Dementia Development during Long-Term Follow-Up after Surgical Aortic Valve Replacement with a Biological Prosthesis in a Geriatric Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Clinical Preoperative Definitions
2.3. Definitions of Operative Parameters and of Postoperative Adverse Events
2.4. Statistical Analysis
3. Results
3.1. Effect of Preoperative Factors
3.2. Effect of Operative Factors
3.3. Effect of Postoperative Factors
3.4. Long-Term Survival
3.5. Multivariate Analysis with Predictors for Dementia
4. Discussion
4.1. The Effect of Dementia on Survival
4.2. Delirium and the Use of Extracorporeal Circulation as Predictors for Dementia
4.3. The Effect of High Age
4.4. The Effect of Cardiovascular Factors
4.5. The Effect of Chronic Kidney Dysfunction
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, M.A.; Arnold, S.V.; Duhay, F.G.; Thompson, A.K.; Keyes, M.J.; Svensson, L.G.; Bonow, R.O.; Stockwell, B.T.; Cohen, D.J. Five-year Clinical and Economic Outcomes Among Patients with Medically Managed Severe Aortic Stenosis. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, A.; Herregods, M.C.; Verbrugghe, P.; Lamberigts, M.; Vanassche, T.; Meyns, B.; Oosterlinck, W.; Rega, F.; Adriaenssens, T.; Van Hoof, L.; et al. Antithrombotic Treatment After Surgical and Transcatheter Heart Valve Repair and Replacement. Front. Cardiovasc. Med. 2021, 8, 702780. [Google Scholar] [CrossRef] [PubMed]
- Côté, N.; Pibarot, P.; Clavel, M.-A. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr. Opin. Cardiol. 2017, 32, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.F.; Kirchner, J.L.; Phillips-Bute, B.; Gaver, V.; Grocott, H.; Jones, R.H.; Mark, D.B.; Reves, J.G.; Blumenthal, J.A. Longitudinal Assessment of Neurocognitive Function after Coronary-Artery Bypass Surgery. N. Engl. J. Med. 2001, 344, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Mistiaen, W.; Van Cauwelaert, P.; Muylaert, P.; De Worm, E. One thousand Carpentier-Edwards pericardial valves in the aortic position: What has changed in the past 20 years, and what are the effects on hospital complications? J. Heart Valve Dis. 2007, 16, 417–422. [Google Scholar] [PubMed]
- Silverstein, J.H.; Deiner, S.G. Perioperative delirium and its relationship to dementia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 43, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Choi, G.J.; Kang, H.; Baek, C.W.; Jung, Y.H.; Shin, H.Y.; Park, Y.H.; Woo, Y.C. Relationship between Surgery under General Anesthesia and the Development of Dementia: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2020, 2020, 3234013. [Google Scholar] [CrossRef]
- Bowles, E.J.A.; Larson, E.B.; Pong, R.P.; Walker, R.L.; Anderson, M.L.; Yu, O.; Gray, S.L.; Crane, P.K.; Dublin, S. Anesthesia Exposure and Risk of Dementia and Alzheimer’s Disease: A Prospective Study. J. Am. Geriatr. Soc. 2016, 64, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Greaves, D.; Psaltis, P.J.; Ross, T.J.; Davis, D.; Smith, A.E.; Boord, M.S.; Keage, H.A. Cognitive outcomes following coronary artery bypass grafting: A systematic review and meta-analysis of 91,829 patients. Int. J. Cardiol. 2019, 289, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Brayne, C.; E Matthews, F. Survival times in people with dementia: Analysis from population based cohort study with 14 year follow-up. BMJ 2008, 336, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Evered, L.A.; Silbert, B.S.; Scott, D.A.; Maruff, P.; Ames, D. Prevalence of Dementia 7.5 Years after Coronary Artery Bypass Graft Surgery. Anesthesiology 2016, 125, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Bakker, R.C.; Osse, R.J.; Tulen, J.H.; Kappetein, A.P.; Bogers, A.J. Preoperative and operative