Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application
Abstract
:1. Introduction
2. High Frequencies and Ventricular Activation
3. Rationale and Conceptual Studies on UHF-ECG
4. Real-Time UHF-ECG in Clinical Studies
5. UHF-ECG in Relation to Other Methods for Dyssynchrony Assessment
6. Future Prospects
UHF-ECG for Determining Resynchronization Approaches and Optimization
7. Technical and Clinical Research beyond CRT
8. UHF-ECG Limitations
9. Conclusions
Funding
Conflicts of Interest
References
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Europace 2022, 24, 71–164. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Hall, W.J.; Cannom, D.S.; Klein, H.; Brown, M.W.; Daubert, J.P.; Estes, N.A.M., III; Foster, E.; Greenberg, H.; Higgins, S.L.; et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009, 361, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.S.L.; Wells, G.A.; Talajic, M.; Arnold, M.O.; Sheldon, R.; Connolly, S.; Hohnloser, S.H.; Nichol, G.; Birnie, D.H.; Sapp, J.L.; et al. Cardiac-Resynchronization Therapy for Mild-to-Moderate Heart Failure. N. Engl. J. Med. 2010, 363, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Wilkoff, B.L.; Filippatos, G.; Leclercq, C.; Gold, M.R.; Hersi, A.S.; Kusano, K.; Mullens, W.; Felker, G.M.; Kantipudi, C.; El-Chami, M.F.; et al. Adaptive versus conventional cardiac resynchronisation therapy in patients with heart failure (AdaptResponse): A global, prospective, randomised controlled trial. Lancet 2023, 402, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Derval, N.; Duchateau, J.; Mahida, S.; Eschalier, R.; Sacher, F.; Lumens, J.; Cochet, H.; Denis, A.; Pillois, X.; Yamashita, S.; et al. Distinctive Left Ventricular Activations Associated with ECG Pattern in Heart Failure Patients. Circ. Arrhythm. Electrophysiol. 2017, 10, e005073. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, A.; Fantoni, C.; Regoli, F.; Carbucicchio, C.; Goette, A.; Geller, C.; Kloss, M.; Klein, H. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation 2004, 109, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Rijks, J.; Ghossein, M.A.; Wouters, P.C.; Dural, M.; Maass, A.H.; Meine, M.; Kloosterman, M.; Luermans, J.; Prinzen, F.W.; Vernooy, K.; et al. Comparison of the relation of the ESC 2021 and ESC 2013 definitions of left bundle branch block with clinical and echocardiographic outcome in cardiac resynchronization therapy. J. Cardiovasc. Electrophysiol. 2023, 34, 1006–1014. [Google Scholar] [CrossRef]
- Nguyên, U.C.; Vernooy, K.; Prinzen, F.W. Quest for the ideal assessment of electrical ventricular dyssynchrony in cardiac resynchronization therapy. J. Mol. Cell. Cardiol. Plus 2024, 7, 100061. [Google Scholar] [CrossRef]
- Engels, E.B.; Alshehri, S.; van Deursen, C.J.; Wecke, L.; Bergfeldt, L.; Vernooy, K.; Prinzen, F.W. The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. J. Electrocardiol. 2015, 48, 586–592. [Google Scholar] [CrossRef]
- Emerek, K.; Friedman, D.J.; Sørensen, P.L.; Hansen, S.M.; Larsen, J.M.; Risum, N.; Thøgersen, A.M.; Graff, C.; Kisslo, J.; Søgaard, P.; et al. Vectorcardiographic QRS area is associated with long-term outcome after cardiac resynchronization therapy. Heart Rhythm 2019, 16, 213–219. [Google Scholar] [CrossRef]
