Who Still Gets Ligated? Reasons for Persistence of Surgical Ligation of the Patent Ductus Arteriosus Following Availability of Transcatheter Device Occlusion for Premature Neonates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics
3.2. Epoch Comparisons
3.3. Reasons for Surgical Ligation in Epoch 2
3.4. Comparisons between Surgical Ligation and Device Closure in Epoch 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, K.C.; Richardson, T.; Berman, D.; DeMauro, S.B.; King, B.C.; Lagatta, J.; Lee, H.C.; Lewis, T.; Noori, S.; O’Byrne, M.L.; et al. Current Trends in Invasive Closure of Patent Ductus Arteriosus in Very Low Birth Weight Infants in United States Children’s Hospitals, 2016–2021. J. Pediatr. 2023, 263, 113712. [Google Scholar] [CrossRef]
- Shah, Z.S.; Clark, R.H.; Patt, H.A.; Backes, C.H., Jr.; Tolia, V.N. Trends in Procedural Closure of the Patent Ductus Arteriosus among Infants Born at 22 to 30 Weeks’ Gestation. J. Pediatr. 2023, 263, 113716. [Google Scholar] [CrossRef]
- Kaluarachchi, D.C.; Rysavy, M.A.; Carper, B.A.; Chock, V.Y.; Laughon, M.M.; Backes, C.H.; Colaizy, T.T.; Bell, E.F.; McNamara, P.J. Secular Trends in Patent Ductus Arteriosus Management in Infants Born Preterm in the NICHD Neonatal Research Network. J. Pediatr. 2023, 266, 113877. [Google Scholar] [CrossRef]
- Bixler, G.M.; Powers, G.C.; Clark, R.H.; Walker, M.W.; Tolia, V.N. Changes in the Diagnosis and Management of Patent Ductus Arteriosus from 2006 to 2015 in United States Neonatal Intensive Care Units. J. Pediatr. 2017, 189, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Runte, K.E.; Flyer, J.N.; Edwards, E.M.; Soll, R.F.; Horbar, J.D.; Yeager, S.B. Variation of Patent Ductus Arteriosus Treatment in Very Low Birth Weight Infants. Pediatrics 2021, 148, e2021052874. [Google Scholar] [CrossRef]
- Reese, J.; Scott, T.A.; Patrick, S.W. Changing patterns of patent ductus arteriosus surgical ligation in the United States. Semin. Perinatol. 2018, 42, 253–261. [Google Scholar] [CrossRef]
- O’Byrne, M.L.; Millenson, M.E.; Grady, C.B.; Huang, J.; Bamat, N.A.; Munson, D.A.; Song, L.; Dori, Y.; Gillespie, M.J.; Rome, J.J.; et al. Trends in transcatheter and operative closure of patent ductus arteriosus in neonatal intensive care units: Analysis of data from the Pediatric Health Information Systems Database. Am. Heart J. 2019, 217, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Semberova, J.; Sirc, J.; Miletin, J.; Kucera, J.; Berka, I.; Sebkova, S.; O’Sullivan, S.; Franklin, O.; Stranak, Z. Spontaneous Closure of Patent Ductus Arteriosus in Infants ≤1500 g. Pediatrics 2017, 140, e20164258. [Google Scholar] [CrossRef]
- Weisz, D.E.; Giesinger, R.E. Surgical management of a patent ductus arteriosus: Is this still an option? Semin. Fetal Neonatal Med. 2018, 23, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Mirea, L.; Sankaran, K.; Seshia, M.; Ohlsson, A.; Allen, A.C.; Aziz, K.; Lee, S.K.; Shah, P.S.; Canadian Neonatal Network. Treatment of patent ductus arteriosus and neonatal mortality/morbidities: Adjustment for treatment selection bias. J. Pediatr. 2012, 161, 689–694.e1. [Google Scholar] [CrossRef]
