Age-Specific Outcomes of Bioprosthetic vs. Mechanical Aortic Valve Replacement: Balancing Reoperation Risk with Anticoagulation Burden
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patients
2.2. Study Data and Outcomes
2.3. Outcomes
2.4. Echocardiography
2.5. Prosthesis Types
2.6. Follow-Up
2.7. Definitions
2.8. Statistical Analysis
3. Results
3.1. Baseline and Operative Characteristics
3.2. Echocardiographic Characteristics
3.3. Postoperative Complications
3.4. Survival Rates
3.5. Freedom from Reintervention
3.6. Freedom from Stroke
3.7. Freedom from Bleeding
3.8. Changes in Echocardiography
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stassano, P.; Di Tommaso, L.; Monaco, M.; Iorio, F.; Pepino, P.; Spampinato, N.; Vosa, C. Aortic valve replacement: A prospective randomized evaluation of mechanical versus biological valves in patients ages 55 to 70 years. J. Am. Coll. Cardiol. 2009, 54, 1862–1868. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, S.; Bian, J.; Chen, S.; Shao, Y. Mechanical versus Bioprosthetic Aortic Valve Replacement in Middle-Aged Adults: A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 90. [Google Scholar] [CrossRef]
- Rodríguez-Caulo, E.A.; Macías, D.; Adsuar, A.; Ferreiro, A.; Arias-Dachary, J.; Parody, G.; Fernández, F.; Daroca, T.; Rodríguez-Mora, F.; Garrido, J.M.; et al. Biological or mechanical prostheses for isolated aortic valve replacement in patients aged 50–65 years: The ANDALVALVE study. Eur. J. Cardio-Thoracic. Surg. Off. J. Eur. Assoc, Cardio-Thoracic, Surg. 2019, 55, 1160–1167. [Google Scholar] [CrossRef]
- Alex, S.; Hiebert, B.; Arora, R.; Menkis, A.; Shah, P. Survival and Long-Term Outcomes of Aortic Valve Replacement in Patients Aged 55 to 65 Years. Thorac. Cardiovasc. Surg. 2018, 66, 313–321. [Google Scholar] [CrossRef]
- Isaacs, A.J.; Shuhaiber, J.; Salemi, A.; Isom, O.W.; Sedrakyan, A. National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. J. Thorac. Cardiovasc. Surg. 2015, 149, 1262–1269.e3. [Google Scholar] [CrossRef]
- Head, S.J.; Çelik, M.; Kappetein, A.P. Mechanical versus bioprosthetic aortic valve replacement. Eur. Heart J. 2017, 38, 2183–2191. [Google Scholar] [CrossRef]
- Economy, K.E.; Valente, A.M. Mechanical Heart Valves in Pregnancy: A Sticky Business. Circulation 2015, 132, 79–81. [Google Scholar] [CrossRef]
- Arafat, A.A.; AlQattan, H.; Zahra, A.; Alghamdi, R.; Alghosoon, H.; AlGhamdi, F.; Alamro, S.; Albackr, H.; Ismail, H.; Adam, A.I.; et al. Using tissue mitral valves in younger patients: A word of caution. J. Card. Surg. 2022, 37, 4227–4233. [Google Scholar] [CrossRef]
- Chikwe, J.; Chiang, Y.P.; Egorova, N.N.; Itagaki, S.; Adams, D.H. Survival and outcomes following bioprosthetic vs mechanical mitral valve replacement in patients aged 50 to 69 years. JAMA 2015, 313, 1435–1442. [Google Scholar] [CrossRef]