- Tereshchenko, L.G.; Cheng, A.; Park, J.; Wold, N.; Meyer, T.E.; Gold, M.R.; Mittal, S.; Singh, J.; Stein, K.M.; Ellenbogen, K.A. Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: Results from the SMART-AV Trial. Heart Rhythm 2015, 12, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Rickard, J.; Jackson, K.; Biffi, M.; Vernooy, K.; Bank, A.; Cerkvenik, J.; Ghosh, S.; Gold, M.R. The ECG Belt for CRT response trial: Design and clinical protocol. Pacing Clin. Electrophysiol. 2020, 43, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.B.; Vatterott, P.J.; Peterson, M.A.; Bagwe, S.; Underwood, R.D.; Bank, A.J.; Gage, R.M.; Ramza, B.; Foreman, B.W.; Splett, V.; et al. Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: Relationship with acute hemodynamic improvement. Heart Rhythm 2017, 14, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Gage, R.M.; Curtin, A.E.; Burns, K.V.; Ghosh, S.; Gillberg, J.M.; Bank, A.J. Changes in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in patients with cardiac resynchronization therapy. Heart Rhythm 2017, 14, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Rickard, J.; Jackson, K.; Gold, M.; Biffi, M.; Ziacchi, M.; Silverstein, J.; Ramza, B.; Metzl, M.; Grubman, E.; Abben, R.; et al. Electrocardiogram Belt guidance for left ventricular lead placement and biventricular pacing optimization. Heart Rhythm 2023, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.; Ploux, S.; Ritter, P.; Wilkoff, B.; Eschalier, R.; Bordachar, P. Noninvasive mapping of electrical dyssynchrony in heart failure and cardiac resynchronization therapy. Card. Electrophysiol. Clin. 2015, 7, 125–134. [Google Scholar] [CrossRef]
- Ploux, S.; Lumens, J.; Whinnett, Z.; Montaudon, M.; Strom, M.; Ramanathan, C.; Derval, N.; Zemmoura, A.; Denis, A.; De Guillebon, M.; et al. Noninvasive Electrocardiographic Mapping to Improve Patient Selection for Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2013, 61, 2435–2443. [Google Scholar] [CrossRef]
- Jia, P.; Ramanathan, C.; Ghanem, R.N.; Ryu, K.; Varma, N.; Rudy, Y. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm 2006, 3, 296–310. [Google Scholar] [CrossRef]
- Jackson, T.; Claridge, S.; Behar, J.; Yao, C.; Elliott, M.; Mehta, V.; Gould, J.; Sidhu, B.; Pereira, H.; Niederer, S.; et al. Noninvasive electrocardiographic assessment of ventricular activation and remodeling response to cardiac resynchronization therapy. Heart Rhythm O2 2021, 2, 12–18. [Google Scholar] [CrossRef]
- Pereira, H.; Jackson, T.A.; Claridge, S.; Yao, C.; Sieniewicz, B.; Gould, J.; Sidhu, B.; Niederer, S.; Rinaldi, C.A. Evidence of reverse electrical remodelling by non-invasive electrocardiographic imaging to assess acute and chronic changes in bulk ventricular activation following cardiac resynchronisation therapy. J. Electrocardiol. 2020, 58, 96–102. [Google Scholar] [CrossRef]
- Strik, M.; Ploux, S.; Jankelson, L.; Bordachar, P. Non-invasive cardiac mapping for non-response in cardiac resynchronization therapy. Ann. Med. 2019, 51, 109–117. [Google Scholar] [CrossRef]
- Rad, M.M.; Blaauw, Y.; Dinh, T.; Pison, L.; Crijns, H.J.; Prinzen, F.W.; Vernooy, K. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping. Europace 2015, 17, 84–93. [Google Scholar] [PubMed]
- Del Greco, M.; Zorzi, A.; Di Matteo, I.; Cima, A.; Maines, M.; Angheben, C.; Catanzariti, D. Coronary sinus activation patterns in patients with and without left bundle branch block undergoing electroanatomic mapping system-guided cardiac resynchronization therapy device implantation. Heart Rhythm 2017, 14, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.R.; Birgersdotter-Green, U.; Singh, J.P.; Ellenbogen, K.A.; Yu, Y.; Meyer, T.E.; Seth, M.; Tchou, P.J. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur. Heart J. 2011, 32, 2516–2524. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Berger, R.D.; Doshi, R.N.; Lloyd, M.; Moore, D.; Stone, J.; Daoud, E.G.; ENHANCE CRT Study Group. Targeted Left Ventricular Lead Implantation Strategy for Non-Left Bundle Branch Block Patients: The ENHANCE CRT Study. JACC Clin. Electrophysiol. 2020, 6, 1171–1181. [Google Scholar] [CrossRef]
