Development and Clinical Application of Left Ventricular–Arterial Coupling Non-Invasive Assessment Methods
Abstract
:1. Introduction
2. Estimation of Left End-Systolic Elastance (Figure 3)
2.1. Simplified Single-Beat Invasive Methods
- Takeuchi and Colleagues [12] described the Simulated Isovolumetric Pressure curves method, which estimates the maximum pressure (PmaxE) for a given end-diastolic volume by fitting an isovolumetric pressure curve on the invasive pressure record of an ejection cycle. The slope determined by this estimated maximum pressure point and tangential to the measured end-systolic pressure–volume point corresponds to the estimated Ees (EesE).
- Senzaki and colleagues [13] developed the normalized elastance method by collecting information from 200 equidistant points of a total of 72 PV loops chosen randomly from the total recorded in 52 individuals. A normalized time-varying elastance curve was calculated with its corresponding pressure and volume values for each moment (t). Thus, in a specific patient, after recording a PV loop, Ees(SB) could be calculated from the following equations after calculating V0.
2.2. Echocardiography-Based Non-Invasive Methods
- Chen and colleagues [17] developed a method that is considered to be the non-invasive gold standard for Ees estimation. They compared invasive, conventional measures, which were estimated non-invasively in 50 individuals: 7 were healthy while 13 patients underwent coronary angiography without obstructive coronary artery disease (CAD) or ventricular dysfunction, 13 patients had CAD, 8 patients had hypertensive heart disease, 5 patients had dilated cardiomyopathy (DCM), 1 patient had hypertrophic cardiomyopathy (HCM), 1 patient had constrictive pericarditis, and 2 were heart transplant patients.
- Bauer and colleagues [23] proposed using the systolic acceleration in LVOT (LVOTAcc) as a surrogate of Ees measured invasively based on the results obtained from an ovine model with 18 sheep (4 healthy, 6 with aortic regurgitation and 8 with myocardial infarction of the first diagonal artery).
- In a slightly different line of work, echocardiographic reference ranges were recently published for non-invasive myocardial work indices in healthy volunteers [24]. In this study, authors seek to define normal values for global work index (GWI), global work waste (GWW), and global work efficiency (GWE) in an attempt to incorporate systolic function, myocardial deformation, and arterial load in the so-called pressure–strain loops and avoid the influence of afterload over strain echocardiography [25].
2.3. Multimodal Imaging-Based Non-Invasive Methods
2.4. Artificial Intelligence and Machine Learning to Help Estimate End-Systolic Elastance
3. Non-Invasive Estimation of Arterial Elastance
4. Left Ventricular–Arterial Coupling in Different Clinical Scenarios
4.1. Hypertension, Diabetes, and Chronic Heart Failure with Preserved Ejection Fraction
4.2. Chronic Heart Failure with Reduced Ejection Fraction
4.3. Coronary Artery Disease
4.4. Cardio-Oncology
4.5. Aortic Valve Stenosis
4.6. Mitral Valve Regurgitation
4.7. Takotsubo Syndrome
4.8. Septic Shock
4.9. Very Elderly
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suga, H. Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressurevolume ratio. IEEE Trans. Biomed. Eng. 1971, 18, 47–55. [Google Scholar] [CrossRef]
- Suga, H.; Sagawa, K. Mathematical interrelationship between instantaneous ventricular pressure-volume ratio and myocardial force-velocity relation. Ann. Biomed. Eng. 1972, 1, 160–181. [Google Scholar] [CrossRef]
- Suga, H.; Sagawa, K.; Kostiuk, D.P. Controls of ventricular contractility assessed by pressure-volume ratio, Emax. Cardiovasc. Res. 1976, 10, 582–592. [Google Scholar] [CrossRef]
