Randomized Controlled Trial of Cardiac Rehabilitation Using the Balance Exercise Assist Robot in Older Adults with Cardiovascular Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Balance Exercise Assist Robot
2.3. CR Program
2.3.1. Resistance Training Group (Group R)
2.3.2. BEAR Group (Group B)
2.4. Measurements
2.4.1. Frailty
2.4.2. Peak Oxygen Uptake
2.4.3. Gait Speed
2.4.4. Short Physical Performance Battery
2.4.5. Timed Up-and-Go
2.4.6. Muscle Strength of Knee Extension
2.4.7. Functional Independence Measure
2.4.8. Bioelectrical Impedance Analysis
2.5. Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Safety and Continuity
3.3. Intra- and Intergroup Comparisons
3.4. Event-Free Survival
4. Discussion
- In terms of safety, there were no accidents during exercise sessions in the BEAR group, and the exercises were safe for patients with heart disease. No fractures due to falls were observed during the follow-up period of up to 2 years.
- The dropout rate over a 4-month CR period was comparable between the BEAR and resistance training groups, so there were no problems with continuity.
- The effects of CR at 4 months were similar in the BEAR and resistance training groups. The improvements in FIM motor and GNRI at 4 months were significantly better in the BEAR than resistance training group.
4.1. Safety of BEAR
4.2. Efficacy of BEAR
4.2.1. Improvements in FIM motor
4.2.2. Improvements in GNRI
4.3. BEAR vs. Resistance Training
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbaccia, V.; Bravi, L.; Murmura, F.; Savelli, E.; Viganò, E. Older adults now represent a growing sector of the population since they are living longer, and the world’s population is increasingly ageing. Int. J. Environ. Res. Public. Health. 2022, 19, 7660. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Trisan, R. Balance Problems and Fall Risks in the Elderly. Clin. Geriatr. Med. 2019, 35, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Kondo, I.; Hirano, S.; Kagaya, H.; Saitoh, E.; Osawa, A.; Fujinori, Y. Training with a balance exercise assist robot is more effective than conventional training for frail older adults. Geriatr. Gerontol. Int. 2017, 17, 1982–1990. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Hirashiki, A.; Ozaki, K.; Kawamura, K.; Sugioka, J.; Tanioku, S.; Sato, K.; Ueda, I.; Itoh, N.; Nomoto, K.; et al. Benefits of a Balance Exercise Assist Robot in the Cardiac Rehabilitation of Older Adults with Cardiovascular Disease: A Preliminary Study. J. Cardiovasc. Dev. Dis. 2022, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Kagaya, H.; Hirano, S.; Kondo, I.; Tanabe, S.; Itoh, N.; Saitoh, E.; Fuwa, T.; Murakami, R. Preliminary trial of postural strategy training using a personal transport assistance robot for patients with central nervous system disorder. Arch. Phys. Med. Rehabil. 2013, 94, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Sato, Y.; Takahashi, T.; Tsuchihashi-Makaya, M.; Kotooka, N.; Ikegame, T.; Takura, T.; Yamamoto, T.; Nagayama, M.; Goto, Y.; et al. Multidisciplinary Cardiac Rehabilitation and Long-Term Prognosis in Patients With Heart Failure. Circ. Heart Fail. 2020, 13, e006798. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Pellicori, P.; Kazmi, S.; Rigby, A.; Cleland, J.G.F.; Wong, K.; Clark, A.L. Prevalence and Prognostic Significance of Malnutrition Using 3 Scoring Systems Among Outpatients With Heart Failure: A Comparison With Body Mass Index. JACC Heart Fail. 2018, 6, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, e521–e643. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Bohm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 2021, 27, 387–413. [Google Scholar] [CrossRef]
