Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
- Initial claudication distance (ICD);
- Distance that requires walking to stop (ACD, absolute claudication distance);
- Recovery time (RT): rest time needed to resume walking.
- The initial claudication distance (ICD);
- The distance reached before stop walking (ACD, absolute claudication distance);
- Recovery time (time needed to resume exercise).
- Blood sugar, HbA1c, blood count, QPE, ESR, total cholesterol, HDL, and LDL;
- Renal function and coagulation structure;
- The ABI (ankle/brachial index) pressure index;
- Quality of life by the administration of the SF-36 “Short-Form 36 items health Survey” questionnaire;
- Evaluation of the duration of the therapeutic effects, if any, of “increased walking ability”, three months after the suspension of therapy with Taurisolo® (t4).
- -
- Acetylsalicylic acid (ASA), 100 mg, per day (after lunch);
- -
- Cilostazol, 50 mg orally daily (after breakfast).
- Diabetes, on insulin therapy and/or oral antidiabetics;
- Presence of intermittent claudication of a lower limb of vascular origin with a walking perimeter greater than 200 m (Rutheford grade I, category II for intermittent claudication), with absence of indication for revascularization;
- Positive Doppler ultrasound examination for steno-obstructive lesion(s) of the limb affected by the claudication;
- Age range from 40 to 80 years old;
- Possession of a device compatible with the Pedometer app;
- Consent to install the Pedometer app on a personal device;
- Ability and willingness to comply with all protocol requirements, including the use of the Pedometer app;
- Participating in therapy with ASA and Cilostazol;
- ABI of the affected limb < 0.7;
- Ability to move independently.
- Joint pathologies that impaired or prevented walking;
- Age over 80 years;
- Under nutraceutical treatment based on pomace polyphenols in the three months prior to recruitment (as they could create a synergism with the study treatment);
- Women who were pregnant, suspect pregnancy, or planning pregnancy;
- Women breastfeeding;
- Disabling heart disease and heart failure;
- Symptomatic chronic obstructive pulmonary disease;
- Muscle diseases;
- Demyelinating diseases;
- Current chronic infectious diseases;
- Previous vascular surgeries;
- Allergies, hypersensitivity, or contraindications to one or more components present in the food supplement;
- Current oncological status and under treatment;
- Included in the patient selection criteria was the exclusion of those with spinal stenosis, based on the consistency of concomitant clinical characteristics of claudication and the ABI.
2.1. Determination of Circulating Levels of TMAO
2.2. Statistical Analysis and Sample Size
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirsch, A.T.; Duval, S. The global pandemic of peripheral artery disease. Lancet 2013, 382, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Creager, M.A. The Crisis of Vascular Disease and the Journey to Vascular Health: Presidential Address at the American Heart Association 2015 Scientific Sessions. Circulation 2016, 133, 2593–2598. [Google Scholar] [CrossRef] [PubMed]
