The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Discovery Cohort Description
- Patients with AS of TAV and BAV due to CAVD.
- Patient with AS and Vmax at the aortic valve more than 4.0 m/s and effective orifice area less than 1 cm2.
- Patients with intraoperatively confirmed BAV or TAV.
- Patients with genotype–phenotype correlation analysis AS.
- Consent of the patient to be included in the study.
- Patient with AS and Vmax at the aortic valve that was less than 4.0 m/s and effective orifice area that was more than 1 cm2.
- Patients with known infective endocarditis and rheumatic disease.
- Patients with connective tissue disorder (like Marfan) and/or positive family history of aortic valve disease or aortic aneurysm.
- Refusal of the patient to be included in the study.
2.3. Control Cohort Description
2.4. Clinical Assessment and Echocardiography
2.5. NOTCH Panel Sequencing and Variant Validation
2.6. Protein Structural Modeling
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osnabrugge, R.L.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.; Piazza, N.; Kappetein, A.P. Aortic stenosis in the elderly: Disease prevalence and number of candidates for transcatheter aortic valve replacement: A meta-analysis and modeling study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Espanola Cardiol. (Engl. Ed.) 2022, 75, 524. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, R.; Aspelund, T.; Harris, T.B.; Gudnason, V. The prevalence of aortic stenosis in the elderly in Iceland and predictions for the coming decades: The AGES–Reykjavík study. Int. J. Cardiol. 2014, 176, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Peeters, F.E.C.M.; Meex, S.J.R.; Dweck, M.R.; Aikawa, E.; Crijns, H.J.G.M.; Schurgers, L.J.; Kietselaer, B.L.J.H. Calcific aortic valve stenosis: Hard disease in the heart: A biomolecular approach towards diagnosis and treatment. Eur. Heart J. 2017, 39, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-González, I.; Pinar-Sopena, J.; Ribera, A.; Marsal, J.R.; Cascant, P.; González-Alujas, T.; Evangelista, A.; Brotons, C.; Moral, I.; Permanyer-Miralda, G.; et al. Prevalence of calcific aortic valve disease in the elderly and associated risk factors: A population-based study in a Mediterranean area. Eur. J. Prev. Cardiol. 2012, 20, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Coffey, S.; Cairns, B.J.; Iung, B. The modern epidemiology of heart valve disease. Heart 2015, 102, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Irtyuga, O.; Malashicheva, A.; Zhiduleva, E.; Freylikhman, O.; Rotar, O.; Bäck, M.; Tarnovskaya, S.; Kostareva, A.; Moiseeva, O. NOTCH1 Mutations in Aortic Stenosis: Association with Osteoprotegerin/RANK/RANKL. BioMed Res. Int. 2017, 2017, 6917907. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Y.; Lu, P.; Wu, B.; Zhou, B. NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease. Front. Cardiovasc. Med. 2021, 8, 682298. [Google Scholar] [CrossRef]
- Irtyuga, O.I.; Zhiduleva, E.Z.; Dubrovskaya, O.D.; Moiseeva, O.M. Concentration of Osteoprotegerin and RANKL in Blood Serum of Patients With Aortic Stenosis. Kardiologiia 2014, 54, 44–48. [Google Scholar] [CrossRef]
