrease hemorrhage in vivo in a rabbit stroke model. Investig. Radiol. 2011, 46, 202–207. [Google Scholar] [CrossRef]
- Pajek, D.; Burgess, A.; Huang, Y.; Hynynen, K. High-intensity focused ultrasound sonothrombolysis: The use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. Ultrasound Med. Biol. 2014, 40, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Culp, W.C.; Flores, R.; Brown, A.T.; Lowery, J.D.; Roberson, P.K.; Hennings, L.J.; Woods, S.D.; Hatton, J.H.; Culp, B.C.; Skinner, R.D.; et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke 2011, 42, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, N.; Tomkins, A.J.; Kampschulte, M.; Hyvelin, J.M.; Botteron, C.; Juenemann, M.; Yeniguen, M.; Krombach, G.A.; Kaps, M.; Spratt, N.J.; et al. Sonothrombolysis with BR38 Microbubbles Improves Microvascular Patency in a Rat Model of Stroke. PLoS ONE 2016, 11, e0152898. [Google Scholar] [CrossRef] [PubMed]
- de Saint Victor, M.; Barnsley, L.C.; Carugo, D.; Owen, J.; Coussios, C.C.; Stride, E. Sonothrombolysis with Magnetically Targeted Microbubbles. Ultrasound Med. Biol. 2019, 45, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Key, J.; Youn, I.; Lee, H.; Han, S. Cavitation-assisted sonothrombolysis by asymmetrical nanostars for accelerated thrombolysis. J. Control Release 2022, 350, 870–885. [Google Scholar] [CrossRef]
- Guo, S.; Guo, X.; Wang, X.; Zhou, D.; Du, X.; Han, M.; Zong, Y.; Wan, M. Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets. Ultrason. Sonochem. 2019, 54, 183–191. [Google Scholar] [CrossRef]
- Wu, H.; Tang, Y.; Zhang, B.; Klippel, P.; Jing, Y.; Yao, J.; Jiang, X. Miniaturized Stacked Transducer for Intravascular Sonothrombolysis with Internal-Illumination Photoacoustic Imaging Guidance and Clot Characterization. IEEE Trans. Biomed. Eng. 2023, 70, 2279–2288. [Google Scholar] [CrossRef]
- Soltani, A.; Singhal, R.; Obtera, M.; Roy, R.A.; Clark, W.M.; Hansmann, D.R. Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison™ & SonoVue(®)). J. Thromb. Thrombolysis 2011, 31, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.J.; Li, J.; Rickel, J.R.; Klibanov, A.L.; Zuo, Z.; Hossack, J.A. Efficacy of Sonothrombolysis Using Microbubbles Produced by a Catheter-Based Microfluidic Device in a Rat Model of Ischemic Stroke. Ann. Biomed. Eng. 2019, 47, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, B.; Huang, C.C.; Peng, C.; Zhou, Q.; Jiang, X. Ultrasound-Guided Intravascular Sonothrombolysis with a Dual Mode Ultrasound Catheter: In Vitro Study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, H.; Kleven, R.T.; Peng, T.; Palaniappan, A.; Karani, K.B.; Huang, S.; McPherson, D.D.; Holland, C.K. In vitro characterization of sonothrombolysis and echocontrast agents to treat ischemic stroke. Sci. Rep. 2019, 9, 9902. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Murugappan, S.K.; Sharma, V.K. Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Transl. Stroke Res. 2014, 5, 627–634. [Google Scholar] [CrossRef]
- Tomkins, A.J.; Schleicher, N.; Murtha, L.; Kaps, M.; Levi, C.R.; Nedelmann, M.; Spratt, N.J. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. Exp. Transl. Stroke Med. 2015, 7, 2. [Google Scholar] [CrossRef]