predictors of delirium after cardiac surgery in elderly patients. Eur. J. Cardio-Thorac. Surg. 2011, 41, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Sanson, G.; Khlopenyuk, Y.; Milocco, S.; Sartori, M.; Dreas, L.; Fabiani, A. Delirium after cardiac surgery. Incidence, phenotypes, predisposing and precipitating risk factors, and effects. Hear Lung 2018, 47, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Zamvar, V.; Williams, D.; Hall, J.; Payne, N.; Cann, C.; Young, K.; Karthikeyan, S.; Dunne, J. Assessment of neurocognitive impairment after off-pump and on-pump techniques for coronary artery bypass graft surgery: Prospective randomised controlled trial. BMJ 2002, 325, 1268. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.O.; Hughes, P.; Rasmussen, L.S.; Pedersen, P.U.; Steinbrüchel, D.A. Cognitive Outcomes in Elderly High-Risk Patients After Off-Pump Versus Conventional Coronary Artery Bypass Grafting. Circulation 2006, 113, 2790–2795. [Google Scholar] [CrossRef] [PubMed]
- Giang, K.W.; Jeppsson, A.; Karlsson, M.; Hansson, E.C.; Pivodic, A.; Skoog, I.; Lindgren, M.; Nielsen, S.J. The risk of dementia after coronary artery bypass grafting in relation to age and sex. Alzheimers Dement. 2021, 17, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Teipel, S.J.; Fritze, T.; Ellenrieder, M.; Haenisch, B.; Mittelmeier, W.; Doblhammer, G. Association of joint replacement surgery with incident dementia diagnosis in German claims data. Int. Psychogeriatr. 2018, 30, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Aranake-Chrisinger, A.; Avidan, M.S. Postoperative delirium portends descent to dementia. Br. J. Anaesth. 2017, 119, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Yip, A.G.; Brayne, C.; Matthews, F.E. Risk factors for incident dementia in England and Wales: The Medical Research Council Cognitive Function and Ageing Study. A population-based nested case–control study. Age Ageing 2006, 35, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N.; Akinyemi, R.; Ihara, M. Stroke injury, cognitive impairment and vascular dementia. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2016, 1862, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.L.; Kuller, L.H. Handbook of Clinical Neurology. In Geriatric Neurology; DeKosky, S.T., Asthana, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 167, pp. 139–148. [Google Scholar] [CrossRef]
- Mistiaen, W.P.; Van Cauwelaert, P.; Muylaert, P.; Van Hove, M.; Sys, S.U.; Harrisson, F.; Bunarto, J.; Delaruelle, J.; Bortier, H. Determinants of survival after aortic valve replacement as treatment for symptomatic aortic valve disease in the elderly. J. Heart Valve Dis. 2001, 10, 354–360. [Google Scholar] [PubMed]
- Mistiaen, W.; Deblier, I.; Dossche, K.; Vanermen, A. Clinical Outcomes after Surgical Aortic Valve Replacement in 681 Octogenarians: A Single-Center Real-World Experience Comparing the Old Patients with the Very Old Patients. Geriatrics 2024, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Steyaert, J. Dementie, 1st ed.; Epo: Antwerp, Belgium, 2016; Section 3.1 Prevalentie; ISBN 9789462670785. Available online: https://infocentrum.dementie.be/product/dementie-de-essentie-jan-steyaert/ (accessed on 18 April 2014).
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Bonnesen, M.P.; Diederichsen, S.Z.; Isaksen, J.L.; Frederiksen, K.S.; Hasselbalch, S.G.; Haugan, K.J.; Kronborg, C.; Graff, C.; Højberg, S.; Køber, L.; et al. Atrial fibrillation burden and cognitive decline in elderly patients undergoing continuous monitoring. Am. Heart J. 2021, 242, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The Pathobiology of Vascular Dementia. Neuron 2013, 80, 844–866. [Google Scholar] [CrossRef] [PubMed]