- Shikov, A.E.; Skitchenko, R.K.; Predeus, A.V.; Barbitoff, Y.A. Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits. Sci. Rep. 2020, 10, 1037. [Google Scholar] [CrossRef] [PubMed]
- Lescroart, F.; Wang, X.; Lin, X.; Swedlund, B.; Gargouri, S.; Sànchez-Dànes, A.; Moignard, V.; Dubois, C.; Paulissen, C.; Kinston, S.; et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 2018, 359, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, H.; Petursson, H.; Sigurdsson, E.; Steinthorsdottir, V.; Bjornsdottir, S.; Sigmundsson, T.; Ghosh, S.; Brynjolfsson, J.; Gunnarsdottir, S.; Ivarsson, O.; et al. Neuregulin 1 and Susceptibility to Schizophrenia. Am. J. Hum. Genet. 2002, 71, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, B.; Farrar, E.; Lui, W.; Lu, P.; Zhang, D.; Alfieri, C.M.; Mao, K.; Chu, M.; Yang, D.; et al. Notch-Tnf signalling is required for development and homeostasis of arterial valves. Eur. Heart J. 2015, 38, 675–686. [Google Scholar] [CrossRef] [PubMed]
- High, F.A.; Epstein, J.A. The multifaceted role of Notch in cardiac development and disease. Nat. Rev. Genet. 2008, 9, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Limbourg, F.P.; Takeshita, K.; Radtke, F.; Bronson, R.T.; Chin, M.T.; Liao, J.K. Essential role of endothelial Notch1 in angiogenesis. Circulation 2005, 111, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Usoltsev, D.; Kolosov, N.; Rotar, O.; Loboda, A.; Boyarinova, M.; Moguchaya, E.; Kolesova, E.; Erina, A.; Tolkunova, K.; Rezapova, V.; et al. Understanding Complex Trait Susceptibilities and Ethnical Diversity in a Sample of 4145 Russians Through Analysis of Clinical and Genetic Data. bioRxiv 2023. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F.; Otto, C.M. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart. J. Cardiovasc. Imaging 2016, 18, 254–275. [Google Scholar] [CrossRef]
- Kostareva, A.; Kiselev, A.; Gudkova, A.; Frishman, G.; Ruepp, A.; Frishman, D.; Smolina, N.; Tarnovskaya, S.; Nilsson, D.; Zlotina, A.; et al. Genetic Spectrum of Idiopathic Restrictive Cardiomyopathy Uncovered by Next-Generation Sequencing. PLoS ONE 2016, 11, e0163362. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. dbNSFP v4: A comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Notredame, C.; Higgins, D.G.; Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.-C.; Bourdelas, A.; Krauss, A.; Lee, H.-J.; Shao, Y.; Wu, D.; Mlodzik, M.; Shi, D.-L.; Zheng, J. Direct Binding of the PDZ Domain of Dishevelled to a Conserved Internal Sequence in the C-Terminal Region of Frizzled. Mol. Cell 2003, 12, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Choi, S.; Yun, J.-H.; Seo, S.H.; Choi, S.; Choi, K.-Y.; Lee, W. Crystal structure of the PDZ domain of mouse Dishevelled 1 and its interaction with CXXC5. Biochem. Biophys. Res. Commun. 2017, 485, 584–590. [Google Scholar] [CrossRef]
- Luca, V.C.; Jude, K.M.; Pierce, N.W.; Nachury, M.V.; Fischer, S.; Garcia, K.C. Structural basis for Notch1 engagement of Delta-like 4. Science 2015, 347, 847–853. [Google Scholar] [CrossRef]