- Stephansen, C.; Sommer, A.; Kronborg, M.B.; Jensen, J.M.; Bouchelouche, K.; Nielsen, J.C. Electrically guided versus imaging-guided implant of the left ventricular lead in cardiac resynchronization therapy: A study protocol for a double-blinded randomized controlled clinical trial (ElectroCRT). Trials 2018, 19, 600. [Google Scholar] [CrossRef]
- Plesinger, F.; Viscor, I.; Vondra, V.; Halamek, J.; Koscova, Z.; Leinveber, P.; Curila, K.; Jural, P. VDI Vision—Analysis of Ventricular Electrical Dyssynchrony in Real-Time. In Proceedings of the 2021 Computing in Cardiology (CinC), Brno, Czech Republic, 13–15 September 2021; pp. 1–4. [Google Scholar]
- Nguyên, U.C.; Verzaal, N.J.; van Nieuwenhoven, F.A.; Vernooy, K.; Prinzen, F.W. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace 2018, 20, 1898–1909. [Google Scholar] [CrossRef]
- Boron, W.; Boulpaep, E. Medical Physiology, Cardiac Electrophysiology and the Electrocardiogram; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Ramanathan, C.; Jia, P.; Ghanem, R.; Ryu, K.; Rudy, Y. Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl. Acad. Sci. USA 2006, 103, 6309–6314. [Google Scholar] [CrossRef]
- Einthoven, W. The different forms of the human electrocardiogram and their signification. Lancet 1912, 179, 853–861. [Google Scholar] [CrossRef]
- Scher, A.M.; Young, A.C. Frequency analysis of the electrocardiogram. Circ. Res. 1960, 8, 344–346. [Google Scholar] [CrossRef]
- Burch, G.E.; Horan, L.G.; Ziskind, J.; Cronvich, J.A. A correlative study of postmortem, electrocardiographic, and spatial vectorcardiographic data in myocardial infarction. Circulation 1958, 18, 325–340. [Google Scholar] [CrossRef]
- Abboud, S.; Zlochiver, S. High-frequency QRS electrocardiogram for diagnosing and monitoring ischemic heart disease. J. Electrocardiol. 2006, 39, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Omer, N.; Bergman, E.; Ben-David, T.; Huri, S.; Beker, A.; Abboud, S.; Granot, Y.; Meerkin, D. Changes in High-Frequency Intracardiac Electrogram Indicate Cardiac Ischemia. J. Cardiovasc. Transl. Res. 2022, 15, 84–94. [Google Scholar] [CrossRef]
- Mor-Avi, V.; Shargorodsky, B.; Abboud, S.; Laniado, S.; Akselrod, S. Effects of coronary occlusion on high-frequency content of the epicardial electrogram and body surface electrocardiogram. Circulation 1987, 76, 237–243. [Google Scholar] [CrossRef]
- Pettersson, J.; Pahlm, O.; Carro, E.; Edenbrandt, L.; Ringborn, M.; Sörnmo, L.; Warren, S.G.; Wagner, G.S. Changes in high-frequency QRS components are more sensitive than ST-segment deviation for detecting acute coronary artery occlusion. J. Am. Coll. Cardiol. 2000, 36, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Flowers, N.C.; Horan, L.G.; Thomas, J.R.; Tolleson, W.J. The anatomic basis for high-frequency components in the electrocardiogram. Circulation 1969, 39, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Langner, P.H.; Geselowitz, D.B., Jr.; Mansure, F.T.; Lauer, J.A. High-frequency components in the electrocardiograms of normal subjects and of patients with coronary heart disease. Am. Heart J. 1961, 62, 746–755. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Bhargava, V.; Froelicher, V.; Covell, J. Effect of myocardial infarction on high-frequency QRS potentials. Circulation 1981, 64, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Josephson, M.E.; Horowitz, L.N.; Farshidi, A.; Spear, J.F.; Kastor, J.A.; Moore, E.N. Recurrent sustained ventricular tachycardia. 2. Endocardial mapping. Circulation 1978, 57, 440–447. [Google Scholar] [CrossRef]
- Gomes, J.A.; Cain, M.E.; Buxton, A.E.; Josephson, M.E.; Lee, K.L.; Hafley, G.E. Prediction of long-term outcomes by signal-averaged electrocardiography in patients with unsustained ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation 2001, 104, 436–441. [Google Scholar] [CrossRef]
