Serum Biomarkers and Their Association with Myocardial Function and Exercise Capacity in Cardiac Transthyretin Amyloidosis
Abstract
:1. Introduction
2. Methods
2.1. Patients and Study Design
2.2. Echocardiography
2.3. Six-Minute Walk Test
2.4. Biomarkers Determination
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Baseline Features of the Subgroup Analysis
3.3. Correlations between Biomarkers and Myocardial Disfunction
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AbouEzzeddine, O.F.; Davies, D.R.; Scott, C.G.; Fayyaz, A.U.; Askew, J.W.; McKie, P.M.; Noseworthy, P.A.; Johnson, G.B.; Dunlay, S.M.; Borlaug, B.A.; et al. Prevalence of Transthyretin Amyloid Cardiomyopathy in Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- González-López, E.; Gallego-Delgado, M.; Guzzo-Merello, G.; de Haro-Del Moral, F.J.; Cobo-Marcos, M.; Robles, C.; Bornstein, B.; Salas, C.; Lara-Pezzi, E.; Alonso-Pulpon, L.; et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 2015, 36, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Ruberg, F.L.; Maurer, M.S. Cardiac Amyloidosis Due to Transthyretin Protein: A Review. JAMA 2024, 331, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Okumura, T.; Murohara, T.; Katsuno, M. Multidisciplinary Approaches for Transthyretin Amyloidosis. Cardiol. Ther. 2021, 10, 289–311. [Google Scholar] [CrossRef]
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac amyloidosis and aortic stenosis: A state-of-the-art review. Eur. Heart J. Open 2023, 3, oead106. [Google Scholar] [CrossRef] [PubMed]
- Chacko, L.; Martone, R.; Bandera, F.; Lane, T.; Martinez-Naharro, A.; Boldrini, M.; Rezk, T.; Whelan, C.; Quarta, C.; Rowczenio, D.; et al. Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. Eur. Heart J. 2020, 41, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef]
- Luciani, M.; Troncone, L.; Monte, F.D. Current and future circulating biomarkers for cardiac amyloidosis. Acta Pharmacol. Sin. 2018, 39, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Maia, L.F.; Martins da Silva, A.; Waddington Cruz, M.; Planté-Bordeneuve, V.; Lozeron, P.; Suhr, O.B.; Campistol, J.M.; Conceição, I.M.; Schmidt, H.H.; et al. Tafamidis for transthyretin familial amyloid polyneuropathy: A randomized, controlled trial. Neurology 2012, 79, 785–792. [Google Scholar] [CrossRef]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef]
- Berk, J.L.; Suhr, O.B.; Obici, L.; Sekijima, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Litchy, W.J.; Wiesman, J.F.; et al. Repurposing diflunisal for familial amyloid polyneuropathy: A randomized clinical trial. JAMA 2013, 310, 2658–2667. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.; Damy, T.; Eriksson, U.; et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2021, 42, 1554–1568. [Google Scholar] [CrossRef]
- Connors, L.H.; Sam, F.; Skinner, M.; Salinaro, F.; Sun, F.; Ruberg, F.L.; Berk, J.L.; Seldin, D.C. Heart Failure Resulting from Age-Related Cardiac Amyloid Disease Associated with Wild-Type Transthyretin: A Prospective, Observational Cohort Study. Circulation 2016, 133, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Pinney, J.H.; Whelan, C.J.; Petrie, A.; Dungu, J.; Banypersad, S.M.; Sattianayagam, P.; Wechalekar, A.; Gibbs, S.D.; Venner, C.P.; Wassef, N. Senile Systemic Amyloidosis: Clinical Features at Presentation and Outcome. J. Am. Heart Assoc. 2013, 2, e000098. Available online: https://www.ahajournals.org/doi/10.1161/JAHA.113.000098 (accessed on 22 April 2023). [CrossRef] [PubMed]