- Kabra, N.S.; Schmidt, B.; Roberts, R.S.; Doyle, L.W.; Papile, L.; Fanaroff, A.; Trial of Indomethacin Prophylaxis in Preterms (TIPP) Investigators. Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: Results from the Trial of Indomethacin Prophylaxis in Preterms. J. Pediatr. 2007, 150, 229–234.e1. [Google Scholar] [CrossRef]
- Kikuchi, N.; Goto, T.; Katsumata, N.; Murakami, Y.; Shinohara, T.; Maebayashi, Y.; Sakakibara, A.; Saito, C.; Hasebe, Y.; Hoshiai, M.; et al. Correlation between the Closure Time of Patent Ductus Arteriosus in Preterm Infants and Long-Term Neurodevelopmental Outcome. J. Cardiovasc. Dev. Dis. 2024, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, M.T.; Staffa, S.J.; Graham, D.; Faraoni, D.; Levy, P.; DiNardo, J.; Maschietto, N.; Nasr, V.G. Trend and Outcomes for Surgical Versus Transcatheter Patent Ductus Arteriosus Closure in Neonates and Infants at US Children’s Hospitals. J. Am. Heart Assoc. 2022, 11, e022776. [Google Scholar] [CrossRef] [PubMed]
- Morray, B.H.; Sathanandam, S.K.; Forbes, T.; Gillespie, M.; Berman, D.; Armstrong, A.K.; Shahanavaz, S.; Jones, T.; Rockefeller, T.; Justino, H.; et al. 3-year follow-up of a prospective, multicenter study of the Amplatzer Piccolo™ Occluder for transcatheter patent ductus arteriosus closure in children ≥700 g. J. Perinatol. 2023, 43, 1238–1244. [Google Scholar] [CrossRef]
- Wheeler, C.R.; Gagner, D.; Stephens, H.; Kraus, A.; Zurakowski, D.; Friedman, K.G.; Ibla, J.C.; Callahan, R.; Porras, D.; Levy, P.T. Phenotyping respiratory decompensation following definitive closure of the patent ductus arteriosus in preterm infants. J. Perinatol. 2022, 42, 649–654. [Google Scholar] [CrossRef]
- Suresh Daniel, R.; Schmidt, G.K.; Nakanishi, H.; Smayra, K.; Mascara, M.N.; Vankayalapati, D.K.; Matar, R.H.; Than, C.A.; Shiakos, G.; Tzanavaros, I. Transcatheter Closure vs. Surgical Ligation in Preterm Infants with Patent Ductus Arteriosus: A Systematic Review and Meta-Analysis. Congenital Heart Disease 2023, 18, 245–265. [Google Scholar] [CrossRef]
- Sathanandam, S.K.; Gutfinger, D.; O’Brien, L.; Forbes, T.J.; Gillespie, M.J.; Berman, D.P.; Armstrong, A.K.; Shahanavaz, S.; Jones, T.K.; Morray, B.H.; et al. Amplatzer Piccolo Occluder clinical trial for percutaneous closure of the patent ductus arteriosus in patients ≥700 g. Catheter. Cardiovasc. Interv. 2020, 96, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.; Pereiras, L.; Head, T.; Dupuis, G.; Sessums, J.; Corder, G.; Graves, K.; Tipton, J.; Sathanandam, S. Transport of extremely low birth weight neonates for persistent ductus arteriosus closure in the catheterization lab. Congenit. Heart Dis. 2019, 14, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, H.; Waller, B.R., 3rd; Surendan, S.; Sathanandam, S. New Patent Ductus Arteriosus Closure Devices and Techniques. Interv. Cardiol. Clin. 2019, 8, 23–32. [Google Scholar] [CrossRef]
- Bischoff, A.R.; Kennedy, K.F.; Backes, C.H.; Sathanandam, S.; McNamara, P.J. Percutaneous Closure of the Patent Ductus Arteriosus in Infants ≤2 kg: IMPACT Registry Insights. Pediatrics 2023, 152, e2023061460. [Google Scholar] [CrossRef]