- Gatzoulis, K.A.; Arsenos, P.; Trachanas, K.; Dilaveris, P.; Antoniou, C.; Tsiachris, D.; Sideris, S.; Kolettis, T.M.; Tousoulis, D. Signal-averaged electrocardiography: Past, present, and future. J. Arrhythm. 2018, 34, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Savard, P.; Rouleau, J.L.; Ferguson, J.; Poitras, N.; Morel, P.; Davies, R.F.; Stewart, D.J.; Talajic, M.; Gardner, M.; Dupuis, R.; et al. Risk stratification after myocardial infarction using signal-averaged electrocardiographic criteria adjusted for sex, age, and myocardial infarction location. Circulation 1997, 96, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.M.; Rao, R.; Henkin, R.; Suneja, R.; Ursell, S.N.; El-Sherif, N. Study of the influence of left bundle branch block on the signal-averaged electrocardiogram: A qualitative and quantitative analysis. Am. Heart J. 1991, 121 Pt 1, 494–508. [Google Scholar] [CrossRef] [PubMed]
- Jurak, P.; Halamek, J.; Meluzin, J.; Plesinger, F.; Postranecka, T.; Lipoldova, J.; Novak, M.; Vondra, V.; Viscor, I.; Soukup, L.; et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J. Interv. Card. Electrophysiol. 2017, 49, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Jurak, P.; Curila, K.; Leinveber, P.; Prinzen, F.W.; Viscor, I.; Plesinger, F.; Smisek, R.; Prochazkova, R.; Osmancik, P.; Halamek, J.; et al. Novel ultra-high-frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. J. Cardiovasc. Electrophysiol. 2020, 31, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Plesinger, F.; Jurco, J.; Halamek, J.; Jurak, P. SignalPlant: An open signal processing software platform. Physiol. Meas. 2016, 37, N38–N48. [Google Scholar] [CrossRef]
- Plesinger, F.; Jurco, J.; Halamek, J.; Leinveber, P.; Reichlova, T.; Jurak, P. Multichannel QRS Morphology Clustering—Data Preprocessing for Ultra-High-Frequency ECG Analysis. In Proceedings of the 3rd International Congress on Cardiovascular Technologies—CARDIOTECHNIX2015, Lisbon, Portugal, 16–17 November 2015; SciTePress: Setúbal, Portugal, 2015. [Google Scholar]
- Jurak, P.; Bear, L.R.; Nguyen, U.C.; Viscor, I.; Andrla, P.; Plesinger, F.; Halamek, J.; Vondra, V.; Abell, E.; Cluitmans, M.J.M.; et al. 3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: Principles and clinical importance. Sci. Rep. 2021, 11, 11469. [Google Scholar] [CrossRef]
- Plesinger, F.; Jurak, P.; Halamek, J.; Nejedly, P.; Leinveber, P.; Viscor, I.; Vondra, V.; McNitt, S.; Polonsky, B.; Moss, A.J.; et al. Ventricular Electrical Delay Measured from Body Surface ECGs Is Associated with Cardiac Resynchronization Therapy Response in Left Bundle Branch Block Patients from the MADIT-CRT Trial (Multicenter Automatic Defibrillator Implantation-Cardiac Resynchronization Therapy). Circ. Arrhythm. Electrophysiol. 2018, 11, e005719. [Google Scholar]
- Curila, K.; Jurak, P.; Halamek, J.; Prinzen, F.; Waldauf, P.; Karch, J.; Stros, P.; Plesinger, F.; Mizner, J.; Susankova, M.; et al. Ventricular activation pattern assessment during right ventricular pacing: Ultra-high-frequency ECG study. J. Cardiovasc. Electrophysiol. 2021, 32, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Curila, K.; Jurak, P.; Jastrzebski, M.; Prinzen, F.; Waldauf, P.; Halamek, J.; Vernooy, K.; Smisek, R.; Karch, J.; Plesinger, F.; et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm 2021, 18, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Curila, K.; Jurak, P.; Prinzen, F.; Jastrzebski, M.; Waldauf, P.; Halamek, J.; Tothova, M.; Znojilova, L.; Smisek, R.; Kach, J.; et al. Bipolar anodal septal pacing with direct LBB capture preserves physiological ventricular activation better than unipolar left bundle branch pacing. Front. Cardiovasc. Med. 2023, 10, 1140988. [Google Scholar] [CrossRef]
