A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology
Abstract
:1. Introduction
2. Pulsed Electric Field Ablation: Simulation Parameter Research
3. Pulsed-Field Ablation: Biological Experimental Study
3.1. Animal Experimental Research
3.2. Clinical Trial Research
4. Discussion and Analysis
4.1. Discussion
4.2. Development Direction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, Z.; Hu, D. An Epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J. Epidemiol. 2008, 18, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Atrial fibrillation in mainland China: Epidemiology and current management. Heart 2009, 95, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, H.; Cigarroa, J.E.; Cleveland, J.C.; Conti, J.B.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014, 64, e1–e76. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, M.; Olowoyo, P.; Miranda, J.J.; Akinyemi, R.; Feng, W.; Yaria, J.; Makanjuola, T.; Yaya, S.; Kaczorowski, J.; Thabane, L.; et al. Gaps in hypertension guidelines in low-and middle-income versus high-income countries: A systematic review. Hypertension 2016, 68, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Gleason, K.T.; Dennison Himmelfarb, C.R.; Ford, D.E.; Lehmann, H.; Samuel, L.; Han, H.R.; Jain, S.K.; Naccarelli, G.V.; Aggarwal, V.; Nazarian, S.; et al. Association of sex, age and education level with patient reported outcomes in atrial fibrillation. BMC Cardiovasc. Disord. 2019, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Johnston, S.S.; Chu, B.C.; Dalal, M.R.; Schulman, K.L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Heart disease and stroke statistics—2014 update: A report from the American Heart Association. Circulation 2014, 129, e28–e292. [Google Scholar] [CrossRef] [PubMed]
- Dzeshka, M.S.; Lip, G.Y.; Snezhitskiy, V.; Shantsila, E. Cardiac fibrosis in patients with atrial fibrillation: Mechanisms and clinical implications. J. Am. Coll. Cardiol. 2015, 66, 943–959. [Google Scholar] [CrossRef]
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef]
- Camm, A.J.; Naccarelli, G.V.; Mittal, S.; Crijns, H.J.; Hohnloser, S.H.; Ma, C.S.; Natale, A.; Turakhia, M.P.; Kirchhof, P. The increasing role of rhythm control in patients with atrial fibrillation: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 79, 1932–1948. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Ep Eur. 2018, 20, e1–e160. [Google Scholar]
- Schmidt, B.; Brugada, J.; Arbelo, E.; Laroche, C.; Bayramova, S.; Bertini, M.; Letsas, K.P.; Pison, L.; Romanov, A.; Scherr, D.; et al. Ablation strategies for different types of atrial fibrillation in Europe: Results of the ESC-EORP EHRA Atrial Fibrillation Ablation Long-Term registry. EP Eur. 2020, 22, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Pelargonio, G.; Di Monaco, A.; Guida, P.; Pellegrino, P.L.; Vergara, P.; Grimaldi, M.; Narducci, M.L.; Tritto, M.; Ablation, A.T.F.A. Atrial fibrillation ablation: Is common practice far from guidelines’ world? The Italian experience from a national survey. J. Interv. Card. Electrophysiol. 2021, 63, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Callans, D.J.; Gerstenfeld, E.P.; Dixit, S.; Zado, E.; Vanderhoff, M.; Ren, J.F.; Marchlinski, F.E. Efficacy of repeat pulmonary vein isolation procedures in patients with recurrent atrial fibrillation. J. Cardiovasc. Electrophysiol. 2004, 15, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Pappone, C.; Oral, H.; Santinelli, V.; Vicedomini, G.; Lang, C.C.; Manguso, F.; Torracca, L.; Benussi, S.; Alfieri, O.; Hong, R.; et al. Atrio-esophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. Circulation 2004, 109, 2724–2726. [Google Scholar] [CrossRef] [PubMed]