- Styczynski, M.P.; Jensen, K.L.; Rigoutsos, I.; Stephanopoulos, G. BLOSUM62 miscalculations improve search performance. Nat. Biotechnol. 2008, 26, 274–275. [Google Scholar] [CrossRef]
- Li, Z.; Han, K.; E Pak, J.; Satkunarajah, M.; Zhou, D.; Rini, J.M. Recognition of EGF-like domains by the Notch-modifying O-fucosyltransferase POFUT1. Nat. Chem. Biol. 2017, 13, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Moncla, L.-H.M.; Briend, M.; Bossé, Y.; Mathieu, P. Calcific aortic valve disease: Mechanisms, prevention and treatment. Nat. Rev. Cardiol. 2023, 20, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Kostina, A.; Shishkova, A.; Ignatieva, E.; Irtyuga, O.; Bogdanova, M.; Levchuk, K.; Golovkin, A.; Zhiduleva, E.; Uspenskiy, V.; Moiseeva, O.; et al. Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves. J. Mol. Cell. Cardiol. 2017, 114, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Niaz, T.; Poterucha, J.T.; Johnson, J.N.; Craviari, C.; Nienaber, T.; Palfreeman, J.; Cetta, F.; Hagler, D.J. Incidence, morphology, and progression of bicuspid aortic valve in pediatric and young adult subjects with coexisting congenital heart defects. Congenit. Heart Dis. 2016, 12, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.M.; Chen, W.; Chen, X. Bicuspid Aortic Valve: A Review of its Genetics and Clinical Significance. J. Heart Valve Dis. 2016, 25, 568–573. [Google Scholar] [PubMed]
- Lindman, B.R.; Clavel, M.-A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific aortic stenosis. Nat. Rev. Dis. Prim. 2016, 2, 16006. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Zeng, W.; Lv, L.; Hua, P. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories. Aging 2021, 13, 12710–12732. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.K.; Bax, J.J.; Michelena, H.I.; Delgado, V. Sex differences in bicuspid aortic valve disease. Prog. Cardiovasc. Dis. 2020, 63, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Çelik, M.; Milojevic, M.; Durko, A.P.; Oei, F.B.; Bogers, A.J.; Mahtab, E.A. Differences in baseline characteristics and outcomes of bicuspid and tricuspid aortic valves in surgical aortic valve replacement. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, J.; Johansson, B.; Engström, K.G.; Norberg, M.; Bergdahl, I.A.; Söderberg, S. Arterial hypertension and diastolic blood pressure associate with aortic stenosis. Scand. Cardiovasc. J. 2019, 53, 91–97. [Google Scholar] [CrossRef]
- Liakos, C.I.; Grassos, C.A.; Papadopoulos, D.P.; Dimitriadis, K.S.; Tsioufis, C.P.; Tousoulis, D. Arterial hypertension and aortic valve stenosis: Shedding light on a common “liaison”. Hell. J. Cardiol. 2017, 58, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zheng, Q.; Ma, X.; Zhang, Q.; Xu, Z.; Zou, C.; Wang, Z. Predictive Roles of Neutrophil-to-Lymphocyte Ratio and C-Reactive Protein in Patients with Calcific Aortic Valve Disease. Int. Heart J. 2019, 60, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, A.; Michelena, H.I.; Citarella, A.; Votta, E.; Piatti, F.; Lo Presti, F.; Ashurov, R.; Cipollaro, M.; Forte, A. Risk Stratification in Bicuspid Aortic Valve Aortopathy: Emerging Evidence and Future Perspectives. Curr. Probl. Cardiol. 2021, 46, 100428. [Google Scholar] [CrossRef] [PubMed]