- Black, J.J.; Yu, F.T.; Schnatz, R.G.; Chen, X.; Villanueva, F.S.; Pacella, J.J. Effect of Thrombus Composition and Viscosity on Sonoreperfusion Efficacy in a Model of Micro-Vascular Obstruction. Ultrasound Med. Biol. 2016, 42, 2220–2231. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Potter, C.A.; Huang, S.S.; Lev, M.H. Advanced Imaging for Acute Stroke Treatment Selection: CT, CTA, CT Perfusion, and MR Imaging. Radiol. Clin. N. Am. 2023, 61, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Teng, X.; Li, S.; Yang, Y. Application of transcranial Doppler in cerebrovascular diseases. Front. Aging Neurosci. 2022, 14, 1035086. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.W.; Mattle, H.P.; Aaslid, R. Transcranial color-coded duplex sonography, magnetic resonance angiography, and computed tomography angiography: Methods, applications, advantages, and limitations. J. Clin. Ultrasound 1995, 23, 89–111. [Google Scholar] [CrossRef] [PubMed]
- Sloan, M.A.; Alexandrov, A.V.; Tegeler, C.H.; Spencer, M.P.; Caplan, L.R.; Feldmann, E.; Wechsler, L.R.; Newell, D.W.; Gomez, C.R.; Babikian, V.L.; et al. Assessment: Transcranial Doppler ultrasonography: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2004, 62, 1468–1481. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, A.V.; Demchuk, A.M.; Felberg, R.A.; Christou, I.; Barber, P.A.; Burgin, W.S.; Malkoff, M.; Wojner, A.W.; Grotta, J.C. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke 2000, 31, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Cintas, P.; Le Traon, A.P.; Larrue, V. High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. Stroke 2002, 33, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, A.V.; Demchuk, A.M.; Burgin, W.S.; Robinson, D.J.; Grotta, J.C.; CLOTBUST Investigators. Ultrasound-enhanced thrombolysis for acute ischemic stroke: Phase I. Findings of the CLOTBUST trial. J. Neuroimaging 2004, 14, 113–117. [Google Scholar]
- Brunser, A.; Hoppe, A.; Muñoz, P.; Cárcamo, D.; Lavados, P.M.; Gaete, J.; Roldán, A.; Rivas, R. Sonotrombolisis en el ataque cerebrovascular isquémico: Once años de experiencia en Clínica Alemana de Santiago [Sonothrombolysis for acute ischemic stroke]. Rev. Med. Chil. 2014, 142, 1238–1244. [Google Scholar] [CrossRef]
- Gu, T.; Wester, P.; Johansson, E. Ny lovande behandling vid akut ischemisk stroke--Sonotrombolys kan förstärka effekten av intravenös trombolys [Promising new treatment for acute ischemic stroke--Sonothrombolysis can enhance the effect of intravenous thrombolysis]. Lakartidningen 2015, 112, C9LF. [Google Scholar]
- Aaron, S.; Mani, S.; Prabhakar, A.T.; Babu, P.S.; Kumar, S.; Benjamin, R.N.; Sivadasan, A.; Muthusamy, K.; Patil, A.K.; Mathew, V.; et al. Sonothrombolysis for acute ischemic stroke—Break on through to the other side. Neurol. India 2017, 65, 52–57. [Google Scholar] [CrossRef]
- Daffertshofer, M.; Gass, A.; Ringleb, P.; Sitzer, M.; Sliwka, U.; Els, T.; Sedlaczek, O.; Koroshetz, W.J.; Hennerici, M.G. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: Results of a phase II clinical trial. Stroke 2005, 36, 1441–1446. [Google Scholar] [CrossRef]
- Baron, C.; Aubry, J.F.; Tanter, M.; Meairs, S.; Fink, M. Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis. Ultrasound Med. Biol. 2009, 35, 1148–1158. [Google Scholar] [CrossRef]