- Black-Maier, E.; Pokorney, S.D.; Barnett, A.S.; Zeitler, E.P.; Sun, A.Y.; Jackson, K.P.; Bahnson, T.D.; Daubert, J.P.; Piccini, J.P. Risk of atrioesophageal fistula formation with contact force–sensing catheters. Heart Rhythm. 2017, 14, 1328–1333. [Google Scholar] [CrossRef]
- Calkins, H.; Reynolds, M.R.; Spector, P.; Sondhi, M.; Xu, Y.; Martin, A.; Williams, C.J.; Sledge, I. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: Two systematic literature reviews and meta-analyses. Circ. Arrhythmia Electrophysiol. 2009, 2, 349–361. [Google Scholar] [CrossRef]
- Andrade, J.G.; Dubuc, M.; Guerra, P.G.; Macle, L.; Mondésert, B.; Rivard, L.; Roy, D.; Talajic, M.; Thibault, B.; Khairy, P. The Biophysics and Biomechanics of Cryoballoon Ablation. Pacing Clin. Electrophysiol. 2012, 35, 1162–1168. [Google Scholar] [CrossRef]
- Morillo, C.A.; Verma, A.; Connolly, S.J.; Kuck, K.H.; Nair, G.M.; Champagne, J.; Sterns, L.D.; Beresh, H.; Healey, J.S.; Natale, A.; et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): A randomized trial. JAMA 2014, 311, 692–699. [Google Scholar] [CrossRef]
- Walfridsson, H.; Nielsen, J.C.; Johannessen, A.; Raatikainen, P.; Janzon, M.; Levin, L.A.; Aronsson, M.; Hindricks, G.; Kongstad, O.; Pehrson, S.; et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation: Results on health-related quality of life and symptom burden. The MANTRA-PAF trial. EP Eur. 2015, 17, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Nery, P.B.; Belliveau, D.; Nair, G.M.; Bernick, J.; Redpath, C.J.; Szczotka, A.; Sadek, M.M.; Green, M.S.; Wells, G.; Birnie, D.H. Relationship between pulmonary vein reconnection and atrial fibrillation recurrence: A systematic review and meta-analysis. JACC Clin. Electrophysiol. 2016, 2, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Rems, L.; Miklavčič, D. Tutorial: Electroporation of cells in complex materials and tissue. J. Appl. Phys. 2016, 119, 201101. [Google Scholar] [CrossRef]
- Darby, A.E. Pulsed field ablation: A novel therapeutic tool for catheter-based treatment of atrial fibrillation. Curr. Cardiol. Rep. 2022, 24, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Wittkampf FH, M.; van Es, R.; Neven, K. Electroporation and its relevance for cardiac catheter ablation. JACC Clin. Electrophysiol. 2018, 4, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, A.; Vaidya, V.; Witt, C.; DeSimone, C.V.; Yasin, O.; Maor, E.; Killu, A.M.; Kapa, S.; McLeod, C.J.; Miklavčič, D.; et al. Irreversible electroporation for catheter-based cardiac ablation: A systematic review of the preclinical experience. J. Interv. Card. Electrophysiol. 2019, 55, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Neuzil, P.; Koruth, J.S.; Petru, J.; Funosako, M.; Cochet, H.; Sediva, L.; Chovanec, M.; Dukkipati, S.R.; Jais, P. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J. Am. Coll. Cardiol. 2019, 74, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.; Haines, D.E.; Verma, A.; Packer, D.; Kirchhof, N.; Barka, N.; Onal, B.; Fraasch, S.; Miklavčič, D.; Stewart, M.T. Reduction in pulmonary vein stenosis and collateral damage with pulsed field ablation compared with radiofrequency ablation in a canine model. Circ. Arrhythmia Electrophysiol. 2020, 13, e008337. [Google Scholar] [CrossRef] [PubMed]