- Michelena, H.I.; Della Corte, A.; Prakash, S.K.; Milewicz, D.M.; Evangelista, A.; Enriquez-Sarano, M. Bicuspid aortic valve aortopathy in adults: Incidence, etiology, and clinical significance. Int. J. Cardiol. 2015, 201, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Swahn, E.; Lekedal, H.; Engvall, J.; Nyström, F.H.; Jonasson, L. Prevalence and determinants of dilated ascending aorta in a Swedish population: A case-control study. Eur. Heart J. Open 2023, 3, oead085. [Google Scholar] [CrossRef] [PubMed]
- Combi, Z.; Potor, L.; Nagy, P.; Sikura, K.; Ditrói, T.; Jurányi, E.P.; Galambos, K.; Szerafin, T.; Gergely, P.; Whiteman, M.; et al. Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: Altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease. Redox Biol. 2023, 60, 102629. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Sá, M.P.B.; Cavalcanti, L.R.P.; Perazzo, M.; Gomes, R.A.F.; Clavel, M.-A.; Pibarot, P.; Biondi-Zoccai, G.; Zhigalov, K.; Weymann, A.; Ruhparwar, A.; et al. Calcific Aortic Valve Stenosis and Atherosclerotic Calcification. Curr. Atheroscler. Rep. 2020, 22, 2. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Jiang, W.; Wang, Z. Molecular Mechanism of Calycosin Inhibited Vascular Calcification. Nutrients 2023, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Phadwal, K.; Tan, X.; Koo, E.; Zhu, D.; MacRae, V.E. Metformin ameliorates valve interstitial cell calcification by promoting autophagic flux. Sci. Rep. 2023, 13, 21435. [Google Scholar] [CrossRef]
- Wei, X.; Shen, Z.; Zhu, M.; Fang, M.; Wang, S.; Zhang, T.; Zhang, B.; Yang, X.; Lv, Z.; Duan, Y.; et al. The pterostilbene-dihydropyrazole derivative Ptd-1 ameliorates vascular calcification by regulating inflammation. Int. Immunopharmacol. 2023, 125, 111198. [Google Scholar] [CrossRef]
- Garg, V. Notch Signaling in Aortic Valve Development and Disease. In Etiology and Morphogenesis of Congenital Heart Disease; Springer: Tokyo, Japan, 2016; pp. 371–376. [Google Scholar] [CrossRef]
- Garg, V.; Muth, A.N.; Ransom, J.F.; Schluterman, M.K.; Barnes, R.; King, I.N.; Grossfeld, P.D.; Srivastava, D. Mutations in NOTCH1 cause aortic valve disease. Nature 2005, 437, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Li, Z.; Mohamed, M.A.; Liu, L.; Wei, X. Aortic root aortopathy in bicuspid aortic valve associated with high genetic risk. BMC Cardiovasc. Disord. 2021, 21, 413. [Google Scholar] [CrossRef] [PubMed]
- Freylikhman, O.; Tatarinova, T.; Smolina, N.; Zhuk, S.; Klyushina, A.; Kiselev, A.; Moiseeva, O.; Sjoberg, G.; Malashicheva, A.; Kostareva, A. Variants in the NOTCH1 Gene in Patients with Aortic Coarctation. Congenit. Heart Dis. 2014, 9, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Small, A.M.; Peloso, G.M.; Linefsky, J.; Aragam, J.; Galloway, A.; Tanukonda, V.; Wang, L.-C.; Yu, Z.; Selvaraj, M.S.; Farber-Eger, E.H.; et al. Multiancestry Genome-Wide Association Study of Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran Program. Circulation 2023, 147, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Dina, C.; Small, A.M.; Shaffer, C.M.; Levinson, R.T.; Helgadóttir, A.; Capoulade, R.; Munter, H.M.; Martinsson, A.; Cairns, B.J.; et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: A genome-wide study. Eur. Heart J. 2023, 44, 1927–1939. [Google Scholar] [CrossRef] [PubMed]
