Epicardial Atrial Fat at Cardiac Magnetic Resonance Imaging and AF Recurrence after Transcatheter Ablation
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
- Evaluation of left atrial adipose tissue by means of routine preprocedural cardiac MRI imaging is feasible;
- Levels of left atrial adipose tissue volume indexed on LA volume are associated with a higher risk of arrhythmic recurrence after AF cryoballoon catheter ablation.
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sacks, H.S.; Fain, J.N.; Bahouth, S.W.; Ojha, S.; Frontini, A.; Budge, H.; Cinti, S.; Symonds, M.E. Adult Epicardial Fat Exhibits Beige Features. J. Clin. Endocrinol. Metab. 2013, 98, E1448–E1455. [Google Scholar] [CrossRef] [PubMed]
- Fainberg, H.P.; Birtwistle, M.; Alagal, R.; Alhaddad, A.; Pope, M.; Davies, G.; Woods, R.; Castellanos, M.; May, S.T.; Ortori, C.A.; et al. Transcriptional Analysis of Adipose Tissue during Development Reveals Depot-Specific Responsiveness to Maternal Dietary Supplementation. Sci. Rep. 2018, 8, 9628. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Pistilli, D.; Gucciardo, M.; Leonetti, F.; Miraldi, F.; Brancaccio, G.; Gallo, P.; Tiziana Di Gioia, C.R. Adiponectin Expression in Human Epicardial Adipose Tissue in Vivo Is Lower in Patients with Coronary Artery Disease. Cytokine 2005, 29, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Di Gioia, C.R.; Di Vito, M.; Petramala, L.; Cotesta, D.; De Santis, V.; Vitale, D.; Tritapepe, L.; Letizia, C. Epicardial Adipose Tissue and Intracoronary Adrenomedullin Levels in Coronary Artery Disease. Horm. Metab. Res. 2009, 41, 855–860. [Google Scholar] [CrossRef] [PubMed]
- van Woerden, G.; Gorter, T.M.; Westenbrink, B.D.; Willems, T.P.; van Veldhuisen, D.J.; Rienstra, M. Epicardial Fat in Heart Failure Patients with Mid-Range and Preserved Ejection Fraction. Eur. J. Heart Fail. 2018, 20, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Paneni, F.; Mazzola, M.; De Biase, N.; Del Punta, L.; Gargani, L.; Mengozzi, A.; Virdis, A.; Nesti, L.; Taddei, S.; et al. Impact of Epicardial Adipose Tissue on Cardiovascular Haemodynamics, Metabolic Profile, and Prognosis in Heart Failure. Eur. J. Heart Fail. 2021, 23, 1858–1871. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Tabata, M.; Kurobe, H.; Motoki, T.; Akaike, M.; Nishio, C.; Higashida, M.; Mikasa, H.; Nakaya, Y.; Takanashi, S.; et al. Coronary Atherosclerosis Is Associated with Macrophage Polarization in Epicardial Adipose Tissue. J. Am. Coll. Cardiol. 2011, 58, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.M.; Akoumianakis, I.; et al. Detecting Human Coronary Inflammation by Imaging Perivascular Fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J.; Wang, N.; Meigs, J.B.; Hoffmann, U.; Massaro, J.M.; Fox, C.S.; Magnani, J.W. Pericardial Fat Is Associated with Atrial Conduction: The Framingham Heart Study. J. Am. Heart Assoc. 2014, 3, e000477. [Google Scholar] [CrossRef]
- Mahabadi, A.A.; Lehmann, N.; Kälsch, H.; Bauer, M.; Dykun, I.; Kara, K.; Moebus, S.; Jöckel, K.H.; Erbel, R.; Möhlenkamp, S. Association of Epicardial Adipose Tissue and Left Atrial Size on Non-Contrast CT with Atrial Fibrillation: The Heinz Nixdorf Recall Study. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 863–869. [Google Scholar] [CrossRef]