- Kittleson, M.M.; Maurer, M.S.; Ambardekar, A.V.; Bullock-Palmer, R.P.; Chang, P.P.; Eisen, H.J.; Nair, A.P.; Nativi-Nicolau, J.; Ruberg, F.L.; American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e7–e22. Available online: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000792 (accessed on 23 April 2023). [CrossRef] [PubMed]
- Cohen, O.C.; Ismael, A.; Pawarova, B.; Manwani, R.; Ravichandran, S.; Law, S.; Foard, D.; Petrie, A.; Ward, S.; Douglas, B.; et al. Longitudinal strain is an independent predictor of survival and response to therapy in patients with systemic AL amyloidosis. Eur. Heart J. 2022, 43, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Gaborit, F.; Bosselmann, H.S.; Tønder, N.; Iversen, K.; Kümler, T.; Kistorp, C.; Sölétormos, G.; Goetze, J.P.; Schou, M. Association between left ventricular global longitudinal strain and natriuretic peptides in outpatients with chronic systolic heart failure. BMC Cardiovasc. Disord. 2015, 15, 92. [Google Scholar] [CrossRef]
- Grogan, M.; Scott, C.G.; Kyle, R.A.; Zeldenrust, S.R.; Gertz, M.A.; Lin, G.; Klarich, K.W.; Miller, W.L.; Maleszewski, J.J.; Dispenzieri, A. Natural History of Wild-Type Transthyretin Cardiac Amyloidosis and Risk Stratification Using a Novel Staging System. J. Am. Coll. Cardiol. 2016, 68, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Damy, T.; Fontana, M.; Hutchinson, M.; Lachmann, H.J.; Martinez-Naharro, A.; Quarta, C.C.; Rezk, T.; Whelan, C.J.; Gonzalez-Lopez, E. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 2018, 39, 2799–2806. [Google Scholar] [CrossRef]
- Aung, S.M.; Güler, A.; Güler, Y.; Huraibat, A.; Karabay, C.Y.; Akdemir, I. Left atrial strain in heart failure with preserved ejection fraction. Herz 2017, 42, 194–199. [Google Scholar] [CrossRef]
- Boe, E.; Smiseth, O.A. Left atrial strain imaging: Ready for clinical implementation in heart failure with preserved ejection fraction. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1169–1170. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, R.M.; Demirkol, S.; Buakhamsri, A.; Greenberg, N.; Popović, Z.B.; Thomas, J.D.; Klein, A.L. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2010, 23, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Colio, L.M.; Méndez-Barbero, N.; Pello Lázaro, A.M.; Aceña, Á.; Tarín, N.; Cristóbal, C.; Martínez-Milla, J.; González-Lorenzo, Ó.; Martín-Ventura, J.L.; Huelmos, A. MCP-1 Predicts Recurrent Cardiovascular Events in Patients with Persistent Inflammation. J. Clin. Med. 2021, 10, 1137. [Google Scholar] [CrossRef] [PubMed]
- IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet Lond. Engl. 2012, 379, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Plenz, G.; Song, Z.F.; Tjan, T.D.; Koenig, C.; Baba, H.A.; Erren, M.; Flesch, M.; Wichter, T.; Scheld, H.H.; Deng, M.C. Activation of the cardiac interleukin-6 system in advanced heart failure. Eur. J. Heart Fail. 2001, 3, 415–421. [Google Scholar]
- Yan, A.T.; Yan, R.T.; Cushman, M.; Redheuil, A.; Tracy, R.P.; Arnett, D.K.; Rosen, B.D.; McClelland, R.L.; Bluemke, D.A.; Lima, J.A. Relationship of interleukin-6 with regional and global left-ventricular function in asymptomatic individuals without clinical cardiovascular disease: Insights from the Multi-Ethnic Study of Atherosclerosis. Eur. Heart J. 2010, 31, 875–882. [Google Scholar] [CrossRef]