- Mohler, E.R.; Bundens, W.; Denenberg, J.; Medenilla, E.; Hiatt, W.R.; Criqui, M.H. Progression of asymptomatic peripheral artery disease over 1 year. Vasc. Med. 2012, 17, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Rymer, J.A.; Mulder, H.; Narcisse, D.I.; Rockhold, F.; Hiatt, W.R.; Fowkes, F.G.; Baumgartner, I.; Berger, J.S.; Katona, B.G.; Mahaffey, K.; et al. Association of Disease Progression with Cardiovascular and Limb Outcomes in Patients with Peripheral Artery Disease: Insights from the EUCLID Trial. Circ. Cardiovasc. Interv. 2020, 13, e009326. [Google Scholar] [CrossRef]
- Fowler, X.P.; Eid, M.A.; Barnes, J.A.; Gladders, B.; Austin, A.M.; Goodney, E.J.; Moore, K.O.; Kearing, S.; Feinberg, M.W.; Bonaca, M.P.; et al. Trends of Concomitant Diabetes and Peripheral Artery Disease and Lower Extremity Amputation in US Medicare Patients, 2007 to 2019. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e009531. [Google Scholar] [CrossRef] [PubMed]
- Thiruvoipati, T.; Kielhorn, C.E.; Armstrong, E.J. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J. Diabetes 2015, 6, 961. [Google Scholar] [CrossRef]
- Comerota, A.J. Effect on platelet function of cilostazol, clopidogrel, and aspirin, each alone or in combination. Atheroscler. Suppl. 2005, 6, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, J.; Melough, M.; Lee, S.G.; Pounis, G.; Chun, O.K. Analysis in Nutrition Research; Academic Press: Cambridge, MA, USA, 2019; pp. 259–298. [Google Scholar] [CrossRef]
- Yamagata, K.; Tagami, M.; Yamori, Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 2015, 31, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. [36] Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzym. 1990, 186, 343–355. [Google Scholar] [CrossRef]
- Amic, D.; Davidovic-Amic, D.; Beslo, D.; Rastija, V.; Lucic, B.; Trinajstic, N. SAR and QSAR of the Antioxidant Activity of Flavonoids. Curr. Med. Chem. 2007, 14, 827–845. [Google Scholar] [CrossRef]
- Nicholson, S.K.; Tucker, G.A.; Brameld, J.M. Physiological concentrations of dietary polyphenols regulate vascular endothelial cell expression of genes important in cardiovascular health. Br. J. Nutr. 2010, 103, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.; Jahn, S.; Taylor, M.; Real, W.M.; Angeli, F.S.; Wong, M.L.; Amabile, N.; Prasad, M.; Rassaf, T.; Ottaviani, J.I.; et al. Improvement of Endothelial Function With Dietary Flavanols Is Associated With Mobilization of Circulating Angiogenic Cells in Patients With Coronary Artery Disease. J. Am. Coll. Cardiol. 2010, 56, 218–224. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017, 221, 689–697. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.C.; Novellino, E. Effects of Grape Pomace Polyphenolic Extract (Taurisolo®) in Reducing TMAO Serum Levels in Humans: Preliminary Results from a Randomized, Placebo-Controlled, Cross-Over Study. Nutrients 2019, 11, 139. [Google Scholar] [CrossRef]
- Razavi, A.C.; Potts, K.S.; Kelly, T.N.; Bazzano, L.A. Sex, gut microbiome, and cardiovascular disease risk. Biol. Sex. Differ. 2019, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Fennema, D.; Philips, I.R.; Shephard, E.A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos. 2016, 44, 1839–1850. [Google Scholar] [CrossRef]
- Rath, S.; Heidrich, B.; Pieper, D.H.; Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017, 5, 54. [Google Scholar] [CrossRef]
- Zhu, Y.; Jameson, E.; Crosatti, M.; Schäfer, H.; Rajakumar, K.; Bugg, T.D.H.; Chen, Y. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA 2014, 111, 4268–4273. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.; Janmohamed, A.; Chandan, P.; Phillips, I.R.; Shephard, E.A. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse. Pharmacogenetics 2004, 14, 117–130. [Google Scholar] [CrossRef]