- Perren, F.; Loulidi, J.; Poglia, D.; Landis, T.; Sztajzel, R. Microbubble potentiated transcranial duplex ultrasound enhances IV thrombolysis in acute stroke. J. Thromb. Thrombolysis 2008, 25, 219–223. [Google Scholar] [CrossRef]
- Rubiera, M.; Ribo, M.; Delgado-Mederos, R.; Santamarina, E.; Maisterra, O.; Delgado, P.; Montaner, J.; Alvarez-Sabín, J.; Molina, C.A. Do bubble characteristics affect recanalization in stroke patients treated with microbubble-enhanced sonothrombolysis? Ultrasound Med. Biol. 2008, 34, 1573–1577. [Google Scholar] [CrossRef]
- Dinia, L.; Rubiera, M.; Ribo, M.; Maisterra, O.; Ortega, G.; del Sette, M.; Alvarez-Sabin, J.; Molina, C.A. Reperfusion after stroke sonothrombolysis with microbubbles may predict intracranial bleeding. Neurology 2009, 73, 775–780. [Google Scholar] [CrossRef]
- Bardon, P.; Kuliha, M.; Herzig, R.; Kanovsky, P.; Skoloudik, D. Safety and efficacy of sonothrombolysis using bilateral TCD monitoring by diagnostic 2 MHz probes—A pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2014, 158, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Dwedar, A.Z.; Ashour, S.; Haroun, M.; El Nasser, A.A.; Moustafa, R.R.; Ibrahim, M.H.; Elsadek, A. Sonothrombolysis in acute middle cerebral artery stroke. Neurol. India 2014, 62, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.; Taschner, C.A.; Hörsch, N.; Allignol, A.; Maurer, C.J.; Niesen, W.D.; Lambeck, J.; Wallesch, C.W.; Urbach, H.; Weiller, C.; et al. Endovascular Treatment versus Sonothrombolysis for Acute Ischemic Stroke. Cerebrovasc. Dis. 2015, 40, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Eggers, J.; Koch, B.; Meyer, K.; König, I.; Seidel, G. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann. Neurol. 2003, 53, 797–800. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Molina, C.A.; Grotta, J.C.; Garami, Z.; Ford, S.R.; Alvarez-Sabin, J.; Montaner, J.; Saqqur, M.; Demchuk, A.M.; Moyé, L.A.; et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N. Engl. J. Med. 2004, 351, 2170–2178. [Google Scholar] [CrossRef]
- Eggers, J.; Seidel, G.; Koch, B.; König, I.R. Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurology 2005, 64, 1052–1054. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.A.; Ribo, M.; Rubiera, M.; Montaner, J.; Santamarina, E.; Delgado-Mederos, R.; Arenillas, J.F.; Huertas, R.; Purroy, F.; Delgado, P.; et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006, 37, 425–429. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Mikulik, R.; Ribo, M.; Sharma, V.K.; Lao, A.Y.; Tsivgoulis, G.; Sugg, R.M.; Barreto, A.; Sierzenski, P.; Malkoff, M.D.; et al. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008, 39, 1464–1469. [Google Scholar] [CrossRef]
- Eggers, J.; König, I.R.; Koch, B.; Händler, G.; Seidel, G. Sonothrombolysis with transcranial color-coded sonography and recombinant tissue-type plasminogen activator in acute middle cerebral artery main stem occlusion: Results from a randomized study. Stroke 2008, 39, 1470–1475. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.A.; Barreto, A.D.; Tsivgoulis, G.; Sierzenski, P.; Malkoff, M.D.; Rubiera, M.; Gonzales, N.; Mikulik, R.; Pate, G.; Ostrem, J.; et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann. Neurol. 2009, 66, 28–38. [Google Scholar] [CrossRef]