- Loh, P.; van Es, R.; Groen, M.H.; Neven, K.; Kassenberg, W.; Wittkampf, F.H.; Doevendans, P.A. Pulmonary vein isolation with single pulse irreversible electroporation: A first in human study in 10 patients with atrial fibrillation. Circ. Arrhythmia Electrophysiol. 2020, 13, e008192. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Kato, R.; Zviman, M.M.; Dickfeld, T.M.; Roguin, A.; Berger, R.D.; Tomaselli, G.F.; Halperin, H.R. Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ. Arrhythmia Electrophysiol. 2011, 4, 279–286. [Google Scholar] [CrossRef]
- Tian, Z.; Nan, Q.; Nie, X.; Dong, T.; Wang, R. The comparison of lesion outline and temperature field determined by different ways in atrial radiofrequency ablation. Biomed. Eng. Online 2016, 15, 439–449. [Google Scholar] [CrossRef]
- Ahmed, H.; Neuzil, P.; D’Avila, A.; Cha, Y.-M.; Laragy, M.; Mares, K.; Brugge, W.R.; Forcione, D.G.; Ruskin, J.N.; Packer, D.L.; et al. The esophageal effects of cryoenergy during cryoablation for atrial fibrillation. Heart Rhythm. 2009, 6, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Aryana, A.; Passman, R.; Singh, G.; Hokanson, R.; Kowalski, M.; Andrade, J.; Wang, P. Cryoballoon Best Practices II: Practical guide to procedural monitoring and dosing during atrial fibrillation ablation from the perspective of experienced users. Heart Rhythm. 2018, 15, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Caluori, G.; Odehnalova, E.; Jadczyk, T.; Pesl, M.; Pavlova, I.; Valikova, L.; Holzinger, S.; Novotna, V.; Rotrekl, V.; Hampl, A.; et al. AC pulsed field ablation is feasible and safe in atrial and ventricular settings: A proof-of-concept chronic animal study. Front. Bioeng. Biotechnol. 2020, 8, 552357. [Google Scholar] [CrossRef]
- Verma, A.; Asivatham, S.J.; Deneke, T.; Castellvi, Q.; Neal, R.E. Primer on pulsed electrical field ablation: Understanding the benefits and limitations. Circ. Arrhythmia Electrophysiol. 2021, 14, e010086. [Google Scholar] [CrossRef]
- Zang, L.; Gu, K.; Ji, X.; Zhang, H.; Yan, S.; Wu, X. Comparative Analysis of Temperature Rise between Convective Heat Transfer Method and Computational Fluid Dynamics Method in an Anatomy-Based Left Atrium Model during Pulsed Field Ablation: A Computational Study. J. Cardiovasc. Dev. Dis. 2023, 10, 56. [Google Scholar] [CrossRef]
- Zupanic, A.; Kos, B.; Miklavcic, D. Treatment planning of electroporation-based medical interventions: Electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys. Med. Biol. 2012, 57, 5425–5440. [Google Scholar] [CrossRef] [PubMed]
- González-Suárez, A.; Irastorza, R.M.; Deane, S.; O’Brien, B.; O’Halloran, M.; Elahi, A. Full torso and limited-domain computer models for epicardial pulsed electric field ablation. Comput. Methods Programs Biomed. 2022, 221, 106886. [Google Scholar] [CrossRef]
- González-Suárez, A.; O’brien, B.; O’halloran, M.; Elahi, A. Pulsed electric field ablation of epicardial autonomic ganglia: Computer analysis of monopolar electric field across the tissues involved. Bioengineering 2022, 9, 731. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, H.; Zang, L.; Yan, S.; Wu, X. The Effect of Discharge Mode on the Distribution of Myocardial Pulsed Electric Field—A Simulation Study for Pulsed Field Ablation of Atrial Fibrillation. J. Cardiovasc. Dev. Dis. 2022, 9, 95. [Google Scholar] [CrossRef]
- González-Suárez, A.; Pérez, J.J.; O’brien, B.; Elahi, A. In Silico Modelling to Assess the Electrical and Thermal Disturbance Provoked by a Metal Intracoronary Stent during Epicardial Pulsed Electric Field Ablation. J. Cardiovasc. Dev. Dis. 2022, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zheng, J.; Fan, L. Nonthermal Irreversible Electroporation to the Esophagus: Evaluation of Acute and Long-Term Pathological Effects in a Rabbit Model. J. Am. Heart Assoc. 2021, 10, e020731. [Google Scholar] [CrossRef]