- Suga, H.; Sagawa, K.; Shoukas, A.A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 1973, 32, 314–322. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Rietzschel, E.R.; De Buyzere, M.L.; De Bacquer, D.; Gillebert, T.C.; Gupta, A.K.; Segers, P. Asklepios investigators. Arterial load and ventricular-arterial coupling: Physiologic relations with body size and effect of obesity. Hypertension 2009, 54, 558–566. [Google Scholar] [CrossRef]
- Suga, H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am. J. Physiol. 1979, 236, H498–H505. [Google Scholar] [CrossRef]
- Suga, H.; Hayashi, T.; Shirahata, M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am. J. Physiol. 1981, 240, H39–H44. [Google Scholar] [CrossRef]
- Chen, C.H.; Nakayama, M.; Nevo, E.; Fetics, B.J.; Maughan, W.L.; Kass, D.A. Coupled systolic-ventricular and vascular stiffening with age: Implications for pressure regulation and cardiac reserve in the elderly. J. Am. Coll. Cardiol. 1998, 32, 1221–1227. [Google Scholar] [CrossRef]
- Kass, D.A.; Beyar, R.; Lankford, E.; Heard, M.; Maughan, W.L.; Sagawa, K. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 1989, 79, 167–178. [Google Scholar] [CrossRef]
- De Tombe, P.P.; Jones, S.; Burkhoff, D.; Hunter, W.C.; Kass, D.A. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am. J. Physiol. 1993, 264, H1817–H1824. [Google Scholar] [CrossRef]
- Kelly, R.P.; Ting, C.T.; Yang, T.M.; Liu, C.P.; Maughan, W.L.; Chang, M.S.; Kass, D.A. Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992, 86, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Igarashi, Y.; Tomimoto, S.; Odake, M.; Hayashi, T.; Tsukamoto, T.; Hata, K.; Takaoka, H.; Fukuzaki, H. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 1991, 83, 202–212. [Google Scholar] [CrossRef]
- Senzaki, H.; Chen, C.H.; Kass, D.A. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 1996, 94, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Shishido, T.; Hayashi, K.; Shigemi, K.; Sato, T.; Sugimachi, M.; Sunagawa, K. Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 2000, 102, 1983–1989. [Google Scholar] [CrossRef]
- Little, W.C.; Cheng, C.P.; Peterson, T.; Vinten-Johansen, J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation 1988, 78, 736–745. [Google Scholar] [CrossRef]
- Wo, N.; Rajagopal, V.; Cheung, M.M.H.; Smolich, J.J.; Mynard, J.P. Assessment of single-beat end-systolic elastance methods for quantifying ventricular contractility. Heart Vessels 2019, 34, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Fetics, B.; Nevo, E.; Rochitte, C.E.; Chiou, K.R.; Ding, P.A.; Kawaguchi, M.; Kass, D.A. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 2001, 38, 2028–2034. [Google Scholar] [CrossRef]
- Cohen-Solal, A.; Caviezel, B.; Himbert, D.; Gourgon, R. Left ventricular-arterial coupling in systemic hypertension: Analysis by means of arterial effective and left ventricular elastances. J. Hypertens. 1994, 12, 591–600. [Google Scholar] [CrossRef]
- Chantler, P.D.; Lakatta, E.G.; Najjar, S.S. Arterial-ventricular coupling: Mechanistic insights into cardiovascular performance at rest and during exercise. J. Appl. Physiol. 2008, 105, 1342–1351, Erratum in J. Appl. Physiol. 2009, 106, 1027. [Google Scholar] [CrossRef] [PubMed]
- De Santis, D.; Abete, P.; Testa, G.; Cacciatore, F.; Galizia, G.; Leosco, D.; Viati, L.; Del Villano, V.; Della Morte, D.; Mazzella, F.; et al. Echocardiographic evaluation of left ventricular end-systolic elastance in the elderly. Eur. J. Heart Fail. 2005, 7, 829–833. [Google Scholar] [CrossRef]