- Group, J.C.S.J.W. Guidelines for rehabilitation in patients with cardiovascular disease (JCS 2012). Circ. J. 2014, 78, 2022–2093. [Google Scholar] [CrossRef]
- Inoue, S.; Otaka, Y.; Kumagai, M.; Sugasawa, M.; Mori, N.; Kondo, K. Effects of Balance Exercise Assist Robot training for patients with hemiparetic stroke: A randomized controlled trial. J. Neuroeng. Rehabil. 2022, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Shimada, H.; Yamada, M.; Kim, H.; Yoshida, H.; Gondo, Y.; Matsubayashi, K.; Matsushita, E.; Kuzuya, M.; Kozaki, K.; et al. Prevalence of frailty among community-dwellers and outpatients in Japan as defined by the Japanese version of the Cardiovascular Health Study criteria. Geriatr. Gerontol. Int. 2017, 17, 2629–2634. [Google Scholar] [CrossRef]
- Ross, R.M. ATS/ACCP statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 1451, author reply 1451. [Google Scholar] [CrossRef]
- Graham, J.E.; Ostir, G.V.; Fisher, S.R.; Ottenbacher, K.J. Assessing walking speed in clinical research: A systematic review. J. Eval. Clin. Pract. 2008, 14, 552–562. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Mijnarends, D.M.; Meijers, J.M.; Halfens, R.J.; ter Borg, S.; Luiking, Y.C.; Verlaan, S.; Schoberer, D.; Cruz Jentoft, A.J.; van Loon, L.J.; Schols, J.M. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: A systematic review. J. Am. Med. Dir. Assoc. 2013, 14, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference Values for Knee Extension Strength Obtained by Hand-Held Dynamometry from Apparently Healthy Older Adults: A Meta-Analysis. J. Frailty Aging 2017, 6, 199–201. [Google Scholar] [CrossRef]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Massari, F.; Mastropasqua, F.; Guida, P.; De Tommasi, E.; Rizzon, B.; Pontraldolfo, G.; Pitzalis, M.V.; Rizzon, P. Whole-body bioelectrical impedance analysis in patients with chronic heart failure: Reproducibility of the method and effects of body side. Ital. Heart J. 2001, 2, 594–598. [Google Scholar] [PubMed]
- Lee, K.; Davis, M.A.; Marcotte, J.E.; Pressler, S.J.; Liang, J.; Gallagher, N.A.; Titler, M.G. Falls in community-dwelling older adults with heart failure: A retrospective cohort study. Heart Lung 2020, 49, 238–250. [Google Scholar] [CrossRef] [PubMed]
- van Diepen, S.; Majumdar, S.R.; Bakal, J.A.; McAlister, F.A.; Ezekowitz, J.A. Heart failure is a risk factor for orthopedic fracture: A population-based analysis of 16,294 patients. Circulation. 2008, 118, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cen, K.; Sun, W.; Feng, B. Prognostic value of geriatric nutritional risk index in elderly patients with heart failure: A meta-analysis. Aging Clin. Exp. Res. 2021, 33, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Reina-Couto, M.; Pereira-Terra, P.; Quelhas-Santos, J.; Silva-Pereira, C.; Albino-Teixeira, A.; Sousa, T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front Physiol. 2021, 12, 746494. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