- Bennett, B.J.; de Aguiar Vallim, T.Q.; Wang, Z.; Shih, D.M.; Meng, Y.; Gregory, J.; Allayee, H.; Lee, R.; Graham, M.; Crooke, R.; et al. Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation. Cell Metab. 2013, 17, 49–60. [Google Scholar] [CrossRef]
- Hartiala, J.; Bennett, B.J.; Tang, W.W.; Wang, Z.; Stewart, A.F.; Roberts, R.; McPherson, R.; Lusis, A.J.; Hazen, S.L.; Allayee, H.; et al. Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine N-Oxide, a Proatherogenic Metabolite of Choline and l-Carnitine. Arter. Thromb. Vasc. Biol. 2018, 34, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Yan, A.; Lin, P.; Wang, Y.; Guo, L. Trimethylamine N-oxide—A marker for atherosclerotic vascular disease. Rev. Cardiovasc. Med. 2021, 22, 787. [Google Scholar] [CrossRef]
- Ozaki, E.; Campbell, M.; Doyle, S.L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. J. Inflamm. Res. 2015, 8, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Li, D.; Zhao, M.; Liu, C.; Liu, J.; Zeng, A.; Shi, X.; Cheng, S.; Pan, B.; Zheng, L.; et al. Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic. Biol. Med. 2018, 116, 88–100. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Servillo, L.; Balestrieri, M.L. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid. Redox Signal. 2018, 28, 711–732. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Y.; Metzler, B.; Xu, Q. Signal transduction in arteriosclerosis: Mechanical stress-activated MAP kinases in vascular smooth muscle cells (review). Int. J. Mol. Med. 1998, 1, 827–834. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Randrianarisoa, E.; Lehn-Stefan, A.; Wang, X.; Hoene, M.; Peter, A.; Heinzmann, S.S.; Zhao, X.; Königsrainer, I.; Königsrainer, A.; Balletshofer, B.; et al. Relationship of Serum Trimethylamine N-Oxide (TMAO) Levels with early Atherosclerosis in Humans. Sci. Rep. 2016, 6, 26745. [Google Scholar] [CrossRef]
- Bordoni, L.; Samulak, J.J.; Sawicka, A.K.; Pelikant-Malecka, I.; Radulska, A.; Lewicki, L.; Kalinowski, L.; Gabbianelli, R.; Olek, R.A. Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: A cross-sectional study. Sci. Rep. 2020, 10, 18675. [Google Scholar] [CrossRef] [PubMed]
- Senthong, V.; Wang, Z.; Fan, Y.; Wu, Y.; Hazen, S.L.; Tang, W.H.W. Trimethylamine N-Oxide and Mortality Risk in Patients with Peripheral Artery Disease. J. Am. Heart Assoc. 2016, 5, e004237. [Google Scholar] [CrossRef]
- Chen, L.; Jin, Y.; Wang, N.; Yuan, M.; Lin, T.; Lu, W.; Wang, T. Trimethylamine N-oxide impairs perfusion recovery after hindlimb ischemia. Biochem. Biophys. Res. Commun. 2020, 530, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Yu, A.; Wang, Z.; Zhang, N.; Wang, Q.; Gao, H.; Gao, J.; Wang, X.; Wang, H. Atherosclerotic patients with diabetes mellitus may break through the threshold of healthy TMAO levels formed by long-term statins therapy. Heliyon 2023, 9, e13657. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Ciampaglia, R.; Maisto, M.; D’Avino, M.; Caruso, D.; Tenore, G.C.; Novellino, E. Taurisolo®, a Grape Pomace Polyphenol Nutraceutical Reducing the Levels of Serum Biomarkers Associated With Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 697272. [Google Scholar] [CrossRef] [PubMed]