- Nacu, A.; Kvistad, C.E.; Naess, H.; Øygarden, H.; Logallo, N.; Assmus, J.; Waje-Andreassen, U.; Kurz, K.D.; Neckelmann, G.; Thomassen, L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): Randomized Controlled Contrast-Enhanced Sonothrombolysis in an Unselected Acute Ischemic Stroke Population. Stroke 2017, 48, 335–341. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Köhrmann, M.; Soinne, L.; Tsivgoulis, G.; Barreto, A.D.; Demchuk, A.M.; Sharma, V.K.; Mikulik, R.; Muir, K.W.; Brandt, G.; et al. Safety and efficacy of sonothrombolysis for acute ischaemic stroke: A multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol. 2019, 18, 338–347. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, T.; Huang, H.; Xu, J.; Shankar, S.; Yu, H.; Wang, Z. Efficacy and safety of sonothombolysis versus non-sonothombolysis in patients with acute ischemic stroke: A meta-analysis of randomized controlled trials. PLoS ONE 2019, 14, e0210516. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Katsanos, A.H.; Eggers, J.; Larrue, V.; Thomassen, L.; Grotta, J.C.; Seitidis, G.; Schellinger, P.D.; Mavridis, D.; Demchuk, A.; et al. Sonothrombolysis in Patients with Acute Ischemic Stroke with Large Vessel Occlusion: An Individual Patient Data Meta-Analysis. Stroke 2021, 52, 3786–3795. [Google Scholar] [CrossRef]
- Nederhoed, J.H.; Tjaberinga, M.; Otten, R.H.J.; Evers, J.M.; Musters, R.J.P.; Wisselink, W.; Yeung, K.K. Therapeutic Use of Microbubbles and Ultrasound in Acute Peripheral Arterial Thrombosis: A Systematic Review. Ultrasound Med. Biol. 2021, 47, 2821–2838. [Google Scholar] [CrossRef]
- Pagola, J.; Ribo, M.; Alvarez-Sabín, J.; Lange, M.; Rubiera, M.; Molina, C.A. Timing of recanalization after microbubble-enhanced intravenous thrombolysis in basilar artery occlusion. Stroke 2007, 38, 2931–2934. [Google Scholar] [CrossRef]
- Ribo, M.; Molina, C.A.; Alvarez, B.; Rubiera, M.; Alvarez-Sabin, J.; Matas, M. Intra- arterial administration of microbubbles and continuous 2-MHz ultrasound insonation to enhance intra-arterial thrombolysis. J. Neuroimaging 2010, 20, 224–227. [Google Scholar] [CrossRef]
- Kuliha, M.; Roubec, M.; Jonszta, T.; Krajca, J.; Czerny, D.; Krajina, A.; Langová, K.; Herzig, R.; Procházka, V.; Školoudík, D. Safety and efficacy of endovascular sonolysis using the EkoSonic endovascular system in patients with acute stroke. AJNR Am. J. Neuroradiol. 2013, 34, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Školoudík, D.; Hurtíková, E.; Brát, R.; Herzig, R.; SONORESCUE Trial Group. Sonolysis in Prevention of Brain Infarction During Cardiac Surgery (SONORESCUE): Randomized, Controlled Trial. Medicine 2016, 95, e3615. [Google Scholar] [CrossRef] [PubMed]
- Viszlayová, D.; Brozman, M.; Langová, K.; Herzig, R.; Školoudík, D.; a SONOREDUCE Trial Group. Sonolysis in risk reduction of symptomatic and silent brain infarctions during coronary stenting (SONOREDUCE): Randomized, controlled trial. Int. J. Cardiol. 2018, 267, 62–67. [Google Scholar] [CrossRef]
- Školoudík, D.; Kuliha, M.; Hrbáč, T.; Jonszta, T.; Herzig, R.; SONOBUSTER Trial Group. Sonolysis in Prevention of Brain Infarction During Carotid Endarterectomy and Stenting (SONOBUSTER): A randomized, controlled trial. Eur. Heart J. 2016, 37, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Skoloudik, D.; Hrbáč, T.; Herzig, R.; Fiedler, J.; Beneš, V.; Kesnerova, P.; Kovar, M.; Vosko, M.; Nosal, V.; Beneš, V.; et al. Sonolysis in prevention of brain infarctions during internal carotid endarterectomy (SONOBIRDIE): The results of randomized controlled trial. Eur. Stroke J. 2023, 8, 680. [Google Scholar]