- Cohen-Solal, A.; Caviezel, B.; Laperche, T.; Gourgon, R. Effects of aging on left ventricular-arterial coupling in man: Assessment by means of arterial effective and left ventricular elastances. J. Hum. Hypertens. 1996, 10, 111–116. [Google Scholar] [PubMed]
- Holm, H.; Magnusson, M.; Jujić, A.; Bozec, E.; Girerd, N. How to calculate ventricular-arterial coupling? Eur. J. Heart Fail. 2022, 24, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Bauer, F.; Jones, M.; Shiota, T.; Firstenberg, M.S.; Qin, J.X.; Tsujino, H.; Kim, Y.J.; Sitges, M.; Cardon, L.A.; Zetts, A.D.; et al. Left ventricular outflow tract mean systolic acceleration as a surrogate for the slope of the left ventricular end-systolic pressure-volume relationship. J. Am. Coll. Cardiol. 2002, 40, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Manganaro, R.; Marchetta, S.; Dulgheru, R.; Ilardi, F.; Sugimoto, T.; Robinet, S.; Cimino, S.; Go, Y.Y.; Bernard, A.; Kacharava, G.; et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, M.; Lakatos, B.K.; Braun, S.; Tokodi, M.; Karime, C.; Oláh, A.; Sayour, A.A.; Hizoh, I.; Barta, B.A.; Merkely, B.; et al. Longitudinal strain reflects ventriculoarterial coupling rather than mere contractility in rat models of hemodynamic overload–induced heart failure. J. Am. Soc. Echocardiogr. 2020, 33, 1264–1275. [Google Scholar] [CrossRef]
- Seemann, F.; Arvidsson, P.; Nordlund, D.; Kopic, S.; Carlsson, M.; Arheden, H.; Heiberg, E. Noninvasive Quantification of Pressure-Volume Loops from Brachial Pressure and Cardiovascular Magnetic Resonance. Circ. Cardiovasc. Imaging 2019, 12, e008493. [Google Scholar] [CrossRef] [PubMed]
- Stergiopulos, N.; Meister, J.J.; Westerhof, N. Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. 1996, 270 Pt 2, H2050–H2059. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, P.; Seemann, F.; Arheden, H.; Heiberg, E. Non-invasive quantification of pressure-volume loops from cardiovascular magnetic resonance at rest and during dobutamine stress. Clin. Physiol. Funct. Imaging 2021, 41, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Pagoulatou, S.; Rommel, K.P.; Kresoja, K.P.; von Roeder, M.; Lurz, P.; Thiele, H.; Bikia, V.; Rovas, G.; Adamopoulos, D.; Stergiopulos, N. In vivo application and validation of a novel noninvasive method to estimate the end-systolic elastance. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1554–H1564. [Google Scholar] [CrossRef] [PubMed]
- Bikia, V.; Lazaroska, M.; Scherrer Ma, D.; Zhao, M.; Rovas, G.; Pagoulatou, S.; Stergiopulos, N. Estimation of Left Ventricular End-Systolic Elastance From Brachial Pressure Waveform via Deep Learning. Front. Bioeng. Biotechnol. 2021, 9, 754003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bikia, V.; Adamopoulos, D.; Pagoulatou, S.; Rovas, G.; Stergiopulos, N. AI-Based Estimation of End-Systolic Elastance From Arm-Pressure and Systolic Time Intervals. Front. Artif. Intell. 2021, 4, 579541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonini-Canterin, F.; Poli, S.; Vriz, O.; Pavan, D.; Bello, V.D.; Nicolosi, G.L. The Ventricular-Arterial Coupling: From Basic Pathophysiology to Clinical Application in the Echocardiography Laboratory. J. Cardiovasc. Echogr. 2013, 23, 91–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guarracino, F.; Baldassarri, R.; Pinsky, M.R. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 2013, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- Monge Garcia, M.I.; Jian, Z.; Settels, J.J.; Hatib, F.; Cecconi, M.; Pinsky, M.R. Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end-systolic pressure. J. Clin. Monit. Comput. 2019, 33, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Chemla, D.; Teboul, J.L.; Jozwiak, M. As simple as possible, but not simpler: Estimating the effective arterial elastance at bedside. J. Clin. Monit. Comput. 2019, 33, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Asanoi, H.; Sasayama, S.; Kameyama, T. Ventriculoarterial coupling in normal and failing heart in humans. Circ. Res. 1989, 65, 483–493, Erratum in Circ. Res. 1990, 66, 1170. [Google Scholar] [CrossRef] [PubMed]