- Suganya, N.; Bhakkiyalakshmi, E.; Sarada, D.V.L.; Ramkumar, K.M. Reversibility of endothelial dysfunction in diabetes: Role of polyphenols. Br. J. Nutr. 2016, 116, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.A.M.; Budin, S.B.; Zainalabidin, S.; Jalil, J.; Sapian, S.; Jubaidi, F.F.; Anuar, N.N.M. The Role of Polyphenol in Modulating Associated Genes in Diabetes-Induced Vascular Disorders. Int. J. Mol. Sci. 2022, 23, 6396. [Google Scholar] [CrossRef] [PubMed]
- Aday, A.W.; Matsushita, K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ. Res. 2021, 128, 1818–1832. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhou, S.; Xia, L.; Bao, X. Incidence, Morbidity and years Lived With Disability due to Type 2 Diabetes Mellitus in 204 Countries and Territories: Trends From 1990 to 2019. Front. Endocrinol. 2022, 13, 905538. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhu, Y.; Hu, G.; Zhang, Q.; Zheng, L. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis? Pharmacol. Res. 2023, 187, 106586. [Google Scholar] [CrossRef] [PubMed]
- James, K.L.; Gertz, E.R.; Cervantes, E.; Bonnel, E.L.; Stephensen, C.B.; Kable, M.E.; Bennett, B.J. Diet, Fecal Microbiome, and Trimethylamine N-Oxide in a Cohort of Metabolically Healthy United States Adults. Nutrients 2022, 14, 1376. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Hamburg, N.M.; Creager, M.A. Contemporary Medical Management of Peripheral Artery Disease. Circ. Res. 2021, 128, 1868–1884. [Google Scholar] [CrossRef]
- Ferrell, M.; Bazeley, P.; Wang, Z.; Levison, B.S.; Li, X.S.; Jia, X.; Krauss, R.M.; Knight, R.; Lusis, A.J.; Garcia-Garcia, J.C.; et al. Fecal Microbiome Composition Does Not Predict Diet-Induced TMAO Production in Healthy Adults. J. Am. Heart Assoc. 2021, 10, e021934. [Google Scholar] [CrossRef]
- Saaoud, F.; Liu, L.; Xu, K.; Cueto, R.; Shao, Y.; Lu, Y.; Sun, Y.; Snyder, N.W.; Wu, S.; Yang, L.; et al. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress-mitochondrial ROS/glycolysis pathways. J. Clin. Investig. 2022, 8, e158183. [Google Scholar] [CrossRef]
- Yancey, P.H. Trimethylamine N-Oxide (TMAO): A Unique Counteracting Osmolyte? Paracelsus Proc. Exp. Med. 2023, 2 (Suppl. S1), 67–91. [Google Scholar] [CrossRef]
- Ge, P.; Duan, H.; Tao, C.; Niu, S.; Hu, Y.; Duan, R.; Shen, A.; Sun, Y.; Sun, W. TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. J. Inflamm. Res. 2023, 16, 3699–3714. [Google Scholar] [CrossRef]
- Banno, Y.B.; Nomura, M.B.; Hara, R.B.; Asami, M.; Tanaka, K.; Mukai, Y.; Tomata, Y. Trimethylamine N-oxide and risk of inflammatory bowel disease: A Mendelian randomization study. Medicine 2023, 102, e34758. [Google Scholar] [CrossRef]
- Janeiro, M.H.; Solas, M.; Orbe, J.; Rodríguez, J.A.; de Muniain, L.S.; Escalada, P.; Yip, P.K.; Ramirez, M.J. Trimethylamine N-Oxide as a Mediator Linking Peripheral to Central Inflammation: An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 17557. [Google Scholar] [CrossRef]
- Shi, G.; Zeng, L.; Shi, J.; Chen, Y. Trimethylamine N-oxide Promotes Atherosclerosis by Regulating Low-Density Lipoprotein-Induced Autophagy in Vascular Smooth Muscle Cells Through PI3K/AKT/mTOR Pathway. Int. Heart J. 2023, 64, 462–469. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Tu, J.; Sun, J.; Dong, B.; Wang, Z.; Zhou, J.; Chen, L.; Tao, J.; Chen, J. TMAO-Activated Hepatocyte-Derived Exosomes Impair Angiogenesis via Repressing CXCR4. Front. Cell Dev. Biol. 2022, 9, 804049. [Google Scholar] [CrossRef]