- Michowitz, Y.; Arbel, Y.; Wexler, D.; Sheps, D.; Rogowski, O.; Shapira, I.; Berliner, S.; Keren, G.; George, J.; Roth, A. Predictive value of high sensitivity CRP in patients with diastolic heart failure. Int. J. Cardiol. 2008, 125, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Shrestha, K.; Van Lente, F.; Troughton, R.W.; Martin, M.G.; Borowski, A.G.; Jasper, S.; Klein, A.L. Usefulness of C-Reactive Protein and Left Ventricular Diastolic Performance for Prognosis in Patients with Left Ventricular Systolic Heart Failure. Am. J. Cardiol. 2008, 101, 370–373. [Google Scholar] [CrossRef]
- Prihadi, E.A.; van der Bijl, P.; Dietz, M.; Abou, R.; Vollema, E.M.; Marsan, N.A.; Delgado, V.; Bax, J.J. Prognostic Implications of Right Ventricular Free Wall Longitudinal Strain in Patients with Significant Functional Tricuspid Regurgitation. Circ. Cardiovasc. Imaging 2019, 12, e008666. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Cobo, F.; Diez-Vega, I.; Sánchez-Hernández, R.; Pedrero-Chamizo, R.; Verde-Rello, Z.; González-Gross, M.; Santiago, C.; Ruiz, M.P. Physical performance, plasma S-klotho, and all-cause mortality in elderly dialysis patients: A prospective cohort study. Exp. Gerontol. 2019, 122, 123–128. [Google Scholar] [CrossRef]
Patient Description | N = 13 |
---|---|
Age, (years) | 79 (76–85.5) |
Women, n (%) | 6 (46.2) |
Diabetes, n (%) | 4 (30.8) |
Smokers, n (%) | 3 (23.1) |
Dyslipidemia, n (%) | 10 (76.9) |
Arterial hypertension, n (%) | 9 (69.2) |
Obesity, n (%) | 3 (23.1) |
Atrial fibrillation, n (%) | 6 (46.2) |
Ischemic heart disease, n (%) | 1 (7.7) |
Previous revascularization, n (%) | 1 (7.7) |
Pacemaker carriers, n (%) | 0 (0) |
Previous hospitalization for HF, n (%) | 4 (30.8) |
Previous stroke, n (%) | 1 (7.7) |
Chronic lung disease, n (%) | 2 (15.4) |
NYHA class, n (%) | |
I | 4 (30.8) |
II | 8 (61.5) |
III | 1 (7.7) |
Sinus rhythm, n (%) | 9 (69.2) |
LBBB, n (%) | 0 (0) |
RBBB, n (%) | 1 (7.7) |
Low voltage, n (%) | 3 (23.1) |
Medical treatment | |
Anticoagulation, n (%) | 5 (38.5) |
Apixaban, n (%) | 2 (40.0) |
Edoxaban, n (%) | 2 (40.0) |
Acenocumarol, n (%) | 1 (20.0) |
Antiplatelets (aspirin), n (%) | 1 (7.7) |
ACEIs, n (%) | 3 (23.1) |
ARBs, n (%) | 4 (30.8) |
ARNI, n (%) | 0 (0) |
Beta-blockers, n (%) | 6 (46.2) |
Mineralocorticoid receptor antagonists, n (%) | 2 (15.4) |
SGLT2i, n (%) | 1 (7.7) |
Loop diuretics, n (%) | 8 (61.5) |
Digoxin, n (%) | 0 (0) |
Antiarrhythmic drugs, n (%) | 1 (7.7) |
Clinical signs | |
Carpal tunnel syndrome, n (%) | 3 (23.1) |
Lumbar spinal stenosis, n (%) | 4 (30.8) |
Bicep tendon rupture, n (%) | 3 (23.1) |
Polyneuropathy, n (%) | 3 (23.1) |
Dementia, n (%) | 1 (7.7) |
Laboratory values | |
Creatinine, (mg/dL) | 1.0 (1.0–1.5) |
Estimated glomerular filtration rate, (mL/Min) | 61 (48.5–83.0) |
Hemoglobin, (g/dL) | 14 (13.0–14.5) |
Leucocytes, (n/mm3) | 6000 (4500–8000) |
NT-ProBNP, (ng/mL) | 1340 (867–1598) |
Proteins (serum), (g/dL) | 7 (6.8–7) |
Proteins (urine), (g/dL) | 4.0 (4.0–23.5) |
Albumin (serum), (g/dL) | 4.0 |
Microalbuminuria | 27 (7.5–89.5) |
Echocardiographic parameters | |
LVEF, (%) | 52.0 (46.1-54.5) |
LVEF < 40%, n (%) | 0 (0) |
LVTDD, (mm) | 39.0 (32.0-43.5) |
IVS thickness, (mm) | 17 (15.0-18.5) |
LV hypertrophy, n (%) | 13 (100) |
E/E′ | 14.1 (12.8–18.0) |
Mitral regurgitation (grade II/III), n (%) | 1 (7.7) |
Aortic stenosis (any degree), n (%) | 1 (7.7) |
RVTDD, (mm) | 43.0 (34.5–46.0) |
PASP, (mmHg) | 43.0 (37.0–53.0) |
Aortic stenosis, n | 1 |
Mean Grad (mmHg) | 19.5 |
Max V (m/s) | 3.1 |
Genetic testing | (n = 13) |
Positive (ATTR v), n (%) | 2 (15.4) |
Negative (ATTR wt), n (%) | 11 (84.6) |
Echocardiographic Parameters | N = 13 |