- Monge García, M.I.; Santos, A. Understanding ventriculo-arterial coupling. Ann. Transl. Med. 2020, 8, 795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Little, W.C.; Pu, M. Left ventricular-arterial coupling. J. Am. Soc. Echocardiogr. 2009, 22, 1246–1248. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.; D’hooge, J.; Kloch-Badelek, M.; Sakiewicz, W.; Thijs, L.; Staessen, J.A. Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise. J. Am. Soc. Echocardiogr. 2012, 25, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Lam, C.S.; Shah, A.M.; Borlaug, B.A.; Cheng, S.; Verma, A.; Izzo, J.; Oparil, S.; Aurigemma, G.P.; Thomas, J.D.; Pitt, B.; et al. Effect of antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency. Eur. Heart J. 2013, 34, 676–683.53. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424, Erratum in Eur. J. Heart Fail. 2022, 24, 1452. [Google Scholar] [CrossRef] [PubMed]
- Iakovou, I.; Karpanou, E.A.; Vyssoulis, G.P.; Toutouzas, P.K.; Cokkinos, D.V. Assessment of arterial ventricular coupling changes in patients under therapy with various antihypertensive agents by a non-invasive echocardiographic method. Int. J. Cardiol. 2004, 96, 355–360. [Google Scholar] [CrossRef]
- Hummel, S.L.; Seymour, E.M.; Brook, R.D.; Sheth, S.S.; Ghosh, E.; Zhu, S.; Weder, A.B.; Kovács, S.J.; Kolias, T.J. Low-sodium DASH diet improves diastolic functionand ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ. Heart Fail. 2013, 6, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; French, B.; May Khan, A.; Plappert, T.; Wang, A.; Chirinos, J.A.; Fang, J.C.; Sweitzer, N.K.; Borlaug, B.A.; Kass, D.A.; et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J. Am. Coll. Cardiol. 2013, 62, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Monosilio, S.; Filomena, D.; Luongo, F.; Sannino, M.; Cimino, S.; Neccia, M.; Mariani, M.V.; Birtolo, L.I.; Benedetti, G.; Tonti, G.; et al. Cardiac and Vascular Remodeling After 6 Months of Therapy with Sacubitril/Valsartan: Mechanistic Insights from Advanced Echocardiographic Analysis. Front. Cardiovasc. Med. 2022, 9, 883769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razzolini, R.; Tarantini, G.; Boffa, G.M.; Orlando, S.; Iliceto, S. Effects of carvedilol on ventriculo-arterial coupling in patients with heart failure. Ital. Heart J. 2004, 5, 517–522. [Google Scholar] [PubMed]
- Lawson, M.A.; Hansen, D.E.; Gupta, D.K.; Bell, S.P.; Adkisson, D.W.; Mallugari, R.R.; Sawyer, D.B.; Ooi, H.; Kronenberg, M.W. Modification of ventriculo-arterial coupling by spironolactone in nonischemic dilated cardiomyopathy. ESC Heart Fail. 2021, 8, 1156–1166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reil, J.C.; Tardif, J.C.; Ford, I.; Lloyd, S.M.; O’Meara, E.; Komajda, M.; Borer, J.S.; Tavazzi, L.; Swedberg, K.; Böhm, M. Selective heart rate reduction with ivabradine unloads the left ventricle in heart failure patients. J. Am. Coll. Cardiol. 2013, 62, 1977–1985. [Google Scholar] [CrossRef] [PubMed]
