The Clinical Impact of SARS-CoV-2 on Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maron, B.J. Clinical Course and Management of Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2018, 379, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Massera, D.; McClelland, R.L.; Ambale-Venkatesh, B.; Gomes, A.S.; Hundley, W.G.; Kawel-Boehm, N.; Yoneyama, K.; Owens, D.S.; Garcia, M.J.; Sherrid, M.V.; et al. Prevalence of unexplained left ventricular hypertrophy by cardiac magnetic resonance imaging in MESA. J. Am. Heart Assoc. 2019, 8, e012250. [Google Scholar] [CrossRef] [PubMed]
- Semsarian, C.; Ingles, J.; Maron, M.S.; Maron, B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2015, 65, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.S. Hypertrophic Cardiomyopathy: Clinical Manifestations, Diagnosis, and Evaluation. Uptodate. October 2021. Available online: https://www.uptodate.com/contents/hypertrophic-cardiomyopathy-clinical-manifestations-diagnosis-and-evaluation (accessed on 5 October 2023).
- Achim, A.; Savaria, B.U.; Buja, L.M. Commentary on the enigma of small vessel disease in hypertrophic cardiomyopathy: Is invasive assessment of microvascular resistance a novel independent predictor of prognosis? Cardiovasc. Pathol. 2022, 60, 107448. [Google Scholar] [CrossRef]
- Fang, L.; Ellims, A.H.; Beale, A.L.; Taylor, A.J.; Murphy, A.; Dart, A.M. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am. J. Transl. Res. 2017, 9, 5063. [Google Scholar] [PubMed]
- Kuusisto, J.; Kärjä, V.; Sipola, P.; Kholová, I.; Peuhkurinen, K.; Jääskeläinen, P.; Naukkarinen, A.; Ylä-Herttuala, S.; Punnonen, K.; Laakso, M. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart 2012, 98, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.; Collins, J.D.; Ogele, E.; Murtagh, G.; Carr, J.C.; Bonow, R.O.; Choudhury, L. Relation of late gadolinium enhancement and extracellular volume fraction to ventricular arrhythmias in hypertrophic cardiomyopathy. Am. J. Cardiol. 2020, 131, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Lamke, G.T.; Allen, R.D.; Edwards, W.D.; Tazelaar, H.D.; Danielson, G.K. Surgical pathology of subaortic septal myectomy associated with hypertrophic cardiomyopathy: A study of 204 cases (1996–2000). Cardiovasc. Pathol. 2003, 12, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/data (accessed on 8 November 2021).
- Patel, P.; DeCuir, J.; Abrams, J.; Campbell, A.P.; Godfred-Cato, S.; Belay, E.D. Clinical characteristics of multisystem inflammatory syndrome in adults: A systematic review. JAMA Netw. Open 2021, 4, e2126456. [Google Scholar] [CrossRef]
- Manjili, R.H.; Zarei, M.; Habibi, M.; Manjili, M.H. COVID-19 as an acute inflammatory disease. J. Immunol. 2020, 205, 12–19. [Google Scholar] [CrossRef]
- Fairweather, D.; Beetler, D.J.; Di Florio, D.N.; Musigk, N.; Heidecker, B.; Cooper, L.T., Jr. COVID-19, myocarditis and pericarditis. Circ. Res. 2023, 132, 1302–1319. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, T.K.; Kompaniyets, L.; Lavery, A.M.; Hsu, J.; Ko, J.Y.; Yusuf, H.; Romano, S.D.; Gundlapalli, A.V.; Oster, M.E.; Harris, A.M. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data—United States, March 2020–January 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Bemtgen, X.; Kaier, K.; Rilinger, J.; Rottmann, F.; Supady, A.; von Zur Mühlen, C.; Westermann, D.; Wengenmayer, T.; Staudacher, D.L. Myocarditis mortality with and without COVID-19: Insights from a national registry. Clin. Res. Cardiol. 2024, 113, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Tucker, N.R.; Chaffin, M.; Bedi, K.C., Jr.; Papangeli, I.; Akkad, A.-D.; Arduini, A.; Hayat, S.; Eraslan, G.; Muus, C.; Bhattacharyya, R.P.; et al. Myocyte Specific Upregulation of ACE2 in Cardiovascular Disease: Implications for SARS-CoV-2 Mediated Myocarditis. Circulation 2020, 142, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Ranard, L.S.; Fried, J.A.; Abdalla, M.; Anstey, D.E.; Givens, R.C.; Kumaraiah, D.; Kodali, S.K.; Takeda, K.; Karmpaliotis, D.; Rabbani, L.E.; et al. Approach to acute cardiovascular complications in COVID-19 infection. Circ. Heart Fail. 2020, 13, e007220. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.S.; Kosiborod, M.N.; Claggett, B.L.; Miao, Z.M.; Vaduganathan, M.; Lam, C.S.; Hernandez, A.F.; Martinez, F.A.; Inzucchi, S.E.; Shah, S.J.; et al. Impact of COVID—19 in patients with heart failure with mildly reduced or preserved ejection fraction enrolled in the DELIVER trial. Eur. J. Heart Fail. 2023, 25, 2177–2188. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Verardo, R.; Caldarulo, M.; Acconcia, M.C.; Russo, M.A.; Chimenti, C. Myocarditis in hypertrophic cardiomyopathy patients presenting acute clinical deterioration. Eur. Heart J. 2007, 28, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.; Srivastava, A.; Gandhi, M.; Perera, A.; Modi, D.; Bellamkonda, M.K.; Sunkara, P.; Nanjundappa, A.; Akki Vivekananand, V.; Singh, S. Examining the effect of COVID-19 on hypertrophic cardiomyopathy hospitalizations in the USA: A nationwide propensity-score matched analysis. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655-2378. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D., Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- AJMC Staff. A Timeline of COVID-19 Vaccine Developments in 2021. Available online: https://www.ajmc.com/view/a-timeline-of-covid-19-vaccine-developments-in-2021 (accessed on 5 October 2023).