- Dores-Silva, P.; Minari, K.; Ramos, C.; Barbosa, L.; Borges, J. Structural and stability studies of the human mtHsp70-escort protein 1: An essential mortalin co-chaperone. Int. J. Biol. Macromol. 2013, 56, 140–148. [Google Scholar] [CrossRef]
- Wang, L.; Chennupati, R.; Jin, Y.-J.; Li, R.; Wang, S.; Günther, S.; Offermanns, S. YAP/TAZ Are Required to Suppress Osteogenic Differentiation of Vascular Smooth Muscle Cells. iScience 2020, 23, 101860. [Google Scholar] [CrossRef]
Characteristics | AS Group with BAV Me (Q1;Q3) (n = 59) | AS Group with TAV Me (Q1;Q3) (n = 31) | p Value |
---|---|---|---|
Age, years | 56 (52;61) | 61 (60;63) | 0.00004 |
Gender, m/f | 1.36:1 | 1:1.2 | 0.26 |
Arterial hypertension, n (%) | 11 (18.6) | 9 (29.03) | 0.39 |
Chronic heart failure, n (%) | 19 (32.2) | 12 (38.7) | 0.54 |
Coronary heart disease, n (%) | 12 (20.3) | 11 (3.5) | 0.12 |
Systolic BP, mmHg | 160 (140;180) | 180 (170;200) | 0.02 |
Diastolic BP, mmHg | 90 (85;100) | 100 (100;110) | 0.02 |
Systolic BPof, mmHg | 130 (120;150) | 130 (120;156) | 0.27 |
Diastolic BPof, mmHg | 80 (74;90) | 80 (70;90) | 0.79 |
Aortic sinus, mm | 34 (32.3;40) | 35 (33;39) | 0.66 |
Ascending aorta, mm | 39 (35;43) | 37.5 (35;40) | 0.36 |
Mean pressure gradient, mmHg | 49.7 (44;70) | 50 (40;62) | 0.37 |
Vmax, m/s | 4.7 (4.24;5.18) | 4.6 (4.2;5) | 0.42 |
AVA, cm2 | 0.8 (0.7;0.9) | 0.9 (0.7;1) | 0.21 |
Hemoglobin, g/dL | 138 (129;150) | 136 (132;145) | 0.43 |
Red blood cell count, ×106 cells/micro-L | 4.65 (4.3;5.1) | 4.7 (4.47;4.84) | 0.75 |
White blood cell count, ×103 cells/micro-L | 6.4 (5.7;7.6) | 6.6 (5.6;7.5) | 0.96 |
C-reactive protein, mg/dL | 1.56 (0.85;2.77) | 2.01 (1.49;3.48) | 0.02 |
Blood glucose level, mmol/L | 5.5 (5;6.15) | 5.96 (5.2;6.46) | 0.08 |
Blood creatinine level, mmol/L | 79 (71;90) | 75.5 (65;87) | 0.25 |
Total cholesterol, mmol/L | 5.7 (4.72;6.48) | 5.12 (4;5.63) | 0.03 |
Triglicerides, mmol/L | 1.36 (0.99;2.07) | 1.08 (0.91;1.62) | 0.39 |
Low density lipoprotein, mmol/L | 3.78 (2.64;4.24) | 3.28 (2.3;4.4) | 0.54 |
High-density lipoproteins, mmol/L | 1.22 (0.98;1.5) | 1.17 (1;1.59) | 0.87 |
Characteristics | rs3812603 | p Value | |
---|---|---|---|
Allele T Me (Q1;Q3) (n = 25) | Allele C Me (Q1;Q3) (n = 51) | ||
Age, years | 57 (53;61) | 60 (53;63) | 0.22 |
Gender, m : f | 1:1.08 | 1.2:1 | 0.57 |
BAV, n (%) | 18 (72) | 33 (64.7) | 0.52 |
Arterial hypertension, n (%) | 17 (68) | 45 (88.2) | 0.07 |
Chronic heart failure, n (%) | 6 (24) | 20 (39.2) | 0.29 |
Coronary heart disease, n (%) | 7 (28) | 13 (25.5) | 0.96 |
Systolic BP, mmHg | 160 (140;180) | 180 (150;190) | 0.02 |
Diastolic BP, mmHg | 100 (80;100) | 100 (90;100) | 0.15 |
Systolic BPof, mmHg | 130 (120;140) | 135 (120;150) | 0.19 |
Diastolic BPof, mmHg | 80 (78;90) | 80 (70;90) | 0.52 |