- Francescato, G.; Doni, D.; Annoni, G.; Capolupo, I.; Ciarmoli, E.; Corsini, I.; Gatelli, I.F.; Salvadori, S.; Testa, A.; Butera, G. Transcatheter closure in preterm infants with patent ductus arteriosus: Feasibility, results, hemodynamic monitoring and future prospectives. Ital. J. Pediatr. 2023, 49, 147. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, C.R.; Vogel, E.R.; Cusano, M.A.; Friedman, K.G.; Callahan, R.; Porras, D.; Ibla, J.C.; Levy, P.T. Definitive Closure of the Patent Ductus Arteriosus in Preterm Infants and Subsequent Short-Term Respiratory Outcomes. Respir. Care 2022, 67, 594–606. [Google Scholar] [CrossRef]
- Mitchell, C.C.; Rivera, B.K.; Cooper, J.N.; Smith, C.V.; Berman, D.P.; Slaughter, J.L.; Backes, C.H. Percutaneous closure of the patent ductus arteriosus: Opportunities moving forward. Congenit. Heart Dis. 2019, 14, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Apalodimas, L.; Waller, B.R., III; Philip, R.; Crawford, J.; Cunningham, J.; Sathanandam, S. A comprehensive program for preterm infants with patent ductus arteriosus. Congenit. Heart Dis. 2019, 14, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, N.O.; Kramer, D.B.; Karchmer, A.W.; Zimetbaum, P.J. A Review of Cardiac Implantable Electronic Device Infections for the Practicing Electrophysiologist. JACC Clin. Electrophysiol. 2021, 7, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Sathanandam, S.; Agrawal, H.; Chilakala, S.; Johnson, J.; Allen, K.; Knott-Craig, C.; Rush Waller, B.; Philip, R. Can transcatheter PDA closure be performed in neonates ≤1000 g? The Memphis experience. Congenit. Heart Dis. 2019, 14, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Pouldar, T.M.; Wong, R.; Almeida-Jones, M.; Zahn, E.; Lubin, L. Bedside Transcatheter Patent Ductus Arteriosus Device Occlusion in an Extremely Low Birth Weight Neonate: A Novel Approach in a High-Risk Population. Case Rep. Anesthesiol. 2021, 2021, 4716997. [Google Scholar] [CrossRef] [PubMed]
- Shibbani, K.; Mohammad Nijres, B.; McLennan, D.; Bischoff, A.R.; Giesinger, R.; McNamara, P.J.; Klein, J.; Windsor, J.; Aldoss, O. Feasibility, Safety, and Short-Term Outcomes of Transcatheter Patent Ductus Arteriosus Closure in Premature Infants on High-Frequency Jet Ventilation. J. Am. Heart Assoc. 2022, 11, e025343. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; McNamara, P.J.; El-Khuffash, A.F. Non-pharmacological management of a hemodynamically significant patent ductus arteriosus. Semin. Fetal Neonatal Med. 2018, 23, 245–249. [Google Scholar] [CrossRef]
- Philip, R.; Lamba, V.; Talati, A.; Sathanandam, S. Pulmonary Hypertension with Prolonged Patency of the Ductus Arteriosus in Preterm Infants. Children 2020, 7, 139. [Google Scholar] [CrossRef]
- Philip, R.; Waller, B.R.; Chilakala, S.; Graham, B.; Stecchi, N.; Apalodimas, L.; Cunningham, J.; Washington, K.; Sathanandam, S. Hemodynamic and clinical consequences of early versus delayed closure of patent ductus arteriosus in extremely low birth weight infants. J. Perinatol. 2021, 41, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Krichenko, A.; Benson, L.N.; Burrows, P.; Möes, C.A.F.; McLaughlin, P.; Freedom, R.M. Angiographic Classification of the Isolated Persistently Patent Ductus Arteriosus and Implications for Percutaneous Catheter Occlusion. Am. J. Cardiol. 