- Meckes, D.; Emami, M.; Fong, I.; Lau, D.H.; Sanders, P. Pulsed-field ablation: Computational modeling of electric fields for lesion depth analysis. Heart Rhythm. O2 2022, 3, 433–440. [Google Scholar] [CrossRef]
- Zang, L.; Gu, K.; Ji, X.; Zhang, H.; Yan, S.; Wu, X. Effect of Anisotropic Electrical Conductivity Induced by Fiber Orientation on Ablation Characteristics of Pulsed Field Ablation in Atrial Fibrillation Treatment: A Computational Study. J. Cardiovasc. Dev. Dis. 2022, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Lavee, J.; Onik, G.; Mikus, P.; Rubinsky, B. A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. Heart Surg. Forum 2007, 10, E162–E167. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.T.; Haines, D.E.; Verma, A.; Kirchhof, N.; Barka, N.; Grassl, E.; Howard, B. Intracardiac pulsed field ablation: Proof of feasibility in a chronic porcine model. Heart Rhythm. 2019, 16, 754–764. [Google Scholar] [CrossRef]
- Koruth, J.S.; Kuroki, K.; Iwasawa, J.; Viswanathan, R.; Brose, R.; Buck, E.D.; Donskoy, E.; Dukkipati, S.R.; Reddy, V.Y. Endocardial ventricular pulsed field ablation: A proof-of-concept preclinical evaluation. EP Eur. 2020, 22, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, D.; Naksuk, N.; Killu, A.K.; Kapa, S.; Witt, C.; Sugrue, A.; DeSimone, C.V.; Madhavan, M.; de Groot, J.R.; O’Brien, B.; et al. Electroporation of epicardial autonomic ganglia: Safety and efficacy in medium-term canine models. J. Cardiovasc. Electrophysiol. 2019, 30, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, A.; Vaidya, V.R.; Livia, C.; Padmanabhan, D.; Abudan, A.; Isath, A.; Witt, T.; DeSimone, C.V.; Stalboerger, P.; Kapa, S.; et al. Feasibility of selective cardiac ventricular electroporation. PLoS ONE 2020, 15, e0229214. [Google Scholar] [CrossRef]
- Koruth, J.; Kuroki, K.; Iwasawa, J.; Enomoto, Y.; Viswanathan, R.; Brose, R.; Buck, E.D.; Speltz, M.; Dukkipati, S.R.; Reddy, V.Y. Preclinical evaluation of pulsed field ablation: Electrophysiological and histological assessment of thoracic vein isolation. Circ. Arrhythmia Electrophysiol. 2019, 12, e007781. [Google Scholar] [CrossRef]
- Yavin, H.; Brem, E.; Zilberman, I.; Shapira-Daniels, A.; Datta, K.; Govari, A.; Altmann, A.; Anic, A.; Wazni, O.; Anter, E. Circular multielectrode pulsed field ablation catheter lasso pulsed field ablation: Lesion characteristics, durability, and effect on neighboring structures. Circ. Arrhythmia Electrophysiol. 2021, 14, e009229. [Google Scholar] [CrossRef] [PubMed]
- Varghese, F.; Philpott, J.M.; Neuber, J.U.; Hargrave, B.; Zemlin, C.W. Surgical ablation of cardiac tissue with nanosecond pulsed electric fields in swine. Cardiovasc. Eng. Technol. 2023, 14, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Doshi, S.K.; Flaherty, M.C.; Laughner, J.; Quan, M.; Anic, A. Catheter–tissue contact optimizes pulsed electric field ablation with a large area focal catheter. J. Cardiovasc. Electrophysiol. 2024, 35, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Wittkampf, F.H.; van Driel, V.J.; van Wessel, H.; Neven, K.G.; Gründeman, P.F.; Vink, A.; Loh, P.; Doevendans, P.A. Myocardial lesion depth with circular electroporation ablation. Circ. Arrhythmia Electrophysiol. 2012, 5, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Neven, K.; van Driel, V.; van Wessel, H.; van Es, R.; Doevendans, P.A.; Wittkampf, F. Epicardial linear electroporation ablation and lesion size. Heart Rhythm. 2014, 11, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Yavin, H.; Shapira-Daniels, A.; Barkagan, M.; Sroubek, J.; Shim, D.; Melidone, R.; Anter, E. Pulsed field ablation using a lattice electrode for focal energy delivery: Biophysical characterization, lesion durability, and safety evaluation. Circ. Arrhythmia Electrophysiol. 2020, 13, e008580. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, S.; Yin, H.; He, Q.; Xue, Z.; Lu, C.; Su, S. Study on optimal parameter and target for pulsed-field ablation of atrial fibrillation. Front. Cardiovasc. Med. 2021, 8, 690092. [Google Scholar] [CrossRef] [PubMed]