- Available online: https://www.census.gov/quickfacts/fact/table/US/PST040222 (accessed on 11 January 2024).
- Gimeno, J.R.; Olivotto, I.; Rodríguez, A.I.; Ho, C.Y.; Fernández, A.; Quiroga, A.; Espinosa, M.A.; Gómez-González, C.; Robledo, M.; Tojal-Sierra, L.; et al. Impact of SARS-CoV-2 infection in patients with hypertrophic cardiomyopathy: Results of an international multicentre registry. ESC Heart Fail. 2022, 9, 2189–2198. [Google Scholar] [CrossRef]
- Arabadjian, M.E.; Reuter, M.C.; Stepanovic, A.; Sherrid, M.V.; Massera, D. COVID-19 in Adults With Hypertrophic Cardiomyopathy. Front. Cardiovasc. Med. 2021, 8, 745790. [Google Scholar] [CrossRef]
- Maron, M.S.; Olivotto, I.; Zenovich, A.G.; Link, M.S.; Pandian, N.G.; Kuvin, J.T.; Nistri, S.; Cecchi, F.; Udelson, J.E.; Maron, B.J. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 2006, 114, 2232–2239. [Google Scholar] [CrossRef]
- Achim, A.; Serban, A.M.; Mot, S.D.C.; Leibundgut, G.; Marc, M.; Sigwart, U. Alcohol septal ablation in hypertrophic cardiomyopathy: For which patients? ESC Heart Fail. 2023, 10, 1570–1579. [Google Scholar] [CrossRef]
- Bezati, S.; Velliou, M.; Ventoulis, I.; Simitsis, P.; Parissis, J.; Polyzogopoulou, E. Infection as an under-recognized precipitant of acute heart failure: Prognostic and therapeutic implications. Heart Fail. Rev. 2023, 28, 893–904. [Google Scholar] [CrossRef]
Characteristics, no (%) | Unmatched | Propensity Matched 2 | ||||||
---|---|---|---|---|---|---|---|---|
HCM/COVID | HCM/COVID | |||||||
Negative | Positive | Negative | Positive | |||||
N | (n = 5225) | (n = 405) | p-Value 1 | N | (n = 1189) | (n = 397) | p-Value 1 | |
Age, mean (SD), years | 5630 | 65.8 ± 16.8 | 65.0 ± 16.0 | 0.39 | 1586 | 64.4 ± 16.1 | 65.0 ± 16.1 | 0.57 |
Female | 5630 | 2360 (45.2) | 170 (42) | 0.21 | 1586 | 484 (40.7) | 168 (42.3) | 0.57 |
BMI, mean (SD) | 5372 | 29.3 ± 6.7 | 30.2 ± 6.9 | 0.016 | 1586 | 30.3 ± 6.9 | 30.3 ± 6.9 | 0.86 |
Medical history | ||||||||
Active tobacco use | 5216 | 334 (6.9) | 23 (5.8) | 0.39 | 1586 | 68 (5.7) | 23 (5.8) | 0.96 |
Hypertension | 5630 | 3402 (65.1) | 323 (79.8) | <0.01 | 1586 | 942 (79.2) | 321 (80.9) | 0.48 |
Hyperlipidemia | 5630 | 2779 (53.2) | 255 (63) | <0.01 | 1586 | 763 (64.2) | 255 (64.2) | 0.98 |
Myocardial injury/infarction | 5630 | 376 (7.2) | 41 (10.1) | 0.030 | 1586 | 126 (10.6) | 40 (10.1) | 0.77 |
Myocarditis | 5630 | 7 (0.1) | 0 (0) | 1.00 | 1586 | 1 (0.1) | 0 (0) | 1.00 |
Pericarditis | 5630 | 22 (0.4) | 4 (1) | 0.11 | 1586 | 7 (0.6) | 4 (1) | 0.48 |
Atrial fibrillation | 5630 | 992 (19) | 83 (20.5) | 0.46 | 1586 | 249 (20.9) | 83 (20.9) | 0.99 |
NSVT | 5630 | 661 (12.7) | 51 (12.6) | 0.97 | 1586 | 155 (13) | 51 (12.8) | 0.92 |
