Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of Digital Heart Models
2.2. 3D Printing
2.3. VR
2.4. 3D PDF
2.5. Participant Recruitment and Data Collection
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morton, S.U.; Quiat, D.; Seidman, J.G.; Seidman, C.E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. 2022, 19, 26–42. [Google Scholar] [CrossRef]
- Wu, W.; He, J.; Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990–2017. Medicine 2020, 99, e20593. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, P.; Tretter, J.T.; Ludomirsky, A.; Argilla, M.; Latson, L.A.; Chakravarti, S.; Barker, P.C.; Yoo, S.-J.; McElhinney, D.B.; Wake, N. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: Does it alter management decisions? Pediatr. Cardiol. 2017, 38, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Biglino, G.; Koniordou, D.; Gasparini, M.; Capelli, C.; Leaver, L.-K.; Khambadkone, S.; Schievano, S.; Taylor, A.M.; Wray, J. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr. Cardiol. 2017, 38, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Loke, Y.-H.; Harahsheh, A.S.; Krieger, A.; Olivieri, L.J. Usage of 3D models of tetralogy of Fallot for medical education: Impact on learning congenital heart disease. BMC Med. Educ. 2017, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Squelch, A.; Sun, Z. Quantitative assessment of 3D printed model accuracy in delineating congenital heart disease. Biomolecules 2021, 11, 270. [Google Scholar] [CrossRef]
- Tarca, A.; Woo, N.; Bain, S.; Crouchley, D.; McNulty, E.; Yim, D. 3D Printed Cardiac Models as an Adjunct to Traditional Teaching of Anatomy in Congenital Heart Disease—A Randomised Controlled Study. Heart Lung Circ. 2023, 32, 1443–1450. [Google Scholar] [CrossRef]
- Karsenty, C.; Guitarte, A.; Dulac, Y.; Briot, J.; Hascoet, S.; Vincent, R.; Delepaul, B.; Vignaud, P.; Djeddai, C.; Hadeed, K. The usefulness of 3D printed heart models for medical student education in congenital heart disease. BMC Med. Educ. 2021, 21, 480. [Google Scholar] [CrossRef]
- Gomez, A.; Gomez, G.; Simpson, J.; Valverde, I. 3D hybrid printed models in complex congenital heart disease: 3D echocardiography and cardiovascular magnetic resonance imaging fusion. Eur. Heart J. 2020, 41, 4214. [Google Scholar] [CrossRef]
- Wu, C.A.; Squelch, A.; Jansen, S.; Sun, Z. Optimization of computed tomography angiography protocols for follow-up type B aortic dissection patients by using 3D printed model. Appl. Sci. 2021, 11, 6844. [Google Scholar] [CrossRef]
- Lau, I.; Wong, Y.H.; Yeong, C.H.; Aziz, Y.F.A.; Sari, N.A.M.; Hashim, S.A.; Sun, Z. Quantitative and qualitative comparison of low-and high-cost 3D-printed heart models. Quant. Imaging Med. Surg. 2019, 9, 107. [Google Scholar] [CrossRef] [PubMed]
- Paxton, N.C. Navigating the intersection of 3D printing, software regulation and quality control for point-of-care manufacturing of personalized anatomical models. 3D Print. Med. 2023, 9, 9. [Google Scholar] [CrossRef]
- Chen, F.-Q.; Leng, Y.-F.; Ge, J.-F.; Wang, D.-W.; Li, C.; Chen, B.; Sun, Z.-L. Effectiveness of virtual reality in nursing education: Meta-analysis. J. Med. Internet Res. 2020, 22, e18290. [Google Scholar] [CrossRef]
- Tene, T.; Vique López, D.F.; Valverde Aguirre, P.E.; Orna Puente, L.M.; Vacacela Gomez, C. Virtual reality and augmented reality in medical education: An umbrella review. Front. Digit. Health 2024, 6, 1365345. [Google Scholar] [CrossRef]