Aortic sinus, mm | 33 (32;36) | 35 (33;40) | 0.07 |
Ascending aorta, mm | 38 (34;45) | 39 (36;43) | 0.89 |
Aortic maximum, mm | 38 (35;42) | 40 (36;43) | 0.53 |
Mean pressure gradient, mmHg | 47.9 (43.5;64) | 54.5 (44;72) | 0.44 |
Vmax, m/s | 4.42 (4.2;4.96) | 4.88 (4.34;5.2) | 0.20 |
AVA, cm2 | 0.83 (0.7;0.96) | 0.85 (0.7;0.9) | 0.75 |
Characteristics | rs3812603 | p Value | |
---|---|---|---|
Allele T Me (Q1;Q3) (n = 18) | Allele C Me (Q1;Q3) (n = 33) | ||
Age, years | 55.5 (50;59) | 56 (52;61) | 0.441054 |
Gender, m : f | 1:1.25 | 2:1 | 0.1071 |
Arterial hypertension, n (%) | 12 (66.7) | 28 (84.8) | 0.1254 |
Chronic heart failure, n (%) | 7 (38.9) | 14 (42.4) | 0.5230 |
Coronary heart disease, n (%) | 5 (27.8) | 6 (18.2) | 0.4398 |
Systolic BP, mmHg | 160 (140:170) | 170 (140;185) | 0.141425 |
Diastolic BP, mmHg | 90 (80;100) | 92.5 (90;100) | 0.170381 |
Systolic BPof, mmHg | 129 (120;150) | 130 (120;150) | 0.944091 |
Diastolic BPof, mmHg | 80.5 (80;90) | 80 (75;85) | 0.233399 |
Aortic sinus, mm | 33 (32;35) | 36 (33;40) | 0.028920 |
Ascending aorta, mm | 39 (35;45) | 40 (36;44) | 0.932005 |
Aortic maximum, mm | 40 (36;45) | 41(36;44) | 0.774599 |
Mean pressure gradient, mmHg | 48.5 (43;70) | 55(44;72) | 0.839622 |
Vmax, m/s | 4.6 (4.1;5.4) | 4.9 (4.38;5.2) | 0.831224 |
AVA, cm2 | 0.7 (0.6;0.8) | 0.85 (0.7;0.9) | 0.146324 |
Characteristics | rs73185723 | p Value | |
---|---|---|---|
Allele T Me (Q1;Q3) (n = 32) | Allele C Me (Q1;Q3) (n = 44) | ||
Age, years | 61 (55;64) | 59 (53;62) | 0.1612173 |
Gender, m/f | 1:0.9 | 1:1 | 0.8906 |
Arterial hypertension, n (%) | 27 (84.4) | 34 (77.3) | 0.4387 |
Chronic heart failure, n (%) | 15 (46.9) | 15 (34.1) | 0.2164 |
Coronary heart disease, n (%) | 7 (21.9) | 24 (54.5) | 0.5219 |
Systolic BP, mmHg | 180 (160;200) | 160 (140;180) | 0.006908 |
Diastolic BP, mmHg | 100 (90;100) | 90 (85;100) | 0.036068 |
Systolic BPof, mmHg | 130 (120;150) | 130 (120;140) | 0.136841 |
Diastolic BPof, mmHg | 80 (74;90) | 80 (70;87.5) | 0.611371 |
Aortic sinus, mm | 35 (33;40) | 34 (32;39) | 0.478722 |
Ascending aorta, mm | 39 (37;42) | 38 (34;42) | 0.245006 |
Aortic maximum, mm | 40 (37;42) | 38.5 (34.5;42.5) | 0.406663 |
Mean pressure gradient, mmHg | 53.5 (46;64) | 49 (43;66) | 0.714627 |
Vmax, m/s | 4.8 (4.1;5.1) | 4.7 (4.2;4.9) | 0.256888 |
AVA, cm2 | 0.83 (0.65;0.93) | 0.85 (0.7;1) | 0.498415 |
Characteristics | rs73185723 | p Value | |
---|---|---|---|
Allele T Me (Q1;Q3) (n = 20) | Allele C Me (Q1;Q3) (n = 27) | ||
Age, years | 59 (52.5;64) | 55 (50;60) | 0.1735001 |
Gender, m/f | 1.2:1 | 1.1:1 | 0.8307 |
Arterial hypertension, n (%) | 16 (80) | 19 (70.4) | 0.6816 |
Chronic heart failure, n (%) | 11 (55) | 8 (29.6) | 0.0797 |
Coronary heart disease, n (%) | 4 (20) | 3 (11.1) | 0.6658 |
Systolic BP, mmHg | 180 (150;200) | 145 (140;165) | 0.004804 |
Diastolic BP, mmHg | 100 (90;100) | 90 (80;90) | 0.022784 |
Systolic BPof, mmHg | 140 (120;150) | 125 (120;140) | 0.056344 |
Diastolic BPof, mmHg | 80 (77;90) | 80 (70;85) | 0.320321 |
Aortic sinus, mm | 35.5 (33;40.5) | 33.5 (32;37) | 0.181866 |
Ascending aorta, mm | 39 (37;42) | 39 (33;45) | 0.760475 |
