Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young—FGF-21 Highly Associated with Overt Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Participants
3.2. Transthoracic Echocardiography
3.3. Biomarkers and Pathophysiological Pathways in the Study Groups
3.3.1. RAS-MAPK Pathway
3.3.2. Cell Adhesion
3.3.3. Response to Hypoxia
3.3.4. Chemotaxis
3.3.5. Immune Response
3.3.6. Angiogenesis
3.3.7. Proteolysis
3.3.8. Pathways Analyzed without Significant Results
4. Discussion
4.1. Proteins Associated with Increased Risk of Disease-Expression
4.2. Proteins That Are Reduced in Overt HCM
4.3. Proteins That Are Altered in Genotype-Positive Individuals without Developed HCM Phenotype (G+P-)
4.4. Implications for the Future
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maron, B.J.; Maron, M.S. Hypertrophic cardiomyopathy. Lancet 2013, 381, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Moak, J.P.; Kaski, J.P. Hypertrophic cardiomyopathy in children. Heart 2012, 98, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Authors/Task Force members; Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef]
- Wolf, C.M. Hypertrophic cardiomyopathy: Genetics and clinical perspectives. Cardiovasc. Diagn. Ther. 2019, 9, S388–S415. [Google Scholar] [CrossRef] [PubMed]
- Kaski, J.P.; Syrris, P.; Shaw, A.; Alapi, K.Z.; Cordeddu, V.; Esteban, M.T.; Jenkins, S.; Ashworth, M.; Hammond, P.; Tartaglia, M.; et al. Prevalence of sequence variants in the RAS-mitogen activated protein kinase signaling pathway in pre-adolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2012, 5, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.J.; Raita, Y.; Liang, L.W.; Maurer, M.S.; Hasegawa, K.; Fifer, M.A.; Reilly, M.P. Comprehensive Proteomics Profiling Reveals Circulating Biomarkers of Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2021, 14, e007849. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.W.; Raita, Y.; Hasegawa, K.; Fifer, M.A.; Maurer, M.S.; Reilly, M.P.; Shimada, Y.J. Proteomics profiling reveals a distinct high-risk molecular subtype of hypertrophic cardiomyopathy. Heart 2022, 108, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Coats, C.J.; Heywood, W.E.; Virasami, A.; Ashrafi, N.; Syrris, P.; Dos Remedios, C.; Treibel, T.A.; Moon, J.C.; Lopes, L.R.; McGregor, C.G.A.; et al. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. Circ. Genom. Precis. Med. 2018, 11, e001974. [Google Scholar] [CrossRef] [PubMed]
- Fernlund, E.; Gyllenhammar, T.; Jablonowski, R.; Carlsson, M.; Larsson, A.; Arnlov, J.; Liuba, P. Serum Biomarkers of Myocardial Remodeling and Coronary Dysfunction in Early Stages of Hypertrophic Cardiomyopathy in the Young. Pediatr. Cardiol. 2017, 38, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.E.; Shi, L.; Day, S.M.; Colan, S.D.; Russell, M.W.; Towbin, J.A.; Sherrid, M.V.; Canter, C.E.; Jefferies, J.L.; Murphy, A.; et al. Biomarkers of cardiovascular stress and fibrosis in preclinical hypertrophic cardiomyopathy. Open Heart 2017, 4, e000615. [Google Scholar] [CrossRef]
- Katrukha, I.A.; Katrukha, A.G. Myocardial Injury and the Release of Troponins I and T in the Blood of Patients. Clin. Chem. 2021, 67, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Hall, C. Essential biochemistry and physiology of (NT-pro)BNP. Eur. J. Heart Fail. 2004, 6, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Captur, G.; Heywood, W.E.; Coats, C.; Rosmini, S.; Patel, V.; Lopes, L.R.; Collis, R.; Patel, N.; Syrris, P.; Bassett, P.; et al. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol. Cell. Proteom. 2020, 19, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, J.P.; Colan, S.D.; Lang, P.; Triedman, J.K.; Alexander, M.E.; Walsh, E.P.; Berul, C.I.; Cecchin, F. Circulating matrix metalloproteinases in adolescents with hypertrophic cardiomyopathy and ventricular arrhythmia. Circ. Heart Fail. 2012, 5, 462–466. [Google Scholar] [CrossRef]