Group R (n = 45) | Group B (n = 45) | p-Value | |
---|---|---|---|
Age (years) | 79 ± 6 | 78 ± 6 | 0.633 |
Male sex | 23 (51) | 22 (49) | 0.835 |
Body mass index (kg/m2) | 22.6 ± 3.8 | 22.7 ± 3.2 | 0.931 |
Atrial fibrillation (%) | 31.1 | 40.9 | 0.359 |
Coronary risk factor | |||
Hypertension | 30 (67) | 25 (56) | 0.285 |
Diabetes | 13 (29) | 8 (18) | 0.217 |
Dyslipidemia | 22 (49) | 17 (38) | 0.293 |
Underlying diseases | |||
Worsening heart failure | 32 (71) | 35 (78) | 0.512 |
Bradycardia (n) | 6 | 4 | |
Non-ischemic cardiomyopathy (n) | 3 | 3 | |
Ischemic heart disease (n) | 4 | 6 | |
Tachycardia (n) | 7 | 10 | |
Valvular disease (n) | 6 | 8 | |
Hypertension (n) | 5 | 4 | |
Other | 1 | 0 | |
AMI | 6 (13) | 3 (7) | |
AP | 7 (16) | 7 (16) | |
Medications | |||
Diuretics | 17 (38) | 20 (44) | 0.724 |
Tolvaptan | 2 (4) | 6 (13) | 0.526 |
ACE-I/ARB | 21 (47) | 18 (40) | 0.142 |
Beta-blocker | 26 (58) | 21 (47) | 0.529 |
Spironolactone | 6 (13) | 8 (18) | 0.297 |
Anticoagulant | 14 (31) | 19 (42) | 0.566 |
Antiplatelet agent | 23 (51) | 20 (44) | 0.279 |
Echocardiography | |||
Left atrial dimension (cm) | 3.9 ± 0.7 | 4.0 ± 1.0 | 0.594 |
CPX | |||
Respiratory exchange ratio | 1.14 ± 0.07 | 1.15 ± 0.07 | 0.294 |
Frailty (n) | |||
KCL (robust/pre-frail/frail) | 10/20/15 | 15/14/16 | 0.351 |
J-CHS (robust/pre-frail/frail) | 0/20/25 | 1/22/22 | 0.526 |
Group R | p- Value | Group B | p-Value | p-Value (Group R vs. Group B) | |
---|---|---|---|---|---|
Albumin (g/dL) | |||||
Baseline | 4.0 ± 0.4 | <0.001 | 3.9 ± 0.5 | <0.001 | 0.201 |
4 months | 4.2 ± 0.3 | 4.2 ± 0.4 | 0.884 | ||
Change | 0.2 ± 0.4 | 0.3 ± 0.4 | 0.122 | ||
Total cholesterol (mg/dL) | |||||
Baseline | 178.8 ± 38.0 | 0.027 | 169.9 ± 37.8 | <0.001 | 0.269 |
4 months | 190.6 ± 40.2 | 187.7 ± 45.7 | 0.753 | ||
Change | 11.5 ± 33.9 | 17.8 ± 29.3 | 0.351 | ||
BNP (pg/dL) | |||||
Baseline | 118.1 ± 191.5 | 0.535 | 141.8 ± 185.4 | 0.649 | 0.553 |
4 months | 107.6 ± 130.6 | 150.1 ± 172.1 | 0.203 | ||
Change | –17.4 ± 179.5 | 9.9 ± 142.2 | 0.436 | ||
eGFR (mL/min/1.73 m2) | |||||
Baseline | 53.6 ± 14.4 | 0.706 | 61.0 ± 16.5 | 0.064 | 0.025 |
4 months | 53.3 ± 15.7 | 58.0 ± 13.9 | 0.131 | ||
Change | –0.4 ± 7.8 | –3.0 ± 10.5 | 0.199 | ||
GNRI | |||||
Baseline | 102.5 ± 10.3 | 0.002 | 100.8 ± 11.1 | <0.001 | 0.464 |
4 months | 105.4 ± 9.9 | 107.3 ± 8.9 | 0.360 | ||
Change | 3.3 ± 6.0 | 5.9 ± 6.4 | 0.041 | ||
LVEF (%) | |||||
Baseline | 57.5 ± 11.7 | 0.488 | 57.2 ± 14.1 | 0.393 | 0.916 |
4 months | 58.1 ± 10.7 | 57.3 ± 12.3 | 0.758 | ||
Change | 0.6 ± 5.2 | –0.8 ± 6.3 | 0.270 | ||
E/e′ | |||||
Baseline | 15.0 ± 6.2 | 0.328 | 14.2 ± 5.8 | 0.890 | 0.550 |
After 4 months | 13.8 ± 5.8 | 13.8 ± 4.4 | 0.998 | ||
Change | –1.7 ± 7.9 | –0.3 ± 7.2 | 0.390 | ||
VO2 at AT (mL/min/kg) | |||||
Baseline | 9.8 ± 1.6 | 0.037 | 9.4 ± 1.9 | 0.057 | 0.298 |
After 4 months | 10.2 ± 2.1 | 9.9 ± 1.9 | 0.480 | ||
Change | 0.2 ± 2.1 | 0.5 ± 1.6 | 0.451 | ||
VO2peak (mL/min/kg) | |||||
Baseline | 12.6 ± 2.6 | 0.052 | 12.4 ± 3.2 | 0.157 | 0.728 |
4 months | 13.2 ± 3.1 | 13.0 ± 3.2 | 0.236 | ||
Change | 1.3 ± 1.8 | 0.5 ± 2.1 | 0.080 | ||
% VO2peak | |||||
Baseline | 55.1 ± 12.2 | 0.227 | 55.2 ± 14.3 | 0.815 | 0.988 |
After 4 months | 84.1 ± 143.2 | 57.2 ± 14.1 | 0.256 | ||
Change | 29.0 ± 145.4 | 0.2 ± 10.3 | 0.232 | ||