- Curila, K.; Jurak, P.; Vernooy, K.; Jastrzebski, M.; Waldauf, P.; Prinzen, F.; Halamek, J.; Susankova, M.; Znojilova, L.; Smisek, R.; et al. Left Ventricular Myocardial Septal Pacing in Close Proximity to LBB Does Not Prolong the Duration of the Left Ventricular Lateral Wall Depolarization Compared to LBB Pacing. Front. Cardiovasc. Med. 2021, 8, 787414. [Google Scholar] [CrossRef]
- Curila, K.; Prochazkova, R.; Jurak, P.; Jastrzebski, M.; Halamek, J.; Moskal, P.; Stros, P.; Vesela, J.; Waldauf, P.; Viscor, I.; et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm 2020, 17, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Mizner, J.; Jurak, P.; Linkova, H.; Smisek, R.; Curila, K. Ventricular Dyssynchrony and Pacing-induced Cardiomyopathy in Patients with Pacemakers, the Utility of Ultra-High-Frequency ECG and Other Dyssynchrony Assessment Tools. Arrhythm. Electrophysiol. Rev. 2022, 11, e17. [Google Scholar] [CrossRef] [PubMed]
- Sussenbek, O.; Rademakers, L.; Waldauf, P.; Jurak, P.; Smisek, R.; Stros, P.; Poviser, L.; Vesela, J.; Plesinger, F.; Halamek, J.; et al. Left bundle branch area pacing results in more physiological ventricular activation than biventricular pacing in patients with left bundle branch block heart failure. Eur. Heart J. Suppl. 2023, 25 (Suppl. SE), E17–E24. [Google Scholar] [CrossRef] [PubMed]
- Burri, H.; Jastrzebski, M.; Cano, Ó.; Čurila, K.; de Pooter, J.; Huang, W.; Israel, C.; Joza, J.; Romero, J.; Vernooy, K.; et al. EHRA clinical consensus statement on conduction system pacing implantation: Endorsed by the Asia Pacific Heart Rhythm Society (APHRS), Canadian Heart Rhythm Society (CHRS), and Latin American Heart Rhythm Society (LAHRS). Europace 2023, 25, 1208–1236. [Google Scholar] [CrossRef] [PubMed]
- Heckman, L.; Vijayaraman, P.; Luermans, J.; Stipdonk, A.M.W.; Salden, F.; Maass, A.H.; Prinzen, F.W.; Vernooy, K. Novel bradycardia pacing strategies. Heart 2020, 106, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębski, M.; Kiełbasa, G.; Cano, O.; Curila, K.; Heckman, L.; De Pooter, J.; Chovanec, M.; Rademakers, L.; Huybrechts, W.; Grieco, D.; et al. Left bundle branch area pacing outcomes: The multicentre European MELOS study. Eur. Heart J. 2022, 43, 4161–4173. [Google Scholar] [CrossRef] [PubMed]
- Pujol-Lopez, M.; Jiménez-Arjona, R.; Garre, P.; Guasch, E.; Borràs, R.; Doltra, A.; Ferró, E.; García-Ribas, C.; Niebla, M.; Carro, E.; et al. Conduction System Pacing vs Biventricular Pacing in Heart Failure and Wide QRS Patients: LEVEL-AT Trial. JACC Clin. Electrophysiol. 2022, 8, 1431–1445. [Google Scholar] [CrossRef]
- Ezzeddine, F.M.; Pistiolis, S.M.; Pujol-Lopez, M.; Lavelle, M.; Wan, E.Y.; Patton, K.K.; Robinson, M.; Lador, A.; Tamirisa, K.; Karim, S.; et al. Outcomes of conduction system pacing for cardiac resynchronization therapy in patients with heart failure: A multicenter experience. Heart Rhythm 2023, 20, 863–871. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Hou, X.; Wang, Z.; Zou, F.; Qian, Z.; Wei, Y.; Wang, X.; Zhang, L.; Li, X.; et al. Randomized Trial of Left Bundle Branch vs Biventricular Pacing for Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2022, 80, 1205–1216. [Google Scholar] [CrossRef]
- Rijks, J.; Luermans, J.; Heckman, L.; van Stipdonk, A.M.W.; Prinzen, F.; Lumens, J.; Vernooy, K. Physiology of Left Ventricular Septal Pacing and Left Bundle Branch Pacing. Card. Electrophysiol. Clin. 2022, 14, 181–189. [Google Scholar] [CrossRef]
- El-Sherif, N.; Amay-Y-Leon, F.; Schonfield, C.; Scherlag, B.J.; Rosen, K.; Lazzara, R.; Wyndham, C. Normalization of bundle branch block patterns by distal His bundle pacing. Clinical and experimental evidence of longitudinal dissociation in the pathologic his bundle. Circulation 1978, 57, 473–483. [Google Scholar] [CrossRef]