- Schnittman, S.R.; Adams, D.H.; Itagaki, S.; Toyoda, N.; Egorova, N.N.; Chikwe, J. Bioprosthetic aortic valve replacement: Revisiting prosthesis choice in patients younger than 50 years old. J. Thorac. Cardiovasc. Surg. 2018, 155, 539–547.e9. [Google Scholar] [CrossRef]
- Kiaii, B.B.; Moront, M.G.; Patel, H.J.; Ruel, M.; Bensari, F.N.; Kress, D.C.; Liu, F.; Klautz, R.J.; Sabik, J.F. Outcomes of Surgical Bioprosthetic Aortic Valve Replacement in Patients Aged ≤65 and >65 Years. Ann. Thorac. Surg. 2023, 116, 483–490. [Google Scholar] [CrossRef]
- Glaser, N.; Jackson, V.; Holzmann, M.J.; Franco-Cereceda, A.; Sartipy, U. Aortic valve replacement with mechanical vs. biological prostheses in patients aged 50–69 years. Eur. Heart J. 2016, 37, 2658–2667. [Google Scholar] [CrossRef]
- Carapinha, J.L.; Al-Omar, H.A.; Aluthman, U.; Albacker, T.B.; Arafat, A.; Algarni, K.; Martí-Sánchez, B. Budget impact analysis of a bioprosthetic valve with a novel tissue versus mechanical aortic valve replacement in patients older than 65 years with aortic stenosis in Saudi Arabia. J. Med. Econ. 2022, 25, 1149–1157. [Google Scholar] [CrossRef]
- Almedimigh, A.A.; Albabtain, M.A.; Alfayez, L.A.; Alsubaie, F.F.; Almoghairi, A.; Alotaiby, M.; Alkhushail, A.; Ismail, H.; Pragliola, C.; Adam, A.I.; et al. Isolated surgical vs. transcatheter aortic valve replacement: A propensity score analysis. Cardiothorac. Surg. 2023, 31, 2. [Google Scholar] [CrossRef]
- Sawa, S.; Saito, S.; Morita, K.; Miyamoto, S.; Hattori, M.; Hino, A.; Okuzono, Y.; Shiozaki, Y.; Echie, Y.; Niinami, H. Thirty-year outcomes of low-intensity anticoagulation for mechanical aortic valve. Heart Vessel. 2024, 39, 549–555. [Google Scholar] [CrossRef]
- Torky, M.A.; Arafat, A.A.; Fawzy, H.F.; Taha, A.M.; Wahby, E.A.; Herijgers, P. J-ministernotomy for aortic valve replacement: A retrospective cohort study. Cardiothorac. Surg. 2021, 29, 16. [Google Scholar] [CrossRef]
- Amr, M.A.; Fayad, E. Early outcomes of aortic valve repair versus replacement for aortic regurgitation: A single-center experience. Cardiothorac. Surg. 2022, 30, 2. [Google Scholar] [CrossRef]
- Sanad, M.; Beshir, H. Minimally invasive aortic valve replacement with central cannulation: A cost-benefit analysis in a developing country. Cardiothorac. Surg. 2020, 28, 9. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardio-Thoracic Surg. 2012, 41, 734–745. [Google Scholar] [CrossRef]
- De Santo, L.S.; Romano, G.; Della Corte, A.; D’Oria, V.; Nappi, G.; Giordano, S.; Cotrufo, M.; De Feo, M. Mechanical aortic valve replacement in young women planning on pregnancy: Maternal and fetal outcomes under low oral anticoagulation, a pilot observational study on a comprehensive pre-operative counseling protocol. J. Am. Coll. Cardiol. 2012, 59, 1110–1115. [Google Scholar] [CrossRef]
- Grashuis, P.; Khargi, S.D.; Veen, K.; el Osrouti, A.; Bemelmans-Lalezari, S.; Cornette, J.M.; Roos-Hesselink, J.W.; Takkenberg, J.J.; Mokhles, M.M. Pregnancy outcomes in women with a mitral valve prosthesis: A systematic review and meta-analysis. JTCVS Open 2023, 14, 102–122. [Google Scholar] [CrossRef]