- Hakhamaneshi, M.S.; Abdolahi, A.; Vahabzadeh, Z.; Abdi, M.; Andalibi, P. Toll-Like Receptor 4: A Macrophage Cell Surface Receptor Is Activated by Trimethylamine-N-Oxide. Cell J. Yakhteh 2021, 23, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.-X.; Tai, T.; Jiang, L.-P.; Ji, J.-Z.; Mi, Q.-Y.; Zhu, T.; Li, Y.-F.; Xie, H.-G. Choline and trimethylamine N-oxide impair metabolic activation of and platelet response to clopidogrel through activation of the NOX/ROS/Nrf2/CES1 pathway. J. Thromb. Haemost. 2023, 21, 117–132. [Google Scholar] [CrossRef]
- Chen, M.-L.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.-D.; Zhang, Q.-Y.; Mi, M.-T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. Mbio 2016, 7, e02210-15. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, D.; Wu, J.; Liu, J.; Zhou, Y.; Tan, Y.; Feng, W.; Peng, C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. Phytomedicine 2023, 119, 154979. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Q.; Wang, N.; Zhang, L.; Yang, X.; Zhao, Y. Quercetin inhibits hepatotoxic effects by reducing trimethylamine- N -oxide formation in C57BL/6J mice fed with a high l-carnitine diet. Food Funct. 2022, 14, 206–214. [Google Scholar] [CrossRef]
- Szuba, A.; Oka, R.K.; Harada, R.; Cooke, J.P. Limb hemodynamics are not predictive of functional capacity in patients with PAD. Vasc. Med. 2006, 11, 155–163. [Google Scholar] [CrossRef]
- Tedesco, I.; Russo, M.; Russo, P.; Iacomino, G.; Russo, G.L.; Carraturo, A.; Faruolo, C.; Moio, L.; Palumbo, R. Antioxidant effect of red wine polyphenols on red blood cells. J. Nutr. Biochem. 2000, 11, 114–119. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxidative Med. Cell Longev. 2017, 2017, 8526438. [Google Scholar] [CrossRef]
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, Inflammation, and Cardiovascular Disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef]
Screening (Vs) | V1 (t0) | V2 1-Month Treatment (t1) | V3 3-Month Treatment (t2) | V4 6-Month Treatment (t3) | V5 3-Month Follow-Up (t4) | |
---|---|---|---|---|---|---|
Informed Consent | X | |||||
Demographics | X | |||||
Eligibility (inclusion/exclusion criteria):
| X | |||||
Blood sample to evaluate the following:
| X | =Vs | X | X | X | X |
Short Form-36 health survey | X | X | X | X | X | |
ABI (Ankle/brachial index) | X | =Vs | X | X | X | X |
6MWT (Six-minute walking test) | X | =Vs | X | X | X | X |
Dispensing food supplement (grape pomace polyphenols) or placebo | X | X | ||||
Appearance of disorders and/or adverse events | X | X | X | X | ||
Compliance with treatment | X | X | X | X | ||
Monitoring interactions with drugs in use | X | X | X | X | ||
Monitoring major vascular complications | X | X | X | X |
Characteristics | Taurisolo (n = 26) | Placebo (n = 25) | p-Value |
---|---|---|---|
Male gender n = 21 (41%) | n = 11 | n = 10 | |
Female gender n = 30 (59%) | n = 15 | n = 15 | |
Age (year) | 59.6 ± 6.5 | 60.6 ± 7.4 | 0.6101 |
Weight (Kg) | 75.6 ± 9.8 | 78.3 ± 11.8 | 0.3776 |
Height (m) | 1.65 ± 0.08 | 1.67 ± 0.08 | 0.3765 |
BMI (kg/m2) | 27.7 ± 2.5 | 27.9 ± 2.9 | 0.7928 |
WC (cm) | 100 ± 13 | 103 ± 20 | 0.5267 |
HC (cm) | 106 ± 7 | 108 ± 13 | 0.4948 |
WHR (cm) | 0.94 ± 0.09 | 0.95 ± 0.10 | 0.7088 |
1. Taurisolo Group | 2. Placebo Group | |||||
---|---|---|---|---|---|---|
Blood Tests | SV | t3 | p Value | SV | t3 | p Value |
RBC mil/mm3 | 4.394 ± 0.25 | 4.381 ± 0.27 | 0.8578 | 4.339 ± 0.23 | 4.352 ± 0.24 | 0.8458 |
WBC thou/mm3 | 7.641 ± 1.8 | 7.595 ± 1.7 | 0.9249 | 7.797 ± 1.6 | 7.685 ± 1.5 | 0.7996 |