- Pettersen, M.D.; Du, W.; Skeens, M.E.; Humes, R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: An echocardiographic study. J. Am. Soc. Echocardiogr. 2008, 21, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Fernlund, E.; Kissopoulou, A.; Green, H.; Karlsson, J.E.; Ellegard, R.; Arstrand, H.K.; Jonasson, J.; Gunnarsson, C. Hereditary Hypertrophic Cardiomyopathy in Children and Young Adults-The Value of Reevaluating and Expanding Gene Panel Analyses. Genes 2020, 11, 1472. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Aghaebrahim, A.; Sauvageau, E.; Aguilar-Salinas, P.; Cortez, G.; Santos, R.; Hanel, R.A. Referral facility CT perfusion prior to inter-facility transfer in patients undergoing mechanical thrombectomy. J. Neurointerv. Surg. 2018, 10, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.J.; Hasegawa, K.; Kochav, S.M.; Mohajer, P.; Jung, J.; Maurer, M.S.; Reilly, M.P.; Fifer, M.A. Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy. J. Cardiovasc. Transl. Res. 2019, 12, 569–579. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Z.; Gu, J.; Yan, X.; Lu, X.; Zhou, S.; Wang, S.; Shao, M.; Zhang, F.; Cheng, P.; et al. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 2015, 58, 1937–1948. [Google Scholar] [CrossRef]
- Ferrer-Curriu, G.; Redondo-Angulo, I.; Guitart-Mampel, M.; Ruperez, C.; Mas-Stachurska, A.; Sitges, M.; Garrabou, G.; Villarroya, F.; Fernandez-Sola, J.; Planavila, A. Fibroblast growth factor-21 protects against fibrosis in hypertensive heart disease. J. Pathol. 2019, 248, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Viola, H.M.; Johnstone, V.P.A.; Cserne Szappanos, H.; Richman, T.R.; Tsoutsman, T.; Filipovska, A.; Semsarian, C.; Seidman, J.G.; Seidman, C.E.; Hool, L.C. The Role of the L-Type Ca(2+) Channel in Altered Metabolic Activity in a Murine Model of Hypertrophic Cardiomyopathy. JACC Basic Transl. Sci. 2016, 1, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Shebuski, R.J.; Kilgore, K.S. Role of inflammatory mediators in thrombogenesis. J. Pharmacol. Exp. Ther. 2002, 300, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Marki, A.; Esko, J.D.; Pries, A.R.; Ley, K. Role of the endothelial surface layer in neutrophil recruitment. J. Leukoc. Biol. 2015, 98, 503–515. [Google Scholar] [CrossRef]
- Cambronero, F.; Marin, F.; Roldan, V.; Hernandez-Romero, D.; Valdes, M.; Lip, G.Y. Biomarkers of pathophysiology in hypertrophic cardiomyopathy: Implications for clinical management and prognosis. Eur. Heart J. 2009, 30, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, T.; Kumagai, M.; Sasaki, N.; Kurotaki, H.; Mori, F.; Seki, M.; Nishi, N.; Fujimoto, K.; Tanji, K.; Shibata, T.; et al. Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells. J. Leukoc. Biol. 2002, 72, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Kashio, Y.; Nakamura, K.; Seki, M.; Dai, S.; Shirato, Y.; Abedin, M.J.; Yoshida, N.; Nishi, N.; Imaizumi, T.; et al. Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9. J. Immunol. 2002, 169, 5912–5918. [Google Scholar] [CrossRef] [PubMed]
- Elola, M.T.; Wolfenstein-Todel, C.; Troncoso, M.F.; Vasta, G.R.; Rabinovich, G.A. Galectins: Matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell. Mol. Life Sci. 2007, 64, 1679–1700. [Google Scholar] [CrossRef]
- Gaudry, C.A.; Palka, H.L.; Dusek, R.L.; Huen, A.C.; Khandekar, M.J.; Hudson, L.G.; Green, K.J. Tyrosine-phosphorylated plakoglobin is associated with desmogleins but not desmoplakin after epidermal growth factor receptor activation. J. Biol. Chem. 2001, 276, 24871–24880. [Google Scholar] [CrossRef] [PubMed]