- Bruno, R.R.; Wolff, G.; Wernly, B.; Masyuk, M.; Piayda, K.; Leaver, S.; Erkens, R.; Oehler, R.; Afzal, S.; Heidari, H. Virtual and augmented reality in critical care medicine: The patient’s, clinician’s, and researcher’s perspective. Crit. Care 2022, 26, 326. [Google Scholar] [CrossRef] [PubMed]
- Lau, I.; Gupta, A.; Sun, Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules 2021, 11, 884. [Google Scholar] [CrossRef]
- Kieu, V.; Sumski, C.; Cohen, S.; Reinhardt, E.; Axelrod, D.M.; Handler, S.S. The Use of Virtual Reality Learning on Transition Education in Adolescents with Congenital Heart Disease. Pediatr. Cardiol. 2023, 44, 1856–1860. [Google Scholar] [CrossRef]
- Awori, J.; Friedman, S.D.; Howard, C.; Kronmal, R.; Buddhe, S. Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience. 3D Print. Med. 2023, 9, 2. [Google Scholar] [CrossRef]
- Galeczka, M.; Smerdzinski, S.; Tyc, F.; Fiszer, R. Virtual reality for transcatheter procedure planning in congenital heart disease. Pol. Heart J. 2023, 81, 1026–1027. [Google Scholar] [CrossRef]
- Ong, C.S.; Krishnan, A.; Huang, C.Y.; Spevak, P.; Vricella, L.; Hibino, N.; Garcia, J.R.; Gaur, L. Role of virtual reality in congenital heart disease. Congenit. Heart Dis. 2018, 13, 357–361. [Google Scholar] [CrossRef]
- Kim, B.; Loke, Y.-H.; Mass, P.; Irwin, M.R.; Capeland, C.; Olivieri, L.; Krieger, A. A novel virtual reality medical image display system for group discussions of congenital heart disease: Development and usability testing. JMIR Cardio 2020, 4, e20633. [Google Scholar] [CrossRef]
- Priya, S.; La Russa, D.; Walling, A.; Goetz, S.; Hartig, T.; Khayat, A.; Gupta, P.; Nagpal, P.; Ashwath, R. From Vision to Reality: Virtual Reality’s Impact on Baffle Planning in Congenital Heart Disease. Pediatr. Cardiol. 2024, 45, 165–174. [Google Scholar] [CrossRef]
- Kiraly, L.; Shah, N.C.; Abdullah, O.; Al-Ketan, O.; Rowshan, R. Three-dimensional virtual and printed prototypes in complex congenital and pediatric cardiac surgery—A multidisciplinary team-learning experience. Biomolecules 2021, 11, 1703. [Google Scholar] [CrossRef]
- Lau, I.; Gupta, A.; Ihdayhid, A.; Sun, Z. Clinical applications of mixed reality and 3D printing in congenital heart disease. Biomolecules 2022, 12, 1548. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.R.; Wilson, H.C.; Axelrod, D.M.; Werho, D.K.; Handler, S.S.; Yu, S.; Afton, K.; Lowery, R.; Mullan, P.B.; Cooke, J. Virtual reality curriculum increases paediatric residents’ knowledge of CHDs. Cardiol. Young 2023, 33, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, F.S.; Erkan, B.; Koyuncu, S.B.; Komşal, Z.R.; Çiçek, F.E.; Ülker, M.; Toklu, M.; Atlan, M.; Kıyak, Y.S.; Kula, S. Effectiveness of using 2D atlas and 3D PDF as a teaching tool in anatomy lectures in initial learners: A randomized controlled trial in a medical school. BMC Med. Educ. 2023, 23, 962. [Google Scholar] [CrossRef] [PubMed]
- Valverde, I.; Gomez-Ciriza, G.; Hussain, T.; Suarez-Mejias, C.; Velasco-Forte, M.N.; Byrne, N.; Ordoñez, A.; Gonzalez-Calle, A.; Anderson, D.; Hazekamp, M.G. Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study. Eur. J. Cardiothorac. Surg. 2017, 52, 1139–1148. [Google Scholar] [CrossRef]
- Sun, Z.; Wong, Y.H.; Yeong, C.H. Patient-specific 3D-printed low-cost models in medical education and clinical practice. Micromachines 2023, 14, 464. [Google Scholar] [CrossRef]