Author | Alexandrov AV, et al. [66] | Cintas, et al. [67] | Alexandrov AV, et al. [68] | Brunser A, et al. [69] | Gu T, et al. [70] | Aaron S, et al. [71] |
---|---|---|---|---|---|---|
Year of publication | 2000 | 2002 | 2004 | 2014 | 2015 | 2017 |
Number of patients | 40 | 6 | 55 | 61 | 20 | 14 |
Age (yr) | Mean 70 ± 16 | Mean 54.3 ± 14.7 | Mean 69 ± 15 | Mean 66 ± 18 | Median 71 (IQR 63–82) | Mean 55 (range 32–76) |
Time window (min) | Mean 125 ± 52 | Mean 210 ± 86 | Mean 125 ± 36 | Mean 127 | Median 98 (IQR 67–131) | Mean 138 (Range 65–256) |
Stroke type | ‘Occluded vessels’ (MCA. ICA, BA) | MCA occlusion | ‘Proximal arterial occlusion’ | MCA occlusion | ‘Flow obstruction’ | LA-AIS |
Technique | TCD | TCCD | TCD | TCD | TCD | TCD |
Frequency (MHz) | 2 | 2 | 2 | 2 | 2 | 2 |
Concomitant thrombolysis | Yes | No | Yes | Yes | Yes | Yes |
Comparator | Nil | Nil | Nil | Nil | Nil | Nil |
Outcome | Recanalization found at 45 ± 20 min—complete in 30%, partial in 40%. Dramatic recovery (total NIHSS score < 3)—20%)—all had complete recanalization. Improvement by ≥10 NIHSS points or complete recovery—30% at the end of tPA infusion, 40% at 24 h Improvement by ≥4 NIHSS points—62.5% at 24 h 3-month mortality—20% | Partial recanalization (blunted waveforms)—83%. Mean time to beginning of recanalization 17.2 ± 9.6 min. Complete recanalization at 24 h—16.6% Mean NIHSS score in patients who recanalized during monitoring—21.2 ± 4.1 at baseline, 19.2 ± 5 at 2 h, and 15.6 ± 3.4 at 24 h | Complete recanalization within 2 h 36%. Dramatic recovery (NIHSS score ≤ 3)—20% at 2 h, 24% at 24 h. Improvement by ≥4 NIHSS points—49% at 24 h | Complete recanalization—44.3%. Modified Rankin Scale of 0–2 at 3 months—60% Case fatality—9.8% | Full recanalization—29% Full or partial recanalization—36% 3-month follow-up—76% ADL independent | TIBI residual flow grade of ≥2—83%. Immediate dramatic improvement (NIHSS score ≤ 3 points or improvement by ≥10 points)—30%; within the next 24 h—50%. At 6 months—mortality 11%, mRS ≤ 2 63% |
Adverse events | Symptomatic intracerebral hemorrhage—7.5% | No hemorrhage | Symptomatic hemorrhage—5.5% | Asymptomatic intracranial hemorrhage—9.8% | No symptomatic intracranial bleeding | Symptomatic hemorrhage—5.5% |
Author | Eggers J, et al. [80] | Alexandrov AV, et al. [81] | Eggers J., et al. [82] | Molina CA, et al. [83] | Alexandrov AV, et al. [84] | Eggers J, et al. [85] | Molina CA, et al. [86] | Nacu A, et al. [87] | Alexandrov AV, et al. [88] |
---|---|---|---|---|---|---|---|---|---|
Year of publication | 2003 | 2004 | 2005 | 2006 | 2008 | 2008 | 2009 | 2017 | 2019 |
Number of patients | 11 vs. 14 controls | 63 vs. 63 controls | 8 vs. 7 | 38 vs. 37 vs. 36 | 12 vs. 3 | 19 vs. 18 | 12 vs. 11 vs. 12 | 93 vs. 90 | 335 vs. 341 |
Age (yr) | 61 ± 9 | 67 ± 12 70 ± 13 | 58.9 | 68 ± 12 vs. 70 ± 9 vs. 68 ± 11 | 75 ± 13 vs. 58 ± 33 | 61 ± 10 | 68.8 ± 16.2 | 70 | |
Time window | 144.2 min | 150 vs. 130 min | 213.4 min | 158 ± 35 vs. 161 ± 38 vs. 152 ± 33 | <3 h | 143.2 | <3 h | 170 ± 69 | 121.5 |
Stroke type | MCA occlusion | MCA occlusion | MCA occlusion | MCA occlusion | MCA occlusion | MCA occlusion | ‘Proximal intracranial occlusion’ | Acute IS | Acute IS |