- Goulay, R.; Romo, L.M.; Hol, E.M.; Dijkhuizen, R.M. From Stroke to Dementia: A Comprehensive Review Exposing Tight Interactions Between Stroke and Amyloid-β Formation. Transl. Stroke Res. 2019, 11, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Hase, Y.; Horsburgh, K.; Ihara, M.; Kalaria, R.N. White matter degeneration in vascular and other ageing-related dementias. J. Neurochem. 2018, 144, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Deckers, K.; Camerino, I.; van Boxtel, M.P.; Verhey, F.R.; Irving, K.; Brayne, C.; Kivipelto, M.; Starr, J.M.; Yaffe, K.; de Leeuw, P.W.; et al. Dementia risk in renal dysfunction. Neurology 2017, 88, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Guerra, C.; Linde-Zwirble, W.T.; Wunsch, H. Risk factors for dementia after critical illness in elderly Medicare beneficiaries. Crit. Care 2012, 16, R233. [Google Scholar] [CrossRef] [PubMed]
- Mistiaen, W.; Van Cauwelaert, P.; Muylaert, P.; De Worm, E. A thousand pericardial valves in aortic position: Risk factors for postoperative acute renal function impairment in elderly. J. Cardiovasc. Surg. 2008, 50, 233–237. [Google Scholar]
- Tsai, H.-H.; Yen, R.-F.; Lin, C.-L.; Kao, C.-H. Increased risk of dementia in patients hospitalized with acute kidney injury: A nationwide population-based cohort study. PLoS ONE 2017, 12, e0171671. [Google Scholar] [CrossRef] [PubMed]
- Kurella Tamura, M.; Yaffe, K. Dementia and cognitive impairment in ESRD: Diagnostic and therapeutic strategies. Kidney Int. 2011, 79, 14–22. [Google Scholar] [CrossRef] [PubMed]
Factor | Factor Absent (%) | Factor Present (%) | p |
---|---|---|---|
Age > 80 years | 128/879 (14.6) | 83/354 (23.4) | <0.001 |
Coronary artery disease | 68/491 (13.8) | 143/742 (19.3) | 0.001 |
Hyperlipidemia | 118/777 (15.2) | 90/437 (20.6) | 0.002 |
Pulmonary artery hypertension | 152/883 (17.2) | 55/288 (19.1) | 0.002 |
Atrial fibrillation | 157/927 (16.9) | 54/306 (17.6) | 0.006 |
Congestive heart failure | 159/949 (16.8) | 52/283 (18.4) | 0.006 |
Creatinine > 1.30 mg% | 172/1019 (16.9) | 38/212 (17.9) | 0.008 |
NYHA functional class IV | 116/692 (16.8) | 25/134 (18.7) | 0.001 |
Left ventricular ejection fraction | 100/635 (15.7) | 34/161 (21.1) | 0.029 |
Cerebrovascular accident | 185/1093 (16.9) | 26/140 (18.6) | 0.073 |
Urgent SAVR | 173/1033 (16.7) | 38/200 (19.0) | 0.075 |
Diabetes mellitus | 160/959 (16.7) | 51/274 (18.6) | 0.092 |
Peripheral artery disease | 152/933 (16.3) | 59/299 (19.7) | 0.163 |
Emergent SAVR | 196/1159 (16.9) | 15/73 (20.5) | 0.206 |
Endocarditis | 210/1197 (17.5) | 1/36 (2.8) | 0.229 |
Acute myocardial infarction | 179/1053 (17.0) | 30/177 (16.9) | 0.262 |
Male gender | 88/477 (18.4) | 123/756 (16.3) | 0.308 |
Carotid artery disease | 176/1020 (17.3) | 35/213 (16.4) | 0.353 |
Malignancy | 183/1025 (17.9) | 28/204 (13.7) | 0.405 |
Conduction defects (all types) | 147/830 (17.7) | 64/403 (15.9) | 0.547 |
Arterial hypertension | 48/311 (15.4) | 162/920 (17.6) | 0.583 |
BMI > 30 kg/m2 | 156/872 (17.9) | 52/343 (15.2) | 0.600 |
FEV1 < 70% predicted | 162/910 (17.8) | 45/299 (15.1) | 0.611 |
Smoking | 169/973 (17.4) | 40/243 (16.5) | 0.636 |
Left ventricular hypertrophy | 21/129 (16.3) | 173/1030 (16.8) | 0.878 |
Factor | Factor Absent (%) | Factor Present (%) | p |
---|---|---|---|
Concomitant CABG | 72/526 (13.7) | 139/707 (19.7) | 0.001 |
CPB time > 120 min | 96/626 (15.4) | 98/474 (20.7) | 0.008 |
Smallest valve size | 204/1212 (16.8) | 6/19 (31.6) | 0.041 |
Mitral valve repair | 197/1165 (16.9) | 14/68 (20.6) | 0.088 |
Incomplete revascularization | 190/1119 (17.0) | 21/107 (19.6) | 0.154 |
Ascending aorta procedure | 197/1123 (17.5) | 14/109 (12.8) | 0.321 |