Heart failure | 5630 | 1956 (37.4) | 161 (39.8) | 0.35 | 1586 | 470 (39.5) | 160 (40.3) | 0.78 |
Characteristics, no (%) | Unmatched | Propensity Matched | ||||||
---|---|---|---|---|---|---|---|---|
HCM/COVID | HCM/COVID | |||||||
Negative | Positive | Negative | Positive | |||||
N | (n = 5225) | (n = 405) | p-Value 1 | N | (n = 1189) | (n = 397) | p-Value 1 | |
Death | 5630 | 228 (4.4) | 46 (11.4) | <0.01 | 1586 | 60 (5) | 43 (10.8) | <0.01 |
Hospitalization counts | 5630 | <0.01 | 1586 | <0.01 | ||||
1–2 | 1047 (20) | 172 (42.5) | 273 (23) | 165 (41.6) | ||||
3–5 | 236 (4.5) | 65 (16) | 52 (4.4) | 65 (16.4) | ||||
>5 | 61 (1.2) | 20 (4.9) | 14 (1.2) | 20 (5) | ||||
Hospitalization days, median (IQR) | 5630 | 0 (0–0) | 2 (0–11) | <0.01 | 1586 | 0 (0–0) | 2 (0–10) | <0.01 |
ICU hospitalization counts | 5630 | 0.07 | 1586 | 0.09 | ||||
1 | 68 (1.3) | 11 (2.7) | 15 (1.3) | 11 (2.8) | ||||
2 | 4 (0.1) | 0 (0) | 1 (0.1) | 0 (0) | ||||
Covid hospitalization 2 | 5630 | 0 (0) | 141 (34.8) | <0.01 | 0 (0) | 135 (34) | <0.01 | |
Heart failure hospitalization 2 | 5630 | 427 (8.2) | 100 (24.7) | <0.01 | 1586 | 104 (8.7) | 96 (24.2) | <0.01 |
NSTEMI hospitalization | 5630 | 175 (3.3) | 35 (8.6) | <0.01 | 1586 | 55 (4.6) | 34 (8.6) | <0.01 |
Peak hsTrop, median (IQR) | 865 | 21 (8–62) | 27 (10–136) | 0.07 | 348 | 22 (8–53) | 27 (9–122) | 0.16 |
Peak BNP, median (IQR) | 1139 | 222 (87–522) | 190 (85–588.5) | 0.70 | 410 | 232 (86–521) | 190 (86–603) | 0.76 |
Peak CRP, median (IQR) | 688 | 6.4 (2.0–24.0) | 38.7 (9.0–109.2) | <0.01 | 291 | 5.5 (1.8–21.3) | 34.0 (9.0–106.9) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, D.; Meng, Z.; Johnson, N.; Baldridge, A.; Zielinski, A.R.; Choudhury, L. The Clinical Impact of SARS-CoV-2 on Hypertrophic Cardiomyopathy. J. Cardiovasc. Dev. Dis. 2024, 11, 104. https://doi.org/10.3390/jcdd11040104
Saleh D, Meng Z, Johnson N, Baldridge A, Zielinski AR, Choudhury L. The Clinical Impact of SARS-CoV-2 on Hypertrophic Cardiomyopathy. Journal of Cardiovascular Development and Disease. 2024; 11(4):104. https://doi.org/10.3390/jcdd11040104
Chicago/Turabian StyleSaleh, Danish, Zhiying Meng, Nicholas Johnson, Abigail Baldridge, Allison R. Zielinski, and Lubna Choudhury. 2024. "The Clinical Impact of SARS-CoV-2 on Hypertrophic Cardiomyopathy" Journal of Cardiovascular Development and Disease 11, no. 4: 104. https://doi.org/10.3390/jcdd11040104
APA StyleSaleh, D., Meng, Z., Johnson, N., Baldridge, A., Zielinski, A. R., & Choudhury, L. (2024). The Clinical Impact of SARS-CoV-2 on Hypertrophic Cardiomyopathy. Journal of Cardiovascular Development and Disease, 11(4), 104. https://doi.org/10.3390/jcdd11040104