- Al-Khadra, A.; Nikolski, V.; Efimov, I.R. The role of electroporation in defibrillation. Circ. Res. 2000, 87, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.W.; Kostecki, G.; Fish, J.M.; Jensen, J.A.; Tandri, H. In vitro cell selectivity of reversible and irreversible: Electroporation in cardiac tissue. Circ. Arrhythmia Electrophysiol. 2021, 14, e008817. [Google Scholar] [CrossRef] [PubMed]
- Avazzadeh, S.; O’brien, B.; Coffey, K.; O’halloran, M.; Keane, D.; Quinlan, L.R. Establishing irreversible electroporation electric field potential threshold in a suspension in vitro model for cardiac and neuronal cells. J. Clin. Med. 2021, 10, 5443. [Google Scholar] [CrossRef]
- Madhavan, M.; Venkatachalam, K.; Swale, M.J.; Desimone, C.V.; Gard, J.J.; Johnson, S.B.; Suddendorf, S.H.; Mikell, S.B.; Ladewig, D.J.; Nosbush, T.G.; et al. Novel percutaneous epicardial autonomic modulation in the canine for atrial fibrillation: Results of an efficacy and safety study. Pacing Clin. Electrophysiol. 2016, 39, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Koruth, J.; Jais, P.; Petru, J.; Timko, F.; Skalsky, I.; Hebeler, R.; Labrousse, L.; Barandon, L.; Kralovec, S.; et al. Ablation of atrial fibrillation with pulsed electric fields: An ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin. Electrophysiol. 2018, 4, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Anic, A.; Koruth, J.; Petru, J.; Funasako, M.; Minami, K.; Breskovic, T.; Sikiric, I.; Dukkipati, S.R.; Kawamura, I.; et al. Pulsed Field Ablation in Patients with Persistent Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 76, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Anter, E.; Rackauskas, G.; Peichl, P.; Koruth, J.S.; Petru, J.; Funasako, M.; Minami, K.; Natale, A.; Jais, P.; et al. Lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation a first-in-human trial. Circ. Arrhythmia Electrophysiol. 2020, 13, e008718. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Sridi-Cheniti, S.; Cheniti, G.; Ramirez, F.D.; Goujeau, C.; Andre, C.; Nakashima, T.; Eggert, C.; Schneider, C.; Viswanathan, R.; et al. Pulsed field ablation prevents chronic atrial fibrotic changes and restrictive mechanics after catheter ablation for atrial fibrillation. EP Eur. 2021, 23, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Boersma, L.; Haines, D.E.; Natale, A.; Marchlinski, F.E.; Sanders, P.; Calkins, H.; Packer, D.L.; Hummel, J.; Onal, B.; et al. First-in-human experience and acute procedural outcomes using a novel pulsed field ablation system: The PULSED AF pilot trial. Circ. Arrhythmia Electrophysiol. 2022, 15, e010168. [Google Scholar] [CrossRef] [PubMed]
- Gunawardene, M.A.; Schaeffer, B.N.; Jularic, M.; Eickholt, C.; Maurer, T.; Akbulak, R.; Flindt, M.; Anwar, O.; Pape, U.F.; Maasberg, S.; et al. Pulsed-field ablation combined with ultrahigh-density mapping in patients undergoing catheter ablation for atrial fibrillation: Practical and electrophysiological considerations. J. Cardiovasc. Electrophysiol. 2022, 33, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Cochet, H.; Nakatani, Y.; Sridi-Cheniti, S.; Cheniti, G.; Ramirez, F.D.; Nakashima, T.; Eggert, C.; Schneider, C.; Viswanathan, R.; Derval, N.; et al. Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation. EP Eur. 2021, 23, 1391–1399. [Google Scholar] [CrossRef]