- Zanon, F.; Aggio, S.; Baracca, E.; Pastore, G.; Corbucci, G.; Boaretto, G.; Braggion, G.; Piergentili, C.; Rigatelli, G.; Roncon, L. Ventricular-arterial coupling in patients with heart failure treated with cardiac resynchronization therapy: May we predict the long-term clinical response? Eur. J. Echocardiogr. 2009, 10, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Aslanger, E.; Assous, B.; Bihry, N.; Beauvais, F.; Logeart, D.; Cohen-Solal, A. Effects of Cardiopulmonary Exercise Rehabilitation on Left Ventricular Mechanical Efficiency and Ventricular-Arterial Coupling in Patients with Systolic Heart Failure. J. Am. Heart Assoc. 2015, 4, e002084, Erratum in J. Am. Heart Assoc. 2015, 4, e002004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonini-Canterin, F.; Enache, R.; Popescu, B.A.; Popescu, A.C.; Ginghina, C.; Leiballi, E.; Piazza, R.; Pavan, D.; Rubin, D.; Cappelletti, P.; et al. Prognostic value of ventricular-arterial coupling and B-type natriuretic peptide in patients after myocardial infarction: A five-year follow-up study. J. Am. Soc. Echocardiogr. 2009, 22, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Bombardini, T.; Costantino, M.F.; Sicari, R.; Ciampi, Q.; Pratali, L.; Picano, E. End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed. Res. Int. 2013, 2013, 235194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duc, H.T.; Thu, H.P.V.; Truong, V.T.; Ngo, T.N.M.; Mazur, W.; Chung, E.S.; Oanh, O.N.; Viet, T.T.; Cong, T.L. Ventriculo-arterial coupling in patients with stable ischemic heart disease undergoing percutaneous coronary intervention. Int. J. Cardiovasc. Imaging 2022, 38, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Narayan, H.K.; French, B.; Khan, A.M.; Plappert, T.; Hyman, D.; Bajulaiye, A.; Domchek, S.; DeMichele, A.; Clark, A.; Matro, J.; et al. Noninvasive Measures of Ventricular-Arterial Coupling and Circumferential Strain Predict Cancer Therapeutics-Related Cardiac Dysfunction. JACC Cardiovasc. Imaging 2016, 9, 1131–1141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Narayan, H.K.; Wei, W.; Feng, Z.; Lenihan, D.; Plappert, T.; Englefield, V.; Fisch, M.; Ky, B. Cardiac mechanics and dysfunction with anthracyclines in the community: Results from the PREDICT study. Open Heart 2017, 4, e000524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Narayan, H.K.; Finkelman, B.; French, B.; Plappert, T.; Hyman, D.; Smith, A.M.; Margulies, K.B.; Ky, B. Detailed Echocardiographic Phenotyping in Breast Cancer Patients: Associations with Ejection Fraction Decline, Recovery, and Heart Failure Symptoms Over 3 Years of Follow-Up. Circulation 2017, 135, 1397–1412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koelwyn, G.J.; Lewis, N.C.; Ellard, S.L.; Jones, L.W.; Gelinas, J.C.; Rolf, J.D.; Melzer, B.; Thomas, S.M.; Douglas, P.S.; Khouri, M.G.; et al. Ventricular-Arterial Coupling in Breast Cancer Patients After Treatment with Anthracycline-Containing Adjuvant Chemotherapy. Oncologist 2016, 21, 141–149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Briand, M.; Dumesnil, J.G.; Kadem, L.; Tongue, A.G.; Rieu, R.; Garcia, D.; Pibarot, P. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: Implications for diagnosis and treatment. J. Am. Coll. Cardiol. 2005, 46, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Migliore, R.A.; Adaniya, M.E.; Barranco, M.A.; González, S. Relationship between left ventriculoarterial coupling and damage stage in severe aortic stenosis. Eur. Heart J. 2022, 43, ehac544.1521. [Google Scholar] [CrossRef]
- Généreux, P.; Pibarot, P.; Redfors, B.; Mack, M.J.; Makkar, R.R.; Jaber, W.A.; Svensson, L.G.; Kapadia, S.; Tuzcu, E.M.; Thourani, V.H.; et al. Staging classification of aortic stenosis based on the extent of cardiac damage. Eur. Heart J. 2017, 38, 3351–3358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Bello, V.; Giannini, C.; De Carlo, M.; Delle Donne, M.G.; Nardi, C.; Palagi, C.; Cucco, C.; Dini, F.L.; Guarracino, F.; Marzilli, M.; et al. Acute improvement in arterial-ventricular coupling after transcatheter aortic valve implantation (CoreValve) in patients with symptomatic aortic stenosis. Int. J. Cardiovasc. Imaging 2012, 28, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Ferro, B.; Baldassarri, R.; Bertini, P.; Forfori, F.; Giannini, C.; Di Bello, V.; Petronio, A.S. Non invasive evaluation of cardiomechanics in patients undergoing MitraClip procedure. Cardiovasc. Ultrasound. 