---|---|
LVEF, (%) | 52.0 (46.1–54.5) |
LV mass, (g) | 225.9 (169.6–343.5) |
E/E′ TAPSE, (mm) | 14.1 (12.8–18.0) 18 (16–24) |
LV GLS, (%) | −10 (−15–−6) |
RV 4CLS, (%) | −10.3 (−11.5–−6.1) |
LA strain, (%) | 9.2 (3.5–11.0) |
Biomarker levels | |
hsTnI, (pg/mL) | 127.6 (83.5–152.1) |
CKMb, (ng/mL) | 1.79 (1.4–2.5) |
NT-ProANP, (pg/mL) | 68.9 (62.8–75.9) |
NT-ProBNP, (ng/mL) | 1340 (867–1598) |
Il 6, (pg/mL) | 2.7 (0–7.1) |
TIM 1, (pg/mL) | 115.0 (0–181.5) |
Galectin 3, (pg/mL) | 7.4 (5.1–8.5) |
hsCRP, (mg/dL) | 1.59 (0.8–2.3) |
MCP1, (pg/mL) | 167.0 (133.5–189.0) |
PTH, (ng/L) | 92.7 (55.5–132.5) |
Klotho, (pg/mL) | 552.0 (465.0–698.3) |
FGF23, (RU/mL) | 214.5 (105.5–304.3) |
Calcidiol, (ng/mL) | 32.8 (18.1–39.8) |
6 min walk test (m) | 280 (230–310) |
ProBNP | IL6 * | Galectin 3 | hsCPR * | MCP1 | hsTnI | Klotho | ||
---|---|---|---|---|---|---|---|---|
6MWT | R | −0.135 | −0.185 | −0.165 | −0.246 | −0.241 | −0.09 | 0.567 |
P | 0.660 | 0.546 | 0.628 | 0.422 | 0.427 | 0.978 | 0.044 | |
LVEF | R | −0.467 | −0.071 | 0.547 | 0.236 | 0.170 | 0.334 | 0.050 |
P | 0.108 | 0.867 | 0.081 | 0.460 | 0.578 | 0.265 | 0.872 | |
TAPSE | R | −0.653 | −0.105 | 0.759 | 0.299 | 0.204 | 0.545 | −0.082 |
P | 0.016 | 0.804 | 0.007 | 0.344 | 0.504 | 0.054 | 0.791 | |
E/E′ ratio | R | 0.352 | 0.286 | 0.340 | 0.576 | 0.029 | 0.130 | 0.085 |
P | 0.239 | 0.493 | 0.307 | 0.050 | 0.924 | 0.673 | 0.783 | |
RV GLS * | R | 0.029 | 0.881. | −0.463 | −0.084 | 0.464 | 0.616 | 0.247 |
P | 0.925 | 0.004 | 0.151 | 0.796 | 0.110 | 0.025 | 0.415 | |
LA GLS | R | −0.727 | 0.376 | 0.530 | 0.275 | 0.553 | −0.522 | −0.320 |
P | 0.005 | 0.359 | 0.094 | 0.386 | 0.050 | 0.067 | 0.286 | |
LV GLS | R | 0.610 | 0.138 | −0.360 | −0.089 | −0.371 | 0.207 | −0.069 |
P | 0.027 | 0.745 | 0.277 | 0.784 | 0.211 | 0.497 | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Roca, L.; Camblor Blasco, A.; Devesa, A.; Gómez-Talavera, S.; Balaguer-Germán, J.; Lumpuy-Castillo, J.; Pello, A.M.; Dhier, L.M.; Lapeña, G.; Jiménez, L.L.; et al. Serum Biomarkers and Their Association with Myocardial Function and Exercise Capacity in Cardiac Transthyretin Amyloidosis. J. Cardiovasc. Dev. Dis. 2024, 11, 142. https://doi.org/10.3390/jcdd11050142
Nieto-Roca L, Camblor Blasco A, Devesa A, Gómez-Talavera S, Balaguer-Germán J, Lumpuy-Castillo J, Pello AM, Dhier LM, Lapeña G, Jiménez LL, et al. Serum Biomarkers and Their Association with Myocardial Function and Exercise Capacity in Cardiac Transthyretin Amyloidosis. Journal of Cardiovascular Development and Disease. 2024; 11(5):142. https://doi.org/10.3390/jcdd11050142
Chicago/Turabian StyleNieto-Roca, Luis, Andrea Camblor Blasco, Ana Devesa, Sandra Gómez-Talavera, Jorge Balaguer-Germán, Jairo Lumpuy-Castillo, Ana María Pello, Luis Martínez Dhier, Gregoria Lapeña, Lucía Llanos Jiménez, and et al. 2024. "Serum Biomarkers and Their Association with Myocardial Function and Exercise Capacity in Cardiac Transthyretin Amyloidosis" Journal of Cardiovascular Development and Disease 11, no. 5: 142. https://doi.org/10.3390/jcdd11050142
APA StyleNieto-Roca, L., Camblor Blasco, A., Devesa, A., Gómez-Talavera, S., Balaguer-Germán, J., Lumpuy-Castillo, J., Pello, A. M., Dhier, L. M., Lapeña, G., Jiménez, L. L., Lorenzo, Ó., Tuñón, J., Ibáñez, B., & Aceña, Á. (2024). Serum Biomarkers and Their Association with Myocardial Function and Exercise Capacity in Cardiac Transthyretin Amyloidosis. Journal of Cardiovascular Development and Disease, 11(5), 142. https://doi.org/10.3390/jcdd11050142