- Gunawardene, M.A.; Schaeffer, B.N.; Jularic, M.; Eickholt, C.; Maurer, T.; Akbulak, R.; Flindt, M.; Anwar, O.; Hartmann, J.; Willems, S. Coronary Spasm During Pulsed Field Ablation of the Mitral Isthmus Line. Clin. Electrophysiol. 2021, 7, 1618–1620. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Petru, J.; Funasako, M.; Kopriva, K.; Hala, P.; Chovanec, M.; Janotka, M.; Kralovec, S.; Neuzil, P. Coronary arterial spasm during pulsed field ablation to treat atrial fibrillation. Circulation 2022, 146, 1808–1819. [Google Scholar] [CrossRef]
- Mohanty, S.; Compagnucci, P.; Della Rocca, D.G.; La Fazia, V.M.; Gianni, C.; Macdonald, B.; Mayedo, A.; Allison, J.; Bassiouny, M.; Gallinghouse, G.; et al. Acute Kidney Injury Resulting from Hemoglobinuria after Pulsed-Field Ablation in Atrial Fibrillation: Is it Preventable? JACC Clin. Electrophysiol. 2024, 83, 59. [Google Scholar] [CrossRef]
- Venier, S.; Vaxelaire, N.; Jacon, P.; Carabelli, A.; Desbiolles, A.; Garban, F.; Defaye, P. Severe acute kidney injury related to haemolysis after pulsed field ablation for atrial fibrillation. Europace 2024, 26, euad371. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.B.; Fan, R.E.; Xing, L. Asymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapies. Sci. Rep. 2017, 7, 40747. [Google Scholar] [CrossRef] [PubMed]
- Hogenes, A.M.; Slump, C.H.; Scholten, G.A.T.R.O.G.; Meijerink, M.R.; Futterer, J.J.; van Laarhoven, C.J.H.M.; Overduin, C.G.; Stommel, M.W.J. Effect of irreversible electroporation parameters and the presence of a metal stent on the electric field line pattern. Sci. Rep. 2020, 10, 13517. [Google Scholar] [CrossRef] [PubMed]
- Neven, K.; van Es, R.; van Driel, V.; van Wessel, H.; Fidder, H.; Vink, A.; Doevendans, P.; Wittkampf, F. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ. Arrhythmia Electrophysiol. 2017, 10, e004672. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Gerstenfeld, E.P.; Natale, A.; Whang, W.; Cuoco, F.A.; Patel, C.; Mountantonakis, S.E.; Gibson, D.N.; Harding, J.D.; Ellis, C.R.; et al. Pulsed field or conventional thermal ablation for paroxysmal atrial fibrillation. N. Engl. J. Med. 2023, 389, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Haines, D.E.; Boersma, L.V.; Sood, N.; Natale, A.; Marchlinski, F.E.; Calkins, H.; Sanders, P.; Packer, D.L.; Kuck, K.H.; et al. Pulsed field ablation for the treatment of atrial fibrillation: PULSED AF pivotal trial. Circulation 2023, 147, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.K.; Neuzil, P.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Safety and Effectiveness of Pulsed Field Ablation to Treat Atrial Fibrillation: One-Year Outcomes from the MANIFEST-PF Registry. Circulation 2023, 148, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, P.-Y.; Hao, Y.-L.; Liang, M.; Yu, Z.-Y.; Li, X.-C.; Li, Y.-P. A real-world case–control study on the efficacy and safety of pulsed field ablation for atrial fibrillation. Eur. J. Med. Res. 2023, 28, 519. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.K.; Neuzil, P.; Petru, J.; Funasako, M.; Koruth, J.S.; Reinders, D.; Skoda, J.; Kralovec, S.; Reddy, V.Y. PV isolation using a spherical array PFA catheter: Application repetition and lesion durability (PULSE-EU study). Clin. Electrophysiol. 2023, 9, 638–648. [Google Scholar] [CrossRef]