1989, 63, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Nealon, E.; Rivera, B.K.; Cua, C.L.; Ball, M.K.; Stiver, C.; Boe, B.A.; Slaughter, J.L.; Chisolm, J.; Smith, C.V.; Cooper, J.N.; et al. Follow-up after Percutaneous Patent Ductus Arteriosus Occlusion in Lower Weight Infants. J. Pediatr. 2019, 212, 144–150.e3. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, A.R.; Stanford, A.H.; Aldoss, O.; Rios, D.R.; McLennan, D.I.; Mohammad Nijres, B.; Giesinger, R.E.; McNamara, P.J. Left ventricular function before and after percutaneous patent ductus arteriosus closure in preterm infants. Pediatr. Res. 2023, 94, 213–221. [Google Scholar] [CrossRef]
Characteristics | Epoch 1 2014–2019 N = 94 | Epoch 2 2019 1–2023 N = 26 | p-Value 2 |
---|---|---|---|
Demographics | |||
Gestational age (weeks) | 25 (24, 26) | 24 (24, 26) | 0.224 |
Birth weight (grams) | 750 (633, 900) | 685 (625, 793) | 0.339 |
Birth weight Z-scores | 0.24 (−0.48, 0.80) | 0.13 (−0.31, 0.69) | 0.949 |
Sex (female) | 37 (39%) | 14 (54%) | 0.186 |
Age at procedure (days) | 21 (15, 29) | 28 (20, 41) | 0.055 |
Postmenstrual age at procedure (weeks) | 29 (27, 31) | 28 (26, 30) | 0.100 |
Weight at procedure (grams) | 900 (740, 1180) | 950 (760, 1185) | 0.652 |
Procedure weight Z-scores | −1.01 (−1.44, −0.62) | −1.13 (−1.48, −0.85) | 0.317 |
Pharmacotherapy before closure | 79 (84%) | 20 (77%) | 0.394 |
#of pharmacotherapy courses | 2 (1, 2) | 1 (1, 2) | 0.671 |
Common comorbidities prior to closure | |||
Necrotizing enterocolitis (≥Bells Stage II) | 33 (35%) | 6 (24%) | 0.293 |
Intraventricular hemorrhage (any IVH) Grade III/IV IVH | 46 (49%) 22 (23%) | 11 (44%) 6 (24%) | 0.661 0.950 |
Post-procedural respiratory outcomes | |||
High frequency ventilation | 41 (44%) | 9 (38%) | 0.588 |
Duration of mechanical ventilation (days) | 13 (7, 24) | 17 (6, 38) | 0.248 |
Reasons | Number (Percentage) |
---|---|
Active infection 1 | 9 (35%) |
Unfavorable morphology 2 | 8 (31%) |
Recent abdominal pathology 3 | 7 (27%) |
Other 4 | 2 (7%) |
Characteristics | Device 1 (N = 110) | Ligation 1 (N = 26) | p-Value 2 |
---|---|---|---|
Demographics | |||
Gestational age (weeks) | 25.00 (24, 27) | 24 (24, 26) | 0.042 |
Birth weight (grams) | 815 (665, 1010) | 685 (625, 793) | 0.016 |
Birth weight Z-scores | 0.34 (−0.35, 1.26) | 0.13 (−0.31, 0.69) | 0.419 |
Sex (female) | 60 (56%) | 14 (54%) | 0.837 |
Age at procedure (days) | 41 (26, 68) | 28 (20, 41) | 0.013 |
Postmenstrual age at procedure (weeks) | 31 (28, 36) | 28 (26, 30) | 0.002 |
Weight at procedure (grams) | 1380 (1100, 2330) | 950 (760, 1185) | <0.001 |
Procedure weight Z-scores | −0.77 (−1.11, −0.10) | −1.13 (−1.48, −0.85) | 0.007 |
Pharmacotherapy before closure | 96 (87%) | 20 (77%) | 0.217 |
#of pharmacotherapy courses | 2.00 (1.00, 3.00) | 1.00 (1.00, 2.00) | 0.054 |
Common comorbidities prior to closure | |||
Necrotizing enterocolitis (≥Bells Stage II) 3 | 14 (13%) | 6 (24%) | 0.211 |
Intraventricular hemorrhage (any IVH) Grade III/IV IVH | 42 (39%) 15 (14%) | 11 (44%) 6 (24%) | 0.663 0.223 |
Baseline respiratory/hemodynamic status | |||
Use of inotropic | 5 (9.8%) | 2 (14%) | 0.638 |
Oxygen saturation index | 4.6 (2.7, 7.5) | 4.1 (2.0, 6.5) | 0.705 |
Post-procedural respiratory outcomes | |||
High frequency ventilation | 11 (12%) | 9 (38%) | 0.013 |