Platelets thou/mm3 | 257 ± 83 | 249 ± 69 | 0.7071 | 241 ± 93 | 245 ± 87 | 0.8759 |
HGB gr/dL | 13.4 ± 0.6 | 13.1 ± 0.5 | 0.0558 | 13.3 ± 0.5 | 13.4 ± 0.6 | 0.5251 |
Glycemia mg/dL | 97.5 ± 13.8 | 96.9 ± 13.5 | 0.8747 | 95.4 ± 10.7 | 96.8 ± 11.8 | 0.6623 |
HbA1c % | 9.1 ± 1.6% | 9.3 ± 1.7% | 0.6641 | 8.3 ± 1.5% | 8.6 ± 1.6% | 0.4973 |
Total cholesterol mg/dL | 198 ± 13 | 192 ± 14 | 0.1156 | 197 ± 16 | 196 ± 15 | 0.8206 |
Cholesterol HDL mg/dL | 44 ± 8 | 48 ± 7 | 0.0607 | 46 ± 6 | 47 ± 5 | 0.5251 |
Cholesterol LDL mg/dL | 131 ± 14 | 126 ± 13 | 0.1881 | 129 ± 17 | 128 ± 14 | 0.8214 |
Triglycerides mg/dL | 117 ± 16 | 113 ± 11 | 0.2986 | 110 ± 17 | 109 ± 15 | 0.8264 |
Azotemia mg/dL | 41 ± 8 | 42 ± 7 | 0.6335 | 44 ± 8 | 43 ± 6 | 0.6194 |
Creatinine mg/dL | 0.87 ± 0.23 | 0.88 ± 0.27 | 0.8863 | 0.88 ± 0.19 | 0.89 ± 0.23 | 0.8676 |
Na mmol/L | 140 ± 2 | 139 ± 3 | 0.1635 | 139 ± 2 | 140 ± 3 | 0.1719 |
K mmol/L | 4.4 ± 0.6 | 4.3 ± 0.5 | 0.5168 | 4.3 ± 0.5 | 4.1 ± 0.4 | 0.1249 |
ESR mm/h | 8.5 ± 2.9 | 8.8 ± 2.6 | 0.6962 | 8.3 ± 3.4 | 8.6 ± 2.8 | 0.7349 |
Albumin g/dL | 4.2 ± 0.2 | 4.1 ± 0.3 | 0.1635 | 4.1 ± 0.2 | 4.0 ± 0.3 | 0.1719 |
PT % | 88.9 ± 9.6% | 90.3 ± 10.1% | 0.6107 | 88.1 ± 11.9% | 88.9 ± 11.3% | 0.8085 |
PTT sec. | 62.7 ± 4.4 | 62.9 ± 4.1 | 0.8660 | 63.9 ± 5.1 | 62.9 ± 4.4 | 0.4615 |
t0 | t1 | t2 | t3 | t4 | Δ% (t0–t3) | p-Value (t0–t3) | |
---|---|---|---|---|---|---|---|
ICD (m) | |||||||
1. Taurisolo group | 198 ± 23 | 211 ± 24 | 218 ± 24 | 226 ± 23 | 224 ± 23 | ~14.1% | 0.0001 |
2. Placebo group | 201 ± 26 | 203 ± 26 | 204 ± 26 | 205 ± 25 | 203 ± 26 | ~2.0% | 0.5818 |
ACD (m) | |||||||
1. Taurisolo group | 310 ± 30 | 325 ± 30 | 341 ± 31 | 359 ± 32 | 357 ± 32 | ~15.8% | 0.0001 |
2. Placebo group | 315 ± 24 | 316 ± 28 | 318 ± 28 | 319 ± 27 | 317 ± 28 | ~0.6% | 0.5824 |
Taurisolo µmol/L | Placebo µmol/L | |
---|---|---|
TMAO a vs. = t0 | 3.97 ± 2. 13 | 3.86 ± 1.82 |
TMAO at t1 | 2.44 ± 1.14 | 3.8 ± 1.71 |
TMAO ta t2 | 1.44 ± 0.64 | 3.76 ± 1.55 |
TMAO at t3 | 0.87 ± 0.48 | 3.85 ± 1.66 |
TMAO at t4 | 1.1 ± 0.54 | 3.78 ± 1.48 |
Δ % (t0–t3) | −78% | −0.26% |
p (t0–t3) | 0.0001 | 0.9848 |
Δ % (t0–t4) | −72% | −2.01% |
p (t0–t4) | 0.0001 | 0.8653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, B.; Novellino, E.; Morlando, D.; Vanoli, C.; Vanoli, E.; Ferrara, F.; Difruscolo, R.; Goffredo, V.M.; Compagna, R.; Tenore, G.C.; et al. Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 174. https://doi.org/10.3390/jcdd11060174
Amato B, Novellino E, Morlando D, Vanoli C, Vanoli E, Ferrara F, Difruscolo R, Goffredo VM, Compagna R, Tenore GC, et al. Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease. Journal of Cardiovascular Development and Disease. 2024; 11(6):174. https://doi.org/10.3390/jcdd11060174
Chicago/Turabian StyleAmato, Bruno, Ettore Novellino, Davide Morlando, Camilla Vanoli, Emilio Vanoli, Fulvio Ferrara, Rossana Difruscolo, Vito Maria Goffredo, Rita Compagna, Gian Carlo Tenore, and et al. 2024. "Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease" Journal of Cardiovascular Development and Disease 11, no. 6: 174. https://doi.org/10.3390/jcdd11060174
APA StyleAmato, B., Novellino, E., Morlando, D., Vanoli, C., Vanoli, E., Ferrara, F., Difruscolo, R., Goffredo, V. M., Compagna, R., Tenore, G. C., Stornaiuolo, M., Fordellone, M., & Caradonna, E. (2024). Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease. Journal of Cardiovascular Development and Disease, 11(6), 174. https://doi.org/10.3390/jcdd11060174