- Hachisuka, M.; Fujimoto, Y.; Oka, E.; Hayashi, H.; Yamamoto, T.; Murata, H.; Yodogawa, K.; Iwasaki, Y.K.; Hayashi, M.; Miyauchi, Y.; et al. Perioperative coronary artery spasms in patients undergoing catheter ablation of atrial fibrillation. J. Interv. Card. Electrophysiol. 2022, 64, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Yajima, K.; Yamase, Y.; Oishi, H.; Ikehara, N.; Asai, Y. Coronary artery spasm during cryoballoon ablation in a patient with atrial fibrillation. Intern. Med. 2018, 57, 819–822. [Google Scholar] [CrossRef]
- Nies, M.; Koruth, J.S.; Mlček, M.; Watanabe, K.; Tibenská, V.C.; Královec, Š.; Tejkl, L.; Neuzil, P.; Reddy, V.Y. Hemolysis After Pulsed Field Ablation: Impact of Lesion Number and Catheter-Tissue Contact. Circ. Arrhythmia Electrophysiol. 2024, e012765. [Google Scholar] [CrossRef] [PubMed]
- Jordan, F.; Knecht, S.; Isenegger, C.; Arnet, R.; Krisai, P.; Völlmin, G.; Lavallaz, J.d.F.d.; Spreen, D.; Osswald, S.; Sticherling, C.; et al. Acute Kidney Injury after Catheter Ablation of Atrial Fibrillation: Comparison between Different Energy Sources. Heart Rhythm. 2024, S1547-5271, 02373. [Google Scholar] [CrossRef]
- Juliá, J.; Bokhari, F.; Uuetoa, H.; Derejko, P.; Traykov, V.B.; Gwizdala, A.; Sebag, F.A.; Hegbom, F.; Anfinsen, O.G.; AlQubbany, A.; et al. A new era in epicardial access for the ablation of ventricular arrhythmias: The Epi-Co2 Registry. Clin. Electrophysiol. 2021, 7, 85–96. [Google Scholar] [CrossRef]
- Derejko, P.; Dzwonkowska, D.; Wróbel, K.; Kuśnierz, J.; Bardyszewski, A.; Menshes, Z.; Hazan, O.; Leon, A.; Luria, D.; Lakkireddy, D. Safety and Efficacy of a Novel Blunt-Tip Concealed-Needle Epicardial Access Device: First-in-Human Feasibility Study. Clin. Electrophysiol. 2022, 8, 908–912. [Google Scholar] [CrossRef] [PubMed]
- De Groot, J.; Shaburishvili, T.; Skalsky, I.; Van Zyl, M.; Brien, B.O.; Reilly, J.; Coffey, K.; Neuzil, P.; Reddy, V. Selective epicardial pulsed field ablation of atrial ganglionated plexi causes anti-arrhythmic prolongation of refractoriness: Demonstration of feasibility in cardiac surgery patients. Europace 2022, 24 (Suppl. S1), euac053-227. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Stavrakis, S. For better or worse, pulse field ablation is kinder to some nerves. Clin. Electrophysiol. 2022, 8, 905–907. [Google Scholar] [CrossRef]
- O’brien, B.; Reilly, J.; Coffey, K.; González-Suárez, A.; Buchta, P.; Buszman, P.P.; Lukasik, K.; Tri, J.; van Zyl, M.; Asirvatham, S. Epicardial Pulsed Field Ablation of Ganglionated Plexi: Computational and Pre-Clinical Evaluation of a Bipolar Sub-Xiphoid Catheter for the Treatment of Atrial Fibrillation. Bioengineering 2023, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Dukkipati, S.R.; Neuzil, P.; Anic, A.; Petru, J.; Funasako, M.; Cochet, H.; Minami, K.; Breskovic, T.; Sikiric, I.; et al. Pulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. Clin. Electrophysiol. 2021, 7, 614–627. [Google Scholar] [CrossRef]
- Russo, A.M. Pulsed Field Ablation: Is It Better Than Conventional Thermal Ablation for Treatment of Atrial Fibrillation? Circulation 2023, 147, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
Reference | Ablation Mode | Energy Source | Ablation Process | Characteristic |
---|---|---|---|---|
[30,31] | Radiofrequency ablation | Heat energy generated using low-voltage, high-frequency electrical energy | The catheter is delivered to the site of the lesion, releasing energy to cause partial myocardial degeneration and necrosis. | Low efficiency of spot ablation and long learning curve for the operator |
[32,33] | Cryoballoon ablation | Liquefied refrigerant in the balloon liner | Evaporation of liquefied refrigerant by heat absorption, resulting in local tissue necrosis due to reduced temperature at the ablation site | The ablation effect is still dependent on balloon apposition and lacks tissue selectivity |