- Algul, S.; Schuldt, M.; Manders, E.; Jansen, V.; Schlossarek, S.; de Goeij-de Haas, R.; Henneman, A.A.; Piersma, S.R.; Jimenez, C.R.; Michels, M.; et al. EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy. Circ. Res. 2023, 133, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Shen, M.; Fernandez-Patron, C.; Kassiri, Z. ADAMs family and relatives in cardiovascular physiology and pathology. J. Mol. Cell. Cardiol. 2016, 93, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.; Richardson, D.; Moore, K. Angiopoietin-1 and Angiopoietin-2 Inhibitors: Clinical Development. Curr. Oncol. Rep. 2019, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Chen, N.; Jia, J.H.; Gao, X.J.; Li, S.H.; Cai, J.; Wang, Z. Tie-1: A potential target for anti-angiogenesis therapy. J. Huazhong Univ. Sci. Technol. Med. Sci. 2015, 35, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.A.; Wu, F.T.; Cruz-Munoz, W.; Kerbel, R.S. Ang2 inhibitors and Tie2 activators: Potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol. Med. 2021, 13, e08253. [Google Scholar] [CrossRef] [PubMed]
- Linares, P.M.; Chaparro, M.; Gisbert, J.P. Angiopoietins in inflammation and their implication in the development of inflammatory bowel disease. A review. J. Crohn’s Colitis 2014, 8, 183–190. [Google Scholar] [CrossRef]
- Du Cheyne, C.; Tay, H.; De Spiegelaere, W. The complex TIE between macrophages and angiogenesis. Anat. Histol. Embryol. 2020, 49, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Rangel, R.; Sun, Y.; Guzman-Rojas, L.; Ozawa, M.G.; Sun, J.; Giordano, R.J.; Van Pelt, C.S.; Tinkey, P.T.; Behringer, R.R.; Sidman, R.L.; et al. Impaired angiogenesis in aminopeptidase N-null mice. Proc. Natl. Acad. Sci. USA 2007, 104, 4588–4593. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, C.L.; Smith, B.D. Molecular Imaging of Aminopeptidase N in Cancer and Angiogenesis. Contrast Media Mol. Imaging 2018, 2018, 5315172. [Google Scholar] [CrossRef] [PubMed]
- Bauvois, B.; Puiffe, M.L.; Bongui, J.B.; Paillat, S.; Monneret, C.; Dauzonne, D. Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13. J. Med. Chem. 2003, 46, 3900–3913. [Google Scholar] [CrossRef] [PubMed]
- Kiehstaller, S.; Ottmann, C.; Hennig, S. MMP activation-associated aminopeptidase N reveals a bivalent 14-3-3 binding motif. J. Biol. Chem. 2020, 295, 18266–18275. [Google Scholar] [CrossRef] [PubMed]
- Bauvois, B.; Dauzonne, D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: Chemistry, biological evaluations, and therapeutic prospects. Med. Res. Rev. 2006, 26, 88–130. [Google Scholar] [CrossRef] [PubMed]
- Flevaris, P.; Khan, S.S.; Eren, M.; Schuldt, A.J.T.; Shah, S.J.; Lee, D.C.; Gupta, S.; Shapiro, A.D.; Burridge, P.W.; Ghosh, A.K.; et al. Plasminogen Activator Inhibitor Type I Controls Cardiomyocyte Transforming Growth Factor-beta and Cardiac Fibrosis. Circulation 2017, 136, 664–679. [Google Scholar] [CrossRef]
HCM (n = 29) | Matched Controls (n = 29) | p Value */† | G+P- (n = 17) | Matched Controls (n = 17) | p Value */† | |
---|---|---|---|---|---|---|
Male/Female, n/n (% male) | 22/7 (76) | 22/7 (76) | N/A | 10/8 (56) | 9/8 (53) | N/A |
Age (years), median [18] | 18.0 [8.0] | 19.1 [8.0] | 0.176 * | 13.1 [8.4] | 17.0 [7.5] | 0.107 |
Heredity, n | 29 | N/A | N/A | 17 | N/A | N/A |
mm | 16.0 [8.0] | 10.0 [2.1] | <0.001 * | 8.8 [3.2] | 9.2 [1.9] | 0.900 * |
MWT IVS median [IQR] z-score a | 7.6 [9.4] | 1.7 [1.5] | <0.001 * | 2.1 [1.9] | 1.4 [1.4] | 0.260 * |
z-score b | 2.9 [2.8] | 0.7 [0.8] | <0.001 * | 1.3 [0.9] | 0.8 [1.1] | 0.053 * |
mm | 10.0 [3.2] | 9.2 [1.3] | 0.009 * | 8.2 [2.4] | 8.1 [1.3] | 0.112 * |