- Malvindi, P.G.; Luthra, S.; Olevano, C.; Salem, H.; Kowalewski, M.; Ohri, S. Aortic valve replacement with biological prosthesis in patients aged 50–69 years. Eur. J. Cardio-Thoracic. Surg. Off. J. Eur. Assoc. Cardio-Thoracic. Surg. 2021, 59, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.P.; Chikwe, J.; Moskowitz, A.J.; Itagaki, S.; Adams, D.H.; Egorova, N.N. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA 2014, 312, 1323–1329. [Google Scholar] [CrossRef]
- Traxler, D.; Krotka, P.; Laggner, M.; Mildner, M.; Graf, A.; Reichardt, B.; Wendt, R.; Auer, J.; Moser, B.; Mascherbauer, J.; et al. Mechanical aortic valve prostheses offer a survival benefit in 50–65 year olds: AUTHEARTVISIT study. Eur. J. Clin. Investig. 2022, 52, e13736. [Google Scholar] [CrossRef]
- Kytö, V.; Sipilä, J.; Ahtela, E.; Rautava, P.; Gunn, J. Mechanical Versus Biologic Prostheses for Surgical Aortic Valve Replacement in Patients Aged 50 to 70. Ann. Thorac. Surg. 2020, 110, 102–110. [Google Scholar] [CrossRef]
- Zhao, D.F.; Seco, M.; Wu, J.J.; Edelman, J.B.; Wilson, M.K.; Vallely, M.P.; Byrom, M.J.; Bannon, P.G.; Eslick, G.D. Mechanical Versus Bioprosthetic Aortic Valve Replacement in Middle-Aged Adults: A Systematic Review and Meta-Analysis. Ann. Thorac. Surg. 2016, 102, 315–327. [Google Scholar] [CrossRef]
- Tarantini, G.; Dvir, D.; Tang, G.H. Transcatheter aortic valve implantation in degenerated surgical aortic valves. EuroIntervention 2021, 17, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Hirji, S.A.; Kolkailah, A.A.; Val, F.R.-D.; Lee, J.; McGurk, S.; Pelletier, M.; Singh, S.; Mallidi, H.R.; Aranki, S.; Shekar, P.; et al. Mechanical Versus Bioprosthetic Aortic Valve Replacement in Patients Aged 50 Years and Younger. Ann. Thorac. Surg. 2018, 106, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Suen, M.M.Y.; Wong, C.H.M.; Maaliki, A.R.; Bashir, M. Bioprosthetic Aortic Valve Replacement in <50 Years Old Patients—Where is the Evidence? Braz. J. Cardiovasc. Surg. 2019, 34, 729–738. [Google Scholar]
- Corona, S.; Manganiello, S.; Pepi, M.; Tamborini, G.; Muratori, M.; Ali, S.G.; Capra, N.; Naliato, M.; Alamanni, F.; Zanobini, M. Bioprosthetic aortic valve replacement in patients aged 50 years old and younger: Structural valve deterioration at long-term follow-up. Retrospective study. Ann. Med. Surg. 2022, 77, 103624. [Google Scholar] [CrossRef] [PubMed]
Variables | Group 1a (n = 111) | Group 2a (n = 38) | p-Value | Group 1b (n = 48) | Group 2b (n = 95) | p-Value |
---|---|---|---|---|---|---|
Male | 81 (72.97%) | 24 (63.16%) | 0.304 | 28 (58.33%) | 85 (89.47%) | 0.018 * |
Age, years | 64 (58, 71) | 58 (54, 67) | 0.002 * | 38.5 (28, 47.5) | 31 (20, 43) | <0.001 * |
BMI, kg/m2 | 29.30 (24.13, 3.73) | 30.75 (26.50, 34.40) | 0.150 | 25.42 (20.50, 32.26) | 25.60 (19.46, 29.65) | 0.891 |
EuroSCORE II, % | 1.19 (0.87, 2.08) | 1.2 (0.69, 2.05) | 0.883 | 0.94 (0.69, 2.03) | 0.87 (0.67, 1.52) | 0.049 * |