Aortic maximum, mm | 40 (37;42.5) | 39 (33;46) | 0.586622 |
Mean pressure gradient, mmHg | 49.7 (42;63) | 51 (43.5;70.8) | 0.684966 |
Vmax, m/s | 4.70 (4.1;5.14) | 4.68 (4.4;5) | 0.990928 |
AVA, cm2 | 0.85 (0.7; 0.96) | 0.75 (0.7;0.9) | 0.603780 |
Patient | Gene | Chromosome Position (hg39) and Variant Nomenclature | rs MAF | ACMG Classification |
---|---|---|---|---|
227 | DTX4 | Chr11:59204760, NM_015177.2:c.1711G>A:p.V571I | rs376862310 0.00002 | LB |
189 | NOTCH1 | Chr9:136513042, NM_017617.5:c.2446A>G:p.N816D | rs1589064290 - | VUS |
DTX1 | Chr12:113058440, NM_004416.3:c.248G>A: p.R83H | rs772474000 0.00002 | VUS | |
180 | DVL2 | Chr7:7226041, NM_004422.3:c.2035C>T: p.P679S | rs147610025 0.00006 | VUS |
166 | NOTCH1 | Chr9: 136508235, NM_017617.5:c.3322C>T, pQ1108Ter | - | LP |
004 | DTX3L | Chr 3:122568647, NM_138287.3:c.558A>C:p.Q186H | rs1466715187 - | VUS |
048 | DVL3 | Chr3:184166219, NM_004423.4:c.857C>Ap.A286D | rs1358353596 C>T - | VUS |
Gene | Uniprot | Protein Variant | Domain | Cs | VEST4 | REVEL | ClinPred | SIFT | Mutation Taster | PROVEAN |
---|---|---|---|---|---|---|---|---|---|---|
DTX4 | Q9Y2E6 | p.Val571Ile | DTC | 9 | D | T | T | pathogenic | uncertain | benign moderated |
NOTCH1 | P46531 | p.Asn816Asp | EGR-CA | 3 | D | D | D | benign moderated | uncertain | benign |
DTX1 | Q86Y01 | p.Arg83His | WWE | 11 | D | T | D | uncertain | uncertain | uncertain |
DVL2 | O14641 | p.Pro679Ser | Dsh-C | 0 | T | T | T | benign | uncertain | benign |
NOTCH1 | P46531 | p.Gln1108Ter | EGR | 5 | D | D | D | - | uncertain | - |
DTX3L | Q8TDB6 | p.Gln186His | disorder | 0 | T | T | T | benign | benign | benign |
DVL3 | Q92997 | p.Ala286Asp | PDZ | 11 | D | D | D | pathogenic | uncertain | pathogenic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irtyuga, O.; Skitchenko, R.; Babakekhyan, M.; Usoltsev, D.; Tarnovskaya, S.; Malashicheva, A.; Fomicheva, Y.; Rotar, O.; Moiseeva, O.; Shadrina, U.; et al. The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis. J. Cardiovasc. Dev. Dis. 2024, 11, 226. https://doi.org/10.3390/jcdd11070226
Irtyuga O, Skitchenko R, Babakekhyan M, Usoltsev D, Tarnovskaya S, Malashicheva A, Fomicheva Y, Rotar O, Moiseeva O, Shadrina U, et al. The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis. Journal of Cardiovascular Development and Disease. 2024; 11(7):226. https://doi.org/10.3390/jcdd11070226
Chicago/Turabian StyleIrtyuga, Olga, Rostislav Skitchenko, Mary Babakekhyan, Dmitrii Usoltsev, Svetlana Tarnovskaya, Anna Malashicheva, Yulya Fomicheva, Oksana Rotar, Olga Moiseeva, Ulyana Shadrina, and et al. 2024. "The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis" Journal of Cardiovascular Development and Disease 11, no. 7: 226. https://doi.org/10.3390/jcdd11070226
APA StyleIrtyuga, O., Skitchenko, R., Babakekhyan, M., Usoltsev, D., Tarnovskaya, S., Malashicheva, A., Fomicheva, Y., Rotar, O., Moiseeva, O., Shadrina, U., Artomov, M., Kostareva, A., & Shlyakhto, E. (2024). The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis. Journal of Cardiovascular Development and Disease, 11(7), 226. https://doi.org/10.3390/jcdd11070226