- Vinther, M.; Risum, N.; Svendsen, J.H.; Møgelvang, R.; Philbert, B.T. A Randomized Trial of His Pacing Versus Biventricular Pacing in Symptomatic HF Patients With Left Bundle Branch Block (His-Alternative). JACC Clin. Electrophysiol. 2021, 7, 1422–1432. [Google Scholar] [CrossRef]
- Upadhyay, G.A.; Razminia, P.; Tung, R. His-bundle pacing is the best approach to physiological pacing. Heart Rhythm O2 2020, 1, 68–75. [Google Scholar] [CrossRef]
- Huang, W.; Su, L.; Wu, S.; Xu, L.; Xiao, F.; Zhou, X.; Ellenbogen, K.A. A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Can. J. Cardiol. 2017, 33, 1736.e1–1736.e3. [Google Scholar] [CrossRef]
- Huang, W.; Chen, X.; Su, L.; Wu, S.; Xia, X.; Vijayaraman, P. A beginner’s guide to permanent left bundle branch pacing. Heart Rhythm 2019, 16, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraman, P.; Sharma, P.S.; Cano, Ó.; Ponnusamy, S.S.; Herweg, B.; Zanon, F.; Jastrzebski, M.; Zou, J.; Chelu, M.G.; Vernooy, K.; et al. Comparison of Left Bundle Branch Area Pacing and Biventricular Pacing in Candidates for Resynchronization Therapy. J. Am. Coll. Cardiol. 2023, 82, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Halamek, J.; Leinveber, P.; Viscor, I.; Smisek, R.; Plesinger, F.; Vondra, V.; Lipoldova, J.; Matejkova, M.; Jurak, P. The relationship between ECG predictors of cardiac resynchronization therapy benefit. PLoS ONE 2019, 14, e0217097. [Google Scholar] [CrossRef] [PubMed]
- Rijks, J.; Luermans, J.; Vernooy, K. Left bundle branch-optimized cardiac resynchronization therapy: Pursuing the optimal resynchronization in severe (distal) conduction system disease. Heart Rhythm Case Rep. 2023, 9, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Tung, R.; Upadhyay, G.A. Defining Left Bundle Branch Block Patterns in Cardiac Resynchronisation Therapy: A Return to His Bundle Recordings. Arrhythm. Electrophysiol. Rev. 2020, 9, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Jastrzebski, M.; Moskal, P.; Huybrechts, W.; Curila, K.; Sreekumar, P.; Rademakers, L.M.; Ponnusamy, S.S.; Herweg, B.; Sharma, P.S.; Bednarek, A.; et al. Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT): Results from an international LBBAP collaborative study group. Heart Rhythm 2022, 19, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraman, P.; Herweg, B.; Ellenbogen, K.A.; Gajek, J. His-Optimized Cardiac Resynchronization Therapy to Maximize Electrical Resynchronization: A Feasibility Study. Circ. Arrhythm. Electrophysiol. 2019, 12, e006934. [Google Scholar] [CrossRef] [PubMed]
- Curila, K.; Jurak, P.; Varma, N. Resynchronization for shifting conduction patterns—When a coronary sinus lead is not enough. Indian Pacing Electrophysiol. J. 2023, 23, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Curila, K.; Jurak, P.; Chelu, M.G.; Upadhyay, G.; Sedlacek, K.; Osmancik, P. Is it a true left bundle branch block or not? J. Interv. Card. Electrophysiol. 2023, 66, 1329–1331. [Google Scholar] [CrossRef]
- Koscova, Z.; Ivora, A.; Nejedly, P.; Halamek, J.; Jurak, P.; Matejkova, M.; Leinveber, P.; Znojilova, L.; Curila, K.; Filip, P. QRS Complex. Detection in Paced and Spontaneous Ultra-High-Frequency ECG. In Proceedings of the 2021 Computing in Cardiology (CinC) 2021, Brno, Czech Republic, 13–15 September 2021. [Google Scholar]
- Saleh, K.; Varnava, A.; Shun-Shin, M.J.; Ali, N.; Mohal, J.; Chiew, K.; Hanif, M.; Merzah, A.J.; Howard, J.P.; Jurak, P.; et al. Ultra-high-frequency ECG assessment of QRS fragmentation predicts sudden cardiac death risk in inherited arrhythmia syndromes. Eur. Heart J. 2022, 43 (Suppl. S2), ehac544-678. [Google Scholar] [CrossRef]