[34,35,36] | Pulsed-field ablation | High-voltage, high-frequency multi-electrode pulses generate non-thermal energy | The electric field is applied to the phospholipid bilayer of the cell membrane for a short period of time, and irreversible penetrating damage is formed in the cell membrane. | Non-thermal energy, strong tissue selectivity, no harm to nearby tissues |
Reference | In Vitro/In Vivo | Subject | Energy | Catheter Style | Summary |
---|---|---|---|---|---|
[54] | In Vivo | Swine | Not mentioned | Circular type | There was no sign of thermal damage after ablation, the lesion was continuous in extent, and the thickness of the lesion increased with increasing energy. |
[55] | In Vivo | Swine | Not mentioned | T-type | There is a clear relationship between the energy produced by the electrodes and the area of the myocardial tissue lesion. |
[49] | In Vivo | Swine | 500 V | Circular type | Ablation produces fibrotic lesions with acute electrical effects and does not damage non-targeted tissue. |
[56] | In Vivo | Swine | 400–800 V/cm | Balloon type | Selectively affects cardiac myocytes but not vascular and neural tissue. |
[57] | In Vivo | Swine | 1600 V/cm | Petal type | It effectively blocks electrical activity from the pulmonary veins to the atria with myocardial contraction and does not cause pulmonary vein stenosis. |
[58] | In Vivo | Rabbit | 50–500 V | Circular type | The endocardium is most susceptible to electroporation and may contribute to arrhythmia susceptibility. |
[43] | In Vivo | Rabbit | 2000 V/cm | Self-developed | No significant stricture, erosion, or ulceration of esophageal tissue was observed. |
[59] | In Vitro | Rat | 400 V/cm690 V/cm | Not mentioned | Cell type is selectively specific for electroporation production but electrode proximity to the target tissue is still important for efficacy. |
[60] | In Vitro | Rat | 1000 V/cm1200 V/cm | Not mentioned | Compare different cell types within the cardiovascular system and determine the optimal voltage threshold for selective ablation of cells. |
[61] | In Vivo | Canine | Not mentioned | Straight type | Transepicardial treatment of atrial fibrillation with DC current is feasible as an adjunct to pulmonary vein isolation. |
No. of Patients Assessed | Findings | |
---|---|---|
Esophagus Findings | ||
EGD | 38 | No esophageal lesions |
CMR | 18 | No esophageal enhancement |
Phrenic nerve | ||
Fluoroscopy at end of procedure | 121 | No paresis/palsy |
Fluoroscopy at 3 months | 110 | |
Brain MRI | 18 | 16 of 18 (89) DW-negative |
PV stenosis | ||
EAM at 3 months | 110 | No PV stenosis or narrowing |
CT at 3 months | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liang, M.; Sun, J.; Zhang, J.; Han, Y. A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology. J. Cardiovasc. Dev. Dis. 2024, 11, 175. https://doi.org/10.3390/jcdd11060175
Wang Z, Liang M, Sun J, Zhang J, Han Y. A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology. Journal of Cardiovascular Development and Disease. 2024; 11(6):175. https://doi.org/10.3390/jcdd11060175
Chicago/Turabian StyleWang, Zhen, Ming Liang, Jingyang Sun, Jie Zhang, and Yaling Han. 2024. "A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology" Journal of Cardiovascular Development and Disease 11, no. 6: 175. https://doi.org/10.3390/jcdd11060175
APA StyleWang, Z., Liang, M., Sun, J., Zhang, J., & Han, Y. (2024). A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology. Journal of Cardiovascular Development and Disease, 11(6), 175. https://doi.org/10.3390/jcdd11060175