- Wong, C.X.; Sun, M.T.; Odutayo, A.; Emdin, C.A.; Mahajan, R.; Lau, D.H.; Pathak, R.K.; Wong, D.T.; Selvanayagam, J.B.; Sanders, P.; et al. Associations of Epicardial, Abdominal, and Overall Adiposity With Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2016, 9, e004378. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, T.; Zhang, L.F.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G. Epicardial Adipose Tissue in Contemporary Cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Okin, P.M.; Longstreth, W.T.; Elkind, M.S.V.; Soliman, E.Z. Atrial Cardiopathy: A Broadened Concept of Left Atrial Thromboembolism beyond Atrial Fibrillation. Future Cardiol. 2015, 11, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kessler Iglesias, C.; Pouliopoulos, J.; Thomas, L.; Hayward, C.S.; Jabbour, A.; Fatkin, D. Atrial Cardiomyopathy: Current and Future Imaging Methods for Assessment of Atrial Structure and Function. Front. Cardiovasc. Med. 2023, 10, 1099625. [Google Scholar] [CrossRef] [PubMed]
- Sarvari, S.I.; Haugaa, K.H.; Stokke, T.M.; Ansari, H.Z.; Leren, I.S.; Hegbom, F.; Smiseth, O.A.; Edvardsen, T. Strain Echocardiographic Assessment of Left Atrial Function Predicts Recurrence of Atrial Fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Lisi, M.; Reccia, R.; Bennati, E.; Malandrino, A.; Solari, M.; Bigio, E.; Biagioli, B.; Righini, F.M.; Maccherini, M.; et al. Pre-Operative Left Atrial Strain Predicts Post-Operative Atrial Fibrillation in Patients Undergoing Aortic Valve Replacement for Aortic Stenosis. Int. J. Cardiovasc. Imaging 2014, 30, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Modin, D.; Biering-Sørensen, S.R.; Møgelvang, R.; Alhakak, A.S.; Jensen, J.S.; Biering-Sørensen, T. Prognostic Value of Left Atrial Strain in Predicting Cardiovascular Morbidity and Mortality in the General Population. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 804–815. [Google Scholar] [CrossRef]
- Truong, V.T.; Palmer, C.; Wolking, S.; Sheets, B.; Young, M.; Ngo, T.N.M.; Taylor, M.; Nagueh, S.F.; Zareba, K.M.; Raman, S.; et al. Normal Left Atrial Strain and Strain Rate Using Cardiac Magnetic Resonance Feature Tracking in Healthy Volunteers. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 446–453. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Saglietto, A.; Gaita, F.; De Ponti, R.; De Ferrari, G.M.; Anselmino, M. Catheter Ablation vs. Anti-Arrhythmic Drugs as First-Line Treatment in Symptomatic Paroxysmal Atrial Fibrillation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Cardiovasc. Med. 2021, 8, 664647. [Google Scholar] [CrossRef]
- Ballatore, A.; Negrello, E.; Gatti, M.; Matta, M.; Desalvo, P.; Marcialis, L.; Marconi, S.; Tore, D.; Magnano, M.; Bissolino, A.; et al. Evaluation of Pulmonary Vein Fibrosis Following Cryoballoon Ablation of Atrial Fibrillation: A Semi-Automatic MRI Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Saglietto, A.; Gaita, F.; Blomstrom-Lundqvist, C.; Arbelo, E.; Dagres, N.; Brugada, J.; Maggioni, A.P.; Tavazzi, L.; Kautzner, J.; De Ferrari, G.M.; et al. AFA-Recur: An ESC EORP AFA-LT Registry Machine-Learning Web Calculator Predicting Atrial Fibrillation Recurrence after Ablation. Europace 2023, 25, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Chahine, Y.; Macheret, F.; Ordovas, K.; Kim, J.; Boyle, P.M.; Akoum, N. MRI-Quantified Left Atrial Epicardial Adipose Tissue Predicts Atrial Fibrillation Recurrence Following Catheter Ablation. Front. Cardiovasc. Med. 2022, 9, 1045742. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Okaj, I.; Kaur, H.; Belley-Cote, E.P.; Wang, J.; Oraii, A.; Benz, A.P.; Johnson, L.S.B.; Young, J.; Wong, J.A.; et al. Sodium-Glucose Co-Transporter Inhibitors and Atrial Fibrillation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2021, 10, 22222. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Sepehri Shamloo, A.; Dagres, N.; Dinov, B.; Sommer, P.; Husser-Bollmann, D.; Bollmann, A.; Hindricks, G.; Arya, A. Is Epicardial Fat Tissue Associated with Atrial Fibrillation Recurrence after Ablation? A Systematic Review and Meta-Analysis. IJC Heart Vasc. 2019, 22, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Hammache, N.; Pegorer-Sfes, H.; Benali, K.; Magnin Poull, I.; Olivier, A.; Echivard, M.; Pace, N.; Minois, D.; Sadoul, N.; Mandry, D.; et al. Is There an Association between Epicardial Adipose Tissue and Outcomes after Paroxysmal Atrial Fibrillation Catheter Ablation? J. Clin. Med. 2021, 10, 3037. [Google Scholar] [CrossRef]
- Kocyigit, D.; Gurses, K.M.; Yalcin, M.U.; Turk, G.; Evranos, B.; Yorgun, H.; Sahiner, M.L.; Kaya, E.B.; Hazirolan, T.; Tokgozoglu, L.; et al. Periatrial Epicardial Adipose Tissue Thickness Is an Independent Predictor of Atrial Fibrillation Recurrence after Cryoballoon-Based Pulmonary Vein Isolation. J. Cardiovasc. Comput. Tomogr. 2015, 9, 295–302. [Google Scholar] [CrossRef]
- Tzeis, S.; Gerstenfeld, E.P.; Kalman, J.; Saad, E.B.; Sepehri Shamloo, A.; Andrade, J.G.; Barbhaiya, C.R.; Baykaner, T.; Boveda, S.; Calkins, H.; et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Europace 2024, 26, euae043. [Google Scholar] [CrossRef]
- Chen, J.; Mei, Z.; Yang, Y.; Dai, C.; Wang, Y.; Zeng, R.; Liu, Q. Epicardial Adipose Tissue Is Associated with Higher Recurrence Risk after Catheter Ablation in Atrial Fibrillation Patients: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2022, 22, 264. [Google Scholar] [CrossRef] [PubMed]
- Nakamori, S.; Nezafat, M.; Ngo, L.H.; Manning, W.J.; Nezafat, R. Left Atrial Epicardial Fat Volume Is Associated With Atrial Fibrillation: A Prospective Cardiovascular Magnetic Resonance 3D Dixon Study. J. Am. Heart Assoc. 2018, 7, e008232. [Google Scholar] [CrossRef] [PubMed]
- Marrouche, N.F.; Wazni, O.; McGann, C.; Greene, T.; Dean, J.M.; Dagher, L.; Kholmovski, E.; Mansour, M.; Marchlinski, F.; Wilber, D.; et al. Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients With Persistent Atrial Fibrillation: The DECAAF II Randomized Clinical Trial. JAMA 2022, 327, 2296–2305. [Google Scholar] [CrossRef] [PubMed]
- Akoum, N.; Wilber, D.; Hindricks, G.; Jais, P.; Cates, J.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. MRI Assessment of Ablation-Induced Scarring in Atrial Fibrillation: Analysis from the DECAAF Study. J. Cardiovasc. Electrophysiol. 2015, 26, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.J.; Kemme, M.J.B.; Visser, C.L.; Hopman, L.H.G.A.; van Diemen, P.A.; van de Ven, P.M.; Götte, M.J.W.; Danad, I.; Knaapen, P.; van Rossum, A.C.; et al. Left Atrial Sphericity as a Marker of Atrial Remodeling: Comparison of Atrial Fibrillation Patients and Controls. Int. J. Cardiol. 2020, 304, 69–74. [Google Scholar] [CrossRef]
- Lee, D.C.; Markl, M.; Ng, J.; Carr, M.; Benefield, B.; Carr, J.C.; Goldberger, J.J. Three-Dimensional Left Atrial Blood Flow Characteristics in Patients with Atrial Fibrillation Assessed by 4D Flow CMR. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1259–1268. [Google Scholar] [CrossRef]
Variable | General Population (n = 50) | Arrhythmic Recurrence (n = 17) | No Recurrence (n = 33) | p-Value |
---|---|---|---|---|