Concomitant CEA | 209/1210 (17.3) | 2/23 (8.7) | 0.396 |
Cross-clamp time > 60 min | 75/386 (19.4) | 104/609 (17.1) | 0.994 |
Factor | Factor Absent (%) | Factor Present (%) | p |
---|---|---|---|
Adverse events | |||
Delirium | 169/1106 (15.3) | 42/126 (33.3) | <0.001 |
Acute renal injury | 155/956 (16.2) | 56/274 (20.4) | <0.001 |
Low cardiac output syndrome | 199/1163 (17.1) | 12/69 (17.4) | 0.002 |
Thromboembolism | 201/1193 (16.8) | 10/39 (25.6) | 0.003 |
Bleeding | 194/1157 (16.7) | 17/75 (22.7) | 0.006 |
Atrial fibrillation | 129/756 (17.1) | 82/476 (17.2) | 0.243 |
Ventricular arrhythmias | 205/1195 (17.2) | 6/37 (16.2) | 0.316 |
Pulmonary complication | 187/1057 (17.7) | 24/175 (13.7) | 0.376 |
Myocardial infarction | 210/1224 (17.2) | 1/8 (12.5) | 0.766 |
Conduction defect | 173/1001 (17.3) | 38/231 (16.5) | 0.833 |
Endocarditis | 211/1231 (17.1) | 0/1 (0.0) | 0.934 |
Need for resources | |||
>4 units of packed cells | 158/1013 (15.6) | 48/201 (23.9) | 0.005 |
Reintervention | 200/1193 (16.7) | 11/40 (27.5) | 0.012 |
Permanent PM implant | 203/1197 (17.0) | 8/36 (22.2) | 0.021 |
Plasma derivatives | 145/901 (16.1) | 61/312 (19.6) | 0.024 |
Thrombocyte concentrate | 184/1086 (16.9) | 22/127 (17.3) | 0.024 |
Renal replacement therapy | 203/1192 (17.0) | 8/37 (21.6) | 0.026 |
Length of stay in an ICU | 152/896 (17.0) | 58/335 (17.3) | 0.045 |
Mechanical ventilation > 8 h | 118/789 (15.0) | 86/421 (20.4) | 0.070 |
Predictor | Odds Ratio | 95%CI | p |
---|---|---|---|
Postoperative delirium | 3.55 | 2.41–4.93 | <0.001 |
Age > 80 years | 2.38 | 1.78–3.18 | <0.001 |
Preoperative atrial fibrillation | 1.47 | 1.07–2.01 | 0.018 |
CP bypass time > 120 min | 1.34 | 1.02–1.78 | 0.039 |
Postoperative thromboembolism | 1.94 | 1.02–3.70 | 0.044 |
Factor | Factor Absent (n) | Factor Present (n) | p | |
---|---|---|---|---|
Delirium | 5 y | 93.4 ± 0.88 (839) | 74.2 ± 4.3% (61) | <0.001 |
10 y | 77.4 ± 2.3% (132) | 36.6 ± 9.7% (8) | ||
Age > 80 years | 5 y | 94.5 ± 0.8% (685) | 84.0 ± 2.1% (216) | <0.001 |
10 y | 78.5 ± 2.0% (209) | 60.5 ± 4.2% (36) | ||
Postoperative thromboembolism | 5 y | 92.3 ± 0.9% (760) | 89.0 ± 2.5% (124) | <0.001 |
10 y | 76.5 ± 1.9% (202) | 63.1 ± 4.8% (35) | ||
CP bypass time > 120 min. | 5 y | 92.5 ± 1.1% (483) | 90.2 ± 1.4% (333) | 0.005 |
10 y | 79.9 ± 2.5% (112) | 69.1 ± 3.0% (102) | ||
Prior atrial fibrillation | 5 y | 92.8 ± 0.9% (709) | 87.7 ± 2.9% (192) | 0.016 |
10 y | 75.1 ± 2.0% (206) | 70.0 ± 4.3% (31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deblier, I.; Dossche, K.; Vanermen, A.; Mistiaen, W. Dementia Development during Long-Term Follow-Up after Surgical Aortic Valve Replacement with a Biological Prosthesis in a Geriatric Population. J. Cardiovasc. Dev. Dis. 2024, 11, 136. https://doi.org/10.3390/jcdd11050136
Deblier I, Dossche K, Vanermen A, Mistiaen W. Dementia Development during Long-Term Follow-Up after Surgical Aortic Valve Replacement with a Biological Prosthesis in a Geriatric Population. Journal of Cardiovascular Development and Disease. 2024; 11(5):136. https://doi.org/10.3390/jcdd11050136
Chicago/Turabian StyleDeblier, Ivo, Karl Dossche, Anthony Vanermen, and Wilhelm Mistiaen. 2024. "Dementia Development during Long-Term Follow-Up after Surgical Aortic Valve Replacement with a Biological Prosthesis in a Geriatric Population" Journal of Cardiovascular Development and Disease 11, no. 5: 136. https://doi.org/10.3390/jcdd11050136
APA StyleDeblier, I., Dossche, K., Vanermen, A., & Mistiaen, W. (2024). Dementia Development during Long-Term Follow-Up after Surgical Aortic Valve Replacement with a Biological Prosthesis in a Geriatric Population. Journal of Cardiovascular Development and Disease, 11(5), 136. https://doi.org/10.3390/jcdd11050136