J-CHS score | |||||
Baseline | 1.6 ± 0.5 | 0.003 | 1.5 ± 0.5 | 0.001 | 0.425 |
4 months | 1.2 ± 0.5 | 1.1 ± 0.6 | 0.417 | ||
Change | –0.3 ± 0.6 | –0.4 ± 0.7 | 0.737 | ||
SPPB | |||||
Baseline | 9.9 ± 2.4 | <0.001 | 9.8 ± 2.3 | 0.001 | 0.865 |
4 months | 11.0 ± 1.6 | 10.8 ± 1.8 | 0.702 | ||
Change | 1.2 ± 1.6 | 0.9 ± 1.6 | 0.372 | ||
TUG (s) | |||||
Baseline | 10.8 ± 4.0 | <0.001 | 12.4 ± 5.8 | <0.001 | 0.130 |
4 months | 9.5 ± 3.2 | 10.1 ± 3.7 | 0.418 | ||
Change | –1.1 ± 1.7 | –1.9 ± 3.1 | 0.191 | ||
Gait speed (m/s) | |||||
Baseline | 1.0 ± 0.3 | <0.001 | 1.0 ± 0.3 | <0.001 | 0.971 |
4 months | 1.2 ± 0.3 | 1.2 ± 0.3 | 0.643 | ||
Change | 0.1 ± 0.2 | 0.2 ± 0.2 | 0.635 | ||
Knee extension (kgf) | |||||
Baseline | 22.7 ± 9.6 | 0.001 | 24.0 ± 10.1 | 0.011 | 0.527 |
4 months | 25.9 ± 10.2 | 26.6 ± 10.5 | 0.770 | ||
Change | 3.0 ± 5.5 | 2.4 ± 5.6 | 0.607 | ||
FIM motor | |||||
Baseline | 87.3 ± 5.5 | 0.011 | 84.3 ± 9.5 | 0.003 | 0.068 |
4 months | 88.6 ± 4.6 | 88.4 ± 5.6 | 0.854 | ||
Change | 1.5 ± 3.6 | 4.2 ± 8.3 | 0.047 | ||
FIM cognitive | |||||
Baseline | 34.2 ± 2.0 | 0.217 | 34.7 ± 0.9 | 0.183 | 0.121 |
4 months | 34.5 ± 1.4 | 34.8 ± 0.6 | 0.118 | ||
Change | 1.8 ± 4.2 | 4.4 ± 8.3 | 0.548 | ||
GDS score | |||||
Baseline | 4.1 ± 3.4 | 0.002 | 3.8 ± 3.9 | 0.028 | 0.618 |
4 months | 3.3 ± 3.2 | 2.9 ± 3.3 | 0.609 | ||
Change | –1.0 ± 2.0 | –1.1 ± 3.0 | 0.964 | ||
MoCA-J score | |||||
Baseline | 22.8 ± 3.9 | 0.148 | 22.5 ± 4.5 | 0.027 | 0.696 |
4 months | 23.4 ± 3.9 | 23.8 ± 3.2 | 0.635 | ||
Change | 1.2 ± 4.5 | 1.6 ± 4.6 | 0.706 | ||
SMI (kg/m2) | |||||
Baseline | 6.2 ± 1.2 | 0.027 | 6.3 ± 1.1 | 0.047 | 0.696 |
4 months | 6.2 ± 1.0 | 6.6 ± 1.1 | 0.147 | ||
Change | –0.3 ± 2.4 | 0.2 ± 0.7 | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirashiki, A.; Shimizu, A.; Kamihara, T.; Kokubo, M.; Hashimoto, K.; Ueda, I.; Sato, K.; Kawamura, K.; Itoh, N.; Murohara, T.; et al. Randomized Controlled Trial of Cardiac Rehabilitation Using the Balance Exercise Assist Robot in Older Adults with Cardiovascular Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 133. https://doi.org/10.3390/jcdd11050133
Hirashiki A, Shimizu A, Kamihara T, Kokubo M, Hashimoto K, Ueda I, Sato K, Kawamura K, Itoh N, Murohara T, et al. Randomized Controlled Trial of Cardiac Rehabilitation Using the Balance Exercise Assist Robot in Older Adults with Cardiovascular Disease. Journal of Cardiovascular Development and Disease. 2024; 11(5):133. https://doi.org/10.3390/jcdd11050133
Chicago/Turabian StyleHirashiki, Akihiro, Atsuya Shimizu, Takahiro Kamihara, Manabu Kokubo, Kakeru Hashimoto, Ikue Ueda, Kenji Sato, Koki Kawamura, Naoki Itoh, Toyoaki Murohara, and et al. 2024. "Randomized Controlled Trial of Cardiac Rehabilitation Using the Balance Exercise Assist Robot in Older Adults with Cardiovascular Disease" Journal of Cardiovascular Development and Disease 11, no. 5: 133. https://doi.org/10.3390/jcdd11050133
APA StyleHirashiki, A., Shimizu, A., Kamihara, T., Kokubo, M., Hashimoto, K., Ueda, I., Sato, K., Kawamura, K., Itoh, N., Murohara, T., Kagaya, H., & Kondo, I. (2024). Randomized Controlled Trial of Cardiac Rehabilitation Using the Balance Exercise Assist Robot in Older Adults with Cardiovascular Disease. Journal of Cardiovascular Development and Disease, 11(5), 133. https://doi.org/10.3390/jcdd11050133