Age (years ± SD) | 59.64 (±11.0) | 59.4 (±12.3) | 59.8 (±10.5) | ns |
Gender (female) | 19 (38%) | 8 (47%) | 11 (33%) | ns |
BMI (kg/m2 ± SD) | 26.0 (±3.1) | 26.0 (±3.9) | 26.0 (±2.7) | ns |
Obesity | 5 (10%) | 3 (18%) | 2 (6%) | ns |
Paroxysmal AF | 43 (86%) | 17 (100%) | 26 (79%) | ns |
AF history duration (months ± SD) | 66.5 (±81.0) | 85.5 (±93.6) | 57 (±73.6) | ns |
Hypertension | 26 (52%) | 10 (59%) | 16 (48%) | ns |
Diabetes | 3 (6%) | 3 (18%) | 0 (0%) | ns |
Previous stroke | 4 (8%) | 2 (12%) | 2 (6%) | ns |
CAD | 1 (2%) | 1 (6%) | 0 (0%) | ns |
Thyroid disorders | 6 (12%) | 2 (12%) | 4 (12%) | ns |
Prior use of AADs | ||||
Amiodarone | 3 (6%) | 0 (0%) | 3 (9%) | ns |
Flecainide | 27 (74%) | 12 (71%) | 25 (76%) | ns |
Propafenone | 12 (24%) | 6 (35%) | 6 (18%) | ns |
Sotalol | 6 (12%) | 3 (18%) | 3 (9%) | ns |
Beta-blockers | 34 (68%) | 8 (47%) | 26 (79%) | 0.019 |
Digoxin | 1 (2%) | 0 (0%) | 1 (3%) | ns |
Oral anticoagulants | ns | |||
VKA | 2 (4%) | 0 (0%) | 2 (6%) | |
DOAC | 32 (64%) | 12 (71%) | 20 (61%) | |
LA indexed volume (mL/m2 ± SD) | 43.3 (±12.3) | 39.4 (±10.4) | 45.2 (±12.9) | ns |
AAD use during FU | ||||
Amiodarone | 3 (6%) | 2 (11%) | 1 (3%) | ns |
Flecainide | 15 (31%) | 5 (29%) | 10 (31%) | ns |
Propafenone | 4 (8%) | 2 (12%) | 2 (6%) | ns |
Sotalol | 5 (10%) | 4 (24%) | 1 (3%) | ns |
Beta-blockers | 25 (51%) | 5 (29%) | 20 (63%) | ns |
Digoxin | 1 (2%) | 1 (6%) | 0 (0%) | ns |
Variable | Univariate | Multivariate |
---|---|---|
Hypertension | 1.4 (0.5–3.7) | |
Diabetes | 3.9 (1.1–13.9) | 6.2 (1.3–29.4) |
Previous stroke | 1.9 (0.4–8.3) | |
Thyroid disease | 1.5 (0.5–4.4) | |
Valvular disease | 3.9 (0.9–17.1) | |
Beta-blockers | 0.5 (0.2–1.3) | 0.3 (0.1–0.98) |
Flecainide | 1.0 (0.6–1.7) | |
Gender | 1.6 (0.6–4.3) | |
LA EATi ≥ 10.65% | 3.3 (1.0–11.7) | 4.5 (1.2–17.3) |
BSA | 0.3 (0.0–5.2) | 0.1 (0.0–3.8) |
Age | 1.0 (1.0–1.0) | 1.0 (0.9–1.0) |
AF history (months) | 1.0 (1.0–1.0) | |
BMI (kg/m2) | 1.0 (0.8–1.2) | 1.1 (0.9–1.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballatore, A.; Gatti, M.; Mella, S.; Tore, D.; Xhakupi, H.; Giorgino, F.; Saglietto, A.; Carmagnola, L.; Roagna, E.; De Ferrari, G.M.; et al. Epicardial Atrial Fat at Cardiac Magnetic Resonance Imaging and AF Recurrence after Transcatheter Ablation. J. Cardiovasc. Dev. Dis. 2024, 11, 137. https://doi.org/10.3390/jcdd11050137
Ballatore A, Gatti M, Mella S, Tore D, Xhakupi H, Giorgino F, Saglietto A, Carmagnola L, Roagna E, De Ferrari GM, et al. Epicardial Atrial Fat at Cardiac Magnetic Resonance Imaging and AF Recurrence after Transcatheter Ablation. Journal of Cardiovascular Development and Disease. 2024; 11(5):137. https://doi.org/10.3390/jcdd11050137
Chicago/Turabian StyleBallatore, Andrea, Marco Gatti, Serena Mella, Davide Tore, Henri Xhakupi, Fabio Giorgino, Andrea Saglietto, Ludovica Carmagnola, Edoardo Roagna, Gaetano Maria De Ferrari, and et al. 2024. "Epicardial Atrial Fat at Cardiac Magnetic Resonance Imaging and AF Recurrence after Transcatheter Ablation" Journal of Cardiovascular Development and Disease 11, no. 5: 137. https://doi.org/10.3390/jcdd11050137
APA StyleBallatore, A., Gatti, M., Mella, S., Tore, D., Xhakupi, H., Giorgino, F., Saglietto, A., Carmagnola, L., Roagna, E., De Ferrari, G. M., Faletti, R., & Anselmino, M. (2024). Epicardial Atrial Fat at Cardiac Magnetic Resonance Imaging and AF Recurrence after Transcatheter Ablation. Journal of Cardiovascular Development and Disease, 11(5), 137. https://doi.org/10.3390/jcdd11050137