- Herweg, B.; Sharma, P.S.; Cano, O.; Ponnusamy, S.S.; Zanon, F.; Jastrzebski, M.; Zou, J.; Chelu, M.G.; Vernooy, K.; Whinnett, Z.I.; et al. Arrhythmic Risk in Biventricular Pacing Compared with Left Bundle Branch Area Pacing: Results from The International LBBAP Collaborative Study (I-CLAS). Circulation 2023, 149, 379–390. [Google Scholar] [CrossRef]
Study | Year | Patients No. | Pacing Indication | Pacing Strategy Studied | Main Finding |
---|---|---|---|---|---|
Jurak et al. [46] | 2017 | 17 | CRT | BiV-CRT | Introducing UHF-ECG technique for identification differences in electrical activation. |
Plesinger et al. [51] | 2018 | 949 | CRT | BiV-CRT | LBBB patients with a high baseline UHF-ECG ventricular electrical delay benefited most from CRT. |
Curila et al. [56] | 2020 | 46 | Bradycardia | HBP | Both selective and non-selective HBP, but not myocardial pacing, preserve ventricular electrical synchrony as measured using UHF-ECG. |
Curila et al. [52] | 2021 | 51 | Bradycardia | RVP/non-selective HBP/RBBP | RV inflow tract pacing produces better ventricular synchrony than other RV pacing locations. Concomitant capture of His bundle or proximal RBB along with adjacent myocardium results in the most synchronous ventricular activation. |
Curila et al. [53] | 2021 | 68 | Bradycardia | LBBP/LVSP | LBBP preserves physiological LV depolarization but increases interventricular dyssynchrony. LVSP prolongs LV lateral wall depolarization but preserves interventricular dyssynchrony to the same level as HBP. |
Curila et al. [55] | 2021 | 57 | Bradycardia | LBBP/LVSP | In patients with bradycardia, LVSP in close proximity to LBB resulted in better interventricular synchrony than non-selective LBBP and selective LBBP, and did not significantly prolong the depolarization of the left ventricular lateral wall. |
Curila et al. [54] | 2023 | 75 | Bradycardia | HBP/LBBP/RVSP | Although anodal LBBP improved ventricular synchrony and the depolarization duration of the septum and RV compared to unipolar non-selective LBBP, the resultant ventricular depolarization was still less physiological than during HBP. |
Sussenbek et al. [58] | 2021 | 80 | CRT | LBBAP-CRT/BiV-CRT | Both BiV-CRT and LBBAP significantly reduce ventricular dyssynchrony in CRT patients with LBBB. The left bundle branch area pacing is associated with more physiological ventricular activation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyên, U.C.; Rijks, J.H.J.; Plesinger, F.; Rademakers, L.M.; Luermans, J.; Smits, K.C.; van Stipdonk, A.M.W.; Prinzen, F.W.; Vernooy, K.; Halamek, J.; et al. Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application. J. Cardiovasc. Dev. Dis. 2024, 11, 76. https://doi.org/10.3390/jcdd11030076
Nguyên UC, Rijks JHJ, Plesinger F, Rademakers LM, Luermans J, Smits KC, van Stipdonk AMW, Prinzen FW, Vernooy K, Halamek J, et al. Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application. Journal of Cardiovascular Development and Disease. 2024; 11(3):76. https://doi.org/10.3390/jcdd11030076
Chicago/Turabian StyleNguyên, Uyên Châu, Jesse H. J. Rijks, Filip Plesinger, Leonard M. Rademakers, Justin Luermans, Karin C. Smits, Antonius M. W. van Stipdonk, Frits W. Prinzen, Kevin Vernooy, Josef Halamek, and et al. 2024. "Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application" Journal of Cardiovascular Development and Disease 11, no. 3: 76. https://doi.org/10.3390/jcdd11030076
APA StyleNguyên, U. C., Rijks, J. H. J., Plesinger, F., Rademakers, L. M., Luermans, J., Smits, K. C., van Stipdonk, A. M. W., Prinzen, F. W., Vernooy, K., Halamek, J., Curila, K., & Jurak, P. (2024). Ultra-High-Frequency ECG in Cardiac Pacing and Cardiac Resynchronization Therapy: From Technical Concept to Clinical Application. Journal of Cardiovascular Development and Disease, 11(3), 76. https://doi.org/10.3390/jcdd11030076