Risk factors | ||||||
Smoking | 11 (10.58%) | 6 (16.22%) | 0.358 | 6 (13.33%) | 12 (12.90%) | >0.99 |
Renal impairment | 10 (9.35%) | 7 (20%) | 0.130 | 6 (13.4%) | 3 (3.16%) | 0.058 |
Hypertension, n | 73 (66.97) | 29 (78.38) | 0.219 | 15 (32.61%) | 14 (14.74%) | 0.025 * |
Diabetes | 55 (50.46) | 25 (67.57) | 0.086 | 10 (21.74%) | 10 (10.64%) | 0.121 |
Liver disease | 2 (1.90%) | 1 (2.78%) | >0.99 | 1 (2.17%) | 1 (1.06%) | 0.551 |
Chronic lung disease | 14 (13.08%) | 4 (11.6%) | >0.99 | 2 (4.55%) | 1 (1.06%) | 0.238 |
Previous MI | 2 (1.85%) | 0 | >0.99 | 0 | 1 (1.09%) | >0.99 |
Previous Heart Failure | 1 (1.04%) | 0 | >0.99 | 1 (2.27%) | 1 (1.14%) | >0.99 |
Old Stroke | 6 (5.88%) | 1 (2.78%) | 0.676 | 4 (8.70%) | 0 | 0.011 |
Atrial fibrillation | 10 (9.52%) | 3 (8.33%) | >0.99 | 1(2.17%) | 5 (5.38%) | 0.663 |
Previous Cardiac surgery | 10 (9.26%) | 8 (21.62%) | 0.079 | 8 (17.02%) | 22 (23.66%) | 0.394 |
Previous PCI | 6 (5.56%) | 2 (5.41%) | >0.99 | 2 (4.26%) | 0 | 0.110 |
Previous TAVI | 4 (3.70%) | 0 | 0.572 | 0 | 0 | >0.99 |
Laboratory findings | ||||||
Hemoglobin (mg/dL) | 13.5 (12, 14.7) | 13.7 (11.8, 15) | 0.858 | 13.1 (11.65, 14.75) | 14.2 (13, 15.3) | 0.016 |
Creatinine clearance (mL/min) | 90.36 (62.90, 108.49) | 101.45 (47.56, 124.45) | 0.773 | 110.02 (84.87, 144.49) | 127.62 (108.82, 150.23) | 0.026 * |
Symptoms | ||||||
NYHA class I II III IV | 2 (1.98%) 22 (20.95%) 72 (68.57%) 9 (8.57%) | 3 (7.89%) 7 (18.42%) 24 (63.16%) 4 (10.53%) | 0.359 | 4 (8.33%) 12 (25%) 28 (58.33%) 3 (6.25%) | 7 (7.37%) 34 (35.79%) 50 (52.63%) 4 (4.21%) | 0.436 |
Emergency/urgent surgery | 4 (3.88%) | 2 (5.88%) | 0.638 | 3 (6.38%) | 4 (4.44%) | 0.691 |
Cardiopulmonary bypass time, min | 95 (79, 126) | 94 (80, 122) | 0.923 | 97 (84, 115) | 98 (75, 115.5) | 0.693 |
Cross clamp time, min | 76 (61, 101) | 75 (63, 101) | 0.688 | 79 (65, 94) | 74 (60, 98) | 0.688 |
Variables | Group 1a (n = 111) | Group 2a (n = 38) | p-Value | Group 1b (n = 48) | Group 2b (n = 95) | p-Value |
---|---|---|---|---|---|---|
EF, % | 55 (50, 60) | 55 (55–60) | 0.363 | 55 (50, 60) | 55 (50–60) | 0.492 |
Ventricular Mass (g/m2) | 123.89 (98.5, 147.1) | 104.85 (96.96, 139.54) | 0.193 | 124.03 (92.9, 157.4) | 133.48 (99.8, 169.86) | 0.559 |
Peak velocity (m/s) | 85.8 (69.3, 102.1) | 82.55 (53.35, 115.85) | 0.620 | 76.6 (35.8, 106.9) | 69.4 (27.5, 106) | 0.490 |
End-diastolic diameter (mm) | 51 (46, 56) | 50 (46, 55) | 0.482 | 52 (47, 58) | 54 (48, 62) | 0.264 |
End-systolic diameter (mm) | 34 (29, 39) | 31.5 (28, 39.5) | 0.418 | 36 (30, 43) | 36 (30, 43) | 0.937 |
Pulmonary artery systolic pressure (mmHg) | 37 (30, 45) | 30 (30, 40) | 0.178 | 35 (30, 50) | 30 (25, 40) | 0.262 |
AR severity None Mild Moderate Moderately severe Severe | 22 (22.92%) 33 (34.38%) 20 (20.83%) 5 (5.21%) 16 (16.76%) | 10 (27.78%) 10 (27.78%) 8 (22.22%) 2 (5.56%) 16 (16.76%) | 0.951 | 5 (11.36%) 5 (11.36%) 8 (18.60%) 1 (2.33%) 24 (55.81%) | 9 (10.71%) 8 (9.52%) 16 (19.05%) 2 (2.38%) 49 (58.33%) | 0.991 |