MWT PW median [IQR] z-score a | 2.2 [3.2] | 0.8 [1.7] | 0.002 * | 0.5 [2.0] | 0.6 [1.3] | 0.450 * |
z-score b | 1.44 [1.6] | 0.7 [0.8] | <0.001 * | 0.8 [0.9] | 0.9 [0.9] | 0.763 * |
NT-proBNP ng/L, mean (SD) (<450) | 545.1 (881.1) | 49.4 (1.88) | 0.004 † | 60.1 (30) | 49.5 (1.4) | 0.143 † |
Troponin T ng/L, mean (SD) (<15) | 12.33 (22.4) | 5.65 (1.99) | 0.115 † | 4.6 (2.2) | 5.3 (0.8) | 0.486 † |
HCM (n = 29) | G+P- (n = 17) | Healthy Volunteers (n = 46) | |
---|---|---|---|
Genetic spectrum (n) | MYBPC3 (15) | MYBPC3 (7) | N/A |
MYH7 (6) | MYH7 (7) | ||
PRKAG2 (1) | TNNT2 (3) | ||
TCAP (1) | |||
TNNI3 (1) | |||
ABCC9 (1) | |||
Without identified known pathogenic variant (5) |
HCM (n = 29) | Matched Controls (n = 29) | Model with Continuous Protein Values | Model with Dichotomized Protein Values | |||
---|---|---|---|---|---|---|
Median (IQR) | Median (IQR) | OR (95% CI) | p-Value † | OR (95% CI) | p-Value † | |
Ras MAPK (40 proteins) * | ||||||
FGF-21 | 5.83 (2.17) | 3.58 (1.40) | 53.09 (1.72–1639) | 0.023 | 10.0 (2.5–39.6) | 0.001 |
IL-6RA | 12.87 (0.74) | 13.26 (0.51) | 0.005 (“0”–0.55) | 0.027 | 0.26 (0.07–0.95) | 0.041 |
Cell adhesion (62 proteins) * | ||||||
PSGL-1 | 6.12 (0.34) | 5.80 (0.20) | 4.65 × 1012 (19.5–1.1 × 1024) | 0.029 | 8.6 (1.9–39.0) | 0.005 |
EGFR | 3.75 (0.50) | 3.91 (0.55) | 5.7 × 10−11 (“0”–0.03) | 0.022 | 0.13 (0.03–0.65) | 0.013 |
Immune response (38 proteins) * | ||||||
Gal-9 | 9.36 (0.44) | 9.02 (0.48) | 60.6 (1.12–3275) | 0.044 | 5.91 (1.8–19.8) | 0.004 |
G+P- (n = 17) | Matched Controls (n = 17) | Model with Continuous Protein Values | Model with Dichotomized Protein Values | |||
---|---|---|---|---|---|---|
Median (IQR) | Median (IQR) | OR (95% CI) | p-Value † | OR (95% CI) | p-Value † | |
Immune response (38 proteins) * | ||||||
ADAM-TS13 | 6.52 (0.32) | 6.22 (0.32) | 598 (5.8–61607) | 0.007 | 11.2 (1.2–105) | 0.034 |
Angiogenesis (28 proteins) * | ||||||
TIE2 | 8.66 (0.43) | 8.31 (0.85) | 200 (1.1–37978) | 0.048 | 65.5 (3.7–1165) | 0.004 |
AP-N | 5.72 (0.54) | 6.02 (0.70) | 0.0 (“0”–0.28) | 0.019 | 0.08 (0.008–0.81) | 0.032 |
Proteolysis (34 proteins) * | ||||||
TIMP4 | 3.59 (0.85) | 4.15 (0.60) | 1.44 × 10−8 (“0”–0.5) | 0.042 | 0.056 (0.006–0.54) | 0.013 |
PAI | 3.80 (1.60) | 4.58 (1.53) | 0.005 (“0”–0.6) | 0.030 | 0.084 (0.009–0.80) | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Österberg, A.W.; Östman-Smith, I.; Green, H.; Gunnarsson, C.; Fredrikson, M.; Liuba, P.; Fernlund, E. Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young—FGF-21 Highly Associated with Overt Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 105. https://doi.org/10.3390/jcdd11040105
Österberg AW, Östman-Smith I, Green H, Gunnarsson C, Fredrikson M, Liuba P, Fernlund E. Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young—FGF-21 Highly Associated with Overt Disease. Journal of Cardiovascular Development and Disease. 2024; 11(4):105. https://doi.org/10.3390/jcdd11040105
Chicago/Turabian StyleÖsterberg, Anna Wålinder, Ingegerd Östman-Smith, Henrik Green, Cecilia Gunnarsson, Mats Fredrikson, Petru Liuba, and Eva Fernlund. 2024. "Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young—FGF-21 Highly Associated with Overt Disease" Journal of Cardiovascular Development and Disease 11, no. 4: 105. https://doi.org/10.3390/jcdd11040105
APA StyleÖsterberg, A. W., Östman-Smith, I., Green, H., Gunnarsson, C., Fredrikson, M., Liuba, P., & Fernlund, E. (2024). Biomarkers and Proteomics in Sarcomeric Hypertrophic Cardiomyopathy in the Young—FGF-21 Highly Associated with Overt Disease. Journal of Cardiovascular Development and Disease, 11(4), 105. https://doi.org/10.3390/jcdd11040105