2013, 11, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schrage, B.; Kalbacher, D.; Schwarzl, M.; Rübsamen, N.; Waldeyer, C.; Becher, P.M.; Tigges, E.; Burkhoff, D.; Blankenberg, S.; Lubos, E.; et al. Distinct Hemodynamic Changes After Interventional Mitral Valve Edge-to-Edge Repair in Different Phenotypes of Heart Failure: An Integrated Hemodynamic Analysis. J. Am. Heart Assoc. 2018, 7, e007963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Medeiros, K.; O’Connor, M.J.; Baicu, C.F.; Fitzgibbons, T.P.; Shaw, P.; Tighe, D.A.; Zile, M.R.; Aurigemma, G.P. Systolic and diastolic mechanics in stress cardiomyopathy. Circulation 2014, 129, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Stiermaier, T.; Reil, J.C.; Sequeira, V.; Rawish, E.; Mezger, M.; Pätz, T.; Paitazoglou, C.; Schmidt, T.; Frerker, C.; Steendijk, P.; et al. Hemodynamic Assessment in Takotsubo Syndrome. J. Am. Coll. Cardiol. 2023, 81, 1979–1991. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, J.; Alfonso, F. Novel Hemodynamic Insights in Takotsubo Syndrome. J. Am. Coll. Cardiol. 2023, 81, 1992–1995. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Bertini, P.; Pinsky, M.R. Cardiovascular determinants of resuscitation from sepsis and septic shock. Crit. Care 2019, 23, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonaglioni, A.; Baravelli, M.; Lombardo, M.; Sommese, C.; Anzà, C.; Kirk, J.A.; Padeletti, L. Ventricular-arterial coupling in centenarians without cardiovascular diseases. Aging Clin. Exp. Res. 2018, 30, 367–373. [Google Scholar] [CrossRef] [PubMed]
Simplified Single-Beat Invasive Methods | |||
---|---|---|---|
Simulated isovolumetric pressure curves methodTakeuchi et al. 1991 [12] | Human model | Reproducible under different preload, afterload and inotropism conditions | r = 0.91, p < 0.001 |
Normalized elastance methodSenzaki et al. 1996 [13] | Human model | Reproducible under different preload and inotropism conditions | r = 0.92, p < 0.0001 |
Bilinearly aproximated elastance methodShishido et al. 2000 [14] | Canine model | Reproducible under different preload and inotropism conditions | r = 0.925, p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamarra, A.; Díez-Villanueva, P.; Salamanca, J.; Aguilar, R.; Mahía, P.; Alfonso, F. Development and Clinical Application of Left Ventricular–Arterial Coupling Non-Invasive Assessment Methods. J. Cardiovasc. Dev. Dis. 2024, 11, 141. https://doi.org/10.3390/jcdd11050141
Gamarra A, Díez-Villanueva P, Salamanca J, Aguilar R, Mahía P, Alfonso F. Development and Clinical Application of Left Ventricular–Arterial Coupling Non-Invasive Assessment Methods. Journal of Cardiovascular Development and Disease. 2024; 11(5):141. https://doi.org/10.3390/jcdd11050141
Chicago/Turabian StyleGamarra, Alvaro, Pablo Díez-Villanueva, Jorge Salamanca, Rio Aguilar, Patricia Mahía, and Fernando Alfonso. 2024. "Development and Clinical Application of Left Ventricular–Arterial Coupling Non-Invasive Assessment Methods" Journal of Cardiovascular Development and Disease 11, no. 5: 141. https://doi.org/10.3390/jcdd11050141
APA StyleGamarra, A., Díez-Villanueva, P., Salamanca, J., Aguilar, R., Mahía, P., & Alfonso, F. (2024). Development and Clinical Application of Left Ventricular–Arterial Coupling Non-Invasive Assessment Methods. Journal of Cardiovascular Development and Disease, 11(5), 141. https://doi.org/10.3390/jcdd11050141