AS severity None Mild Moderate Severe | 5 (5.21%) 3 (3.13%) 5 (5.21%) 83 (86.46%) | 5 (14.29%) 0 (0%) 3 (8.57%) 27 (77.14%) | 0.194 | 9 (21.95%) 6 (14.63%) 2 (4.88%) 24 (58.54%) | 21 (28.38%) 9 (12.16%) 8 (10.81%) 36 (48.65%) | 0.583 |
Variables | Group 1a (n = 111) | Group 2a (n = 38) | p-Value | Group 1b (n = 48) | Group 2b (n = 95) | p-Value |
---|---|---|---|---|---|---|
In-hospital mortality | 4 (3.6%) | 2 (5.26%) | 0.645 | 0 | 2 (2.11%) | 0.551 |
Re-exploration for bleeding | 7 (6.73%) | 7 (20%) | 0.045 * | 1 (2.13%) | 5 (5.38%) | 0.664 |
Blood transfusion | 49 (50.52) | 12 (37.50%) | 0.226 | 18 (40.91%) | 32 (36.36%) | 0.704 |
Number of PRBCs | 0 (0, 2) | 0 (0, 2) | 0.757 | 0 (0, 1) | 0 (0, 1) | 0.444 |
Early PPM | 3 (2.88%) | 1 (2.78%) | >0.99 | 0 (0%) | 0 (0%) | >0.99 |
AF | 13 (12.38%) | 2( 5.41%) | 0.354 | 1 (2.17%) | 1 (1.08%) | >0.99 |
Stroke | 0 (0%) | 0 (0%) | >0.99 | 0 (0%) | 1 (1.15%) | >0.99 |
MI | 0 (0%) | 0 (0%) | >0.99 | 0 (0%) | 0 (0%) | >0.99 |
Highest creatinine, mmol/L | 86 (74, 112) | 83 (75, 124) | 0.788 | 70 (53.5, 93.5) | 74 (66.5, 88.5) | 0.272 |
Respiratory failure | 0 (0%) | 1 (2.94%) | 0.254 | 0 (0%) | 0 (0%) | >0.99 |
ICU stay (d) | 2 (1, 4) | 1.5 (1, 4) | 0.963 | 1(1, 2) | 1 (1, 3) | 0.297 |
Hospital stay duration (days) | 8 (6, 13) | 9 (6, 15) | 0.572 | 7 (6, 9) | 7 (6, 11) | 0.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhijab, F.A.; Alfayez, L.A.; Hassan, E.; Albabtain, M.A.; Elnaggar, I.M.; Alotaibi, K.A.; Adam, A.I.; Pragliola, C.; Ismail, H.H.; Arafat, A.A. Age-Specific Outcomes of Bioprosthetic vs. Mechanical Aortic Valve Replacement: Balancing Reoperation Risk with Anticoagulation Burden. J. Cardiovasc. Dev. Dis. 2024, 11, 227. https://doi.org/10.3390/jcdd11070227
Alhijab FA, Alfayez LA, Hassan E, Albabtain MA, Elnaggar IM, Alotaibi KA, Adam AI, Pragliola C, Ismail HH, Arafat AA. Age-Specific Outcomes of Bioprosthetic vs. Mechanical Aortic Valve Replacement: Balancing Reoperation Risk with Anticoagulation Burden. Journal of Cardiovascular Development and Disease. 2024; 11(7):227. https://doi.org/10.3390/jcdd11070227
Chicago/Turabian StyleAlhijab, Fatimah A., Latifa A. Alfayez, Essam Hassan, Monirah A. Albabtain, Ismail M. Elnaggar, Khaled A. Alotaibi, Adam I. Adam, Claudio Pragliola, Huda H. Ismail, and Amr A. Arafat. 2024. "Age-Specific Outcomes of Bioprosthetic vs. Mechanical Aortic Valve Replacement: Balancing Reoperation Risk with Anticoagulation Burden" Journal of Cardiovascular Development and Disease 11, no. 7: 227. https://doi.org/10.3390/jcdd11070227
APA StyleAlhijab, F. A., Alfayez, L. A., Hassan, E., Albabtain, M. A., Elnaggar, I. M., Alotaibi, K. A., Adam, A. I., Pragliola, C., Ismail, H. H., & Arafat, A. A. (2024). Age-Specific Outcomes of Bioprosthetic vs. Mechanical Aortic Valve Replacement: Balancing Reoperation Risk with Anticoagulation Burden. Journal of Cardiovascular Development and Disease, 11(7), 227. https://doi.org/10.3390/jcdd11070227