Duration of mechanical ventilation (days) | 26 (8, 51) | 17 (6, 38) | 0.424 |
Characteristics | Device 1 (N = 40) | Ligation 1 (N = 19) | p-Value 2 |
---|---|---|---|
Demographics | |||
Gestational age (weeks) | 24.50 (24.00, 25.00) | 24.00 (24.00, 25.00) | 0.680 |
Birth weight (grams) | 695 (630, 813) | 680 (645, 765) | 0.903 |
Birth weight Z-scores | 0.34 (−0.37, 1.09) | 0.33 (−0.09, 0.78) | 0.772 |
Sex (female) | 28 (70%) | 9 (47%) | 0.093 |
Age at procedure (days) | 26 (21, 36) | 24 (18, 31) | 0.149 |
Postmenstrual age at procedure (weeks) | 29.5 (28.3, 31.0) | 28.5 (27.8, 30.0) | 0.107 |
Weight at procedure (grams) | 1000 (900, 1100) | 890 (723, 1000) | 0.008 |
Procedure weight Z-scores | −0.86 (−1.11, −0.56) | −1.05 (−1.41, −0.72) | 0.149 |
Pharmacotherapy before closure | 36 (90%) | 15 (79%) | 0.416 |
#of pharmacotherapy courses | 2.00 (1.00, 3.00) | 2.00 (1.00, 2.00) | 0.442 |
Common comorbidities prior to closure | |||
Necrotizing enterocolitis (≥Bells Stage II) | 4 (13%) | 6 (32%) | 0.151 |
Intraventricular hemorrhage (any IVH) Grade III/IV IVH | 18 (47%) | 10 (52%) | 0.708 |
Baseline respiratory/hemodynamic status | |||
Oxygen saturation index | 4.5 (3.8, 6.3) | 5.0 (2.0, 6.8) | 0.872 |
Use of inotropic | 3 (16%) | 2 (18%) | 1.00 |
Post-procedural respiratory outcomes | |||
High frequency ventilation | 8 (25%) | 8 (44%) | 0.157 |
Duration of mechanical ventilation (d) | 24 (14, 28) | 16 (7, 29) | 0.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, J.K.; Khazal, Z.; Apers, W.; Sharma, P.; Weismann, C.G.; Kaganov, K.; Wheeler, C.R.; Farias, M.; Porras, D.; Levy, P.; et al. Who Still Gets Ligated? Reasons for Persistence of Surgical Ligation of the Patent Ductus Arteriosus Following Availability of Transcatheter Device Occlusion for Premature Neonates. J. Cardiovasc. Dev. Dis. 2024, 11, 132. https://doi.org/10.3390/jcdd11050132
Hoffmann JK, Khazal Z, Apers W, Sharma P, Weismann CG, Kaganov K, Wheeler CR, Farias M, Porras D, Levy P, et al. Who Still Gets Ligated? Reasons for Persistence of Surgical Ligation of the Patent Ductus Arteriosus Following Availability of Transcatheter Device Occlusion for Premature Neonates. Journal of Cardiovascular Development and Disease. 2024; 11(5):132. https://doi.org/10.3390/jcdd11050132
Chicago/Turabian StyleHoffmann, Julia K., Zahra Khazal, Wievineke Apers, Puneet Sharma, Constance G. Weismann, Kira Kaganov, Craig R. Wheeler, Michael Farias, Diego Porras, Philip Levy, and et al. 2024. "Who Still Gets Ligated? Reasons for Persistence of Surgical Ligation of the Patent Ductus Arteriosus Following Availability of Transcatheter Device Occlusion for Premature Neonates" Journal of Cardiovascular Development and Disease 11, no. 5: 132. https://doi.org/10.3390/jcdd11050132
APA StyleHoffmann, J. K., Khazal, Z., Apers, W., Sharma, P., Weismann, C. G., Kaganov, K., Wheeler, C. R., Farias, M., Porras, D., Levy, P., & Morton, S. U. (2024). Who Still Gets Ligated? Reasons for Persistence of Surgical Ligation of the Patent Ductus Arteriosus Following Availability of Transcatheter Device Occlusion for Premature Neonates. Journal of Cardiovascular Development and Disease, 11(5), 132. https://doi.org/10.3390/jcdd11050132