Technique | TCCD | TCD | TCCD | TCD | TCD | TCCD | TCD | TCD | TCD |
Frequency | 2 MHz | 2 MHz | 2 MHz | 2 MHz | 2 MHz | 1.8 MHz | 2 Mz | 2 MHz | 2 MHz |
Concomitant thrombolysis | Yes | Yes | No | Yes, plus TCD plus 3 doses of 2.5 g of MB after tPA bolus | Yes, plus 2.8 mL microS (perflutren-lipid microspheres) | Yes | Yes, plus microS (MRX-801) infusion 1.4 mL or 2.8 mL | Yes, plus TCD plus contrast | Yes |
Comparator | No ultrasonography | No TCD | No USG | rTPA plus TCD vs. rTPA only | No microS | No USG | No microS (MRX-801) | No contrast | No USG |
Outcome | Recanalization 27.3 vs. 21.4% 3-month favorable functional outcome 54.5% vs. 36.3% | Complete recanalization or dramatic clinical recovery within two hours after the administration of a t-PA bolus—49% vs. 30% p = 0.03). At 24 h, dramatic clinical recovery—44% vs. 40% (p = 0.7). At three months, mRS 0–1 42 % vs. 29% (p = 0.20). | Recanalization 62.5% vs. 0% 3-month favorable functional outcome 25% vs. 0% | Two-hour recanalization was seen in 71% vs. 68% vs. 39% >4 point improvement of NIHSS score at 24 h—55% vs. 41% vs. 31% | At 2 h, sustained complete recanalization—42% in treatment arm NIHSS scores 0 to 3—17% in treatment arm | Recanalization (complete or partial) after 1 h 57.9% vs. 22.2% (p = 0.045) US group showed greater improvement in National Institutes of Health Stroke Scale values at days 1 and 4 After 90 days, modified Rankin Score ≤1—21.1% vs. 0% (p = 0.106) Barthel Index ≥ 95—42.1% vs. 0% (p = 0.003) | Sustained complete 67% vs. 46% vs. 33% (p = 0.255) 3-month clinical recovery rates 75% vs. 50% vs. 36% (p = 0.167). | Neurological improvement at 24 h—51% vs. 46% 90 days mRS 0–1—48% vs. 51% Death 6% vs. 9% | Improvement in modified Rankin Scale score at 90 days—31.3% vs. 32.0% (p = 0.74). Mortality 16% vs. 13% (p = 0.37) |
Adverse events | Symptomatic intracranial hemorrhage 18.2% vs. 0% | Symptomatic intracerebral hemorrhage 4.8% in both groups | Symptomatic intracranial hemorrhage 0% vs. 14.3% | Symptomatic intracranial hemorrhage 2.6% vs. 2.7% vs. 5.5% | Symptomatic intracranial hemorrhage 0% Asymptomatic intracranial hemorrhage 25% vs. 33.3% | Symptomatic intracranial hemorrhage 15.8% vs. 5.6% | Symptomatic intracranial hemorrhage 0% vs. 25% vs. 0% | Symptomatic intracerebral hemorrhage 2% vs. 4% | Symptomatic intracranial hemorrhage 2.5% vs. 1.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venketasubramanian, N.; Yeo, L.L.L.; Tan, B.; Chan, B.P.L. Sonothrombolysis for Ischemic Stroke. J. Cardiovasc. Dev. Dis. 2024, 11, 75. https://doi.org/10.3390/jcdd11030075
Venketasubramanian N, Yeo LLL, Tan B, Chan BPL. Sonothrombolysis for Ischemic Stroke. Journal of Cardiovascular Development and Disease. 2024; 11(3):75. https://doi.org/10.3390/jcdd11030075
Chicago/Turabian StyleVenketasubramanian, Narayanaswamy, Leonard L. L. Yeo, Benjamin Tan, and Bernard P. L. Chan. 2024. "Sonothrombolysis for Ischemic Stroke" Journal of Cardiovascular Development and Disease 11, no. 3: 75. https://doi.org/10.3390/jcdd11030075
APA StyleVenketasubramanian, N., Yeo, L. L. L., Tan, B., & Chan, B. P. L. (2024). Sonothrombolysis for Ischemic Stroke. Journal of Cardiovascular Development and Disease, 11(3), 75. https://doi.org/10.3390/jcdd11030075