- Traynor, G.; Shearn, A.I.; Milano, E.G.; Ordonez, M.V.; Velasco Forte, M.N.; Caputo, M.; Schievano, S.; Mustard, H.; Wray, J.; Biglino, G. The use of 3D-printed models in patient communication: A scoping review. J. 3D Print. Med. 2022, 6, 13–23. [Google Scholar] [CrossRef]
- Castellanos, J.M.; Barbery, D.; Yefimov, A.; Dang, P.N. Preoperative planning using virtual reality for percutaneous transseptal valve-in-valve transcatheter mitral valve replacement: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac384. [Google Scholar] [CrossRef]
- Raimondi, F.; Vida, V.; Godard, C.; Bertelli, F.; Reffo, E.; Boddaert, N.; EI Beheiry, M.; Masson, J.B. Fast-track virtual reality for cardiac imaging in congenital heart disease. J. Card. Surg. 2021, 36, 2598–2602. [Google Scholar] [CrossRef]
- Illmann, C.F.; Hosking, M.; Harris, K.C. Utility and access to 3-dimensional printing in the context of congenital heart disease: An international physician survey study. CJC Open 2020, 2, 207–213. [Google Scholar] [CrossRef]
- Deng, X.; He, S.; Huang, P.; Luo, J.; Yang, G.; Zhou, B.; Xiao, Y. A three-dimensional printed model in preoperative consent for ventricular septal defect repair. J. Cardiothorac. Surg. 2021, 16, 229. [Google Scholar] [CrossRef]
Variables | No. of Participants (%) |
---|---|
Sex | |
Male | 12 (70.6) |
Female | 5 (29.4) |
Working Experience (years) | |
Below 10 | 3 (17.6) |
10 to 20 | 11 (64.8) |
Above 20 | 3 (17.6) |
Occupation | |
Cardiac surgeon | 3 (17.6) |
Cardiologist | 13 (76.5) |
Radiologist | 1 (5.9) |
Question | Modality | Ventricular Septal Defect | Double-Outlet Right Ventricle | Tetralogy of Fallot | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | p-Value | Mean | SD | p-Value | Mean | SD | p-Value | ||
Assessment of anatomicallocation and vessels | 3DPHM | 1.82 | 0.64 | 0.05 | 2.18 | 0.53 | 0.01 | 2.17 | 0.53 | 0.05 |
VR | 1.65 | 0.79 | 1.68 | 0.86 | 1.64 | 0.93 | ||||
3D PDF | 3.59 | 0.62 | 3.71 | 0.77 | 3.71 | 0.59 | ||||
DICOM | 2.82 | 1.19 | 2.47 | 1.12 | 2.47 | 1.17 | ||||
Spatial relationship between the cardiac structures | 3DPHM | 1.76 | 0.66 | 0.00 | 1.94 | 0.66 | 0.02 | 1.94 | 0.66 | 0.01 |
VR | 1.53 | 0.71 | 1.41 | 0.71 | 1.59 | 0.93 | ||||
3D PDF | 3.41 | 0.79 | 3.47 | 0.79 | 3.47 | 0.62 | ||||
DICOM | 3.29 | 0.77 | 3.18 | 0.81 | 3.12 | 1.06 | ||||
Visualize the heart defects | 3DPHM | 1.53 | 0.51 | 0.05 | 1.94 | 0.56 | 0.05 | 1.94 | 0.66 | 0.05 |
VR | 1.89 | 0.78 | 1.71 | 0.85 | 1.82 | 0.95 | ||||
3D PDF | 3.59 | 0.62 | 3.47 | 0.79 | 3.53 | 0.62 | ||||
DICOM | 2.94 | 1.09 | 2.88 | 1.22 | 2.71 | 1.26 | ||||
Learn about the pathology | 3DPHM | 1.65 | 0.51 | 0.00 | 1.71 | 0.59 | 0.01 | 1.76 | 0.56 | 0.01 |
VR | 1.59 | 0.79 | 1.53 | 0.72 | 1.65 | 0.93 | ||||
3D PDF | 3.41 | 0.62 | 3.53 | 0.62 | 3.68 | 0.61 | ||||
DICOM | 3.35 | 0.87 | 3.24 | 0.83 | 2.94 | 0.89 | ||||
Presurgical tool | 3DPHM | 2.18 | 0.53 | 0.00 | 1.82 | 0.53 | 0.03 | 1.88 | 0.49 | 0.03 |
VR | 1.41 | 0.71 | 1.35 | 0.71 | 1.47 | 0.94 | ||||
3D PDF | 3.59 | 0.87 | 3.71 | 0.59 | 3.65 | 0.61 | ||||
DICOM | 2.82 | 1.01 | 3.11 | 0.61 | 3.11 | 0.79 | ||||
Medical education | 3DPHM | 1.59 | 0.51 | 0.01 | 1.47 | 0.51 | 0.03 | 1.59 | 0.51 | 0.03 |
VR | 1.53 | 0.72 | 1.76 | 0.75 | 1.71 | 0.92 | ||||
3D PDF | 3.35 | 0.71 | 3.29 | 0.69 | 3.41 | 0.62 | ||||
DICOM | 3.53 | 0.53 | 3.47 | 0.79 | 3.29 | 0.85 | ||||
Communication tools | 3DPHM | 1.06 | 0.24 | 0.00 | 1.06 | 0.24 | 0.00 | 1.06 | 0.24 | 0.00 |
VR | 2.76 | 0.67 | 2.82 | 0.64 | 2.71 | 0.69 | ||||
3D PDF | 2.52 | 0.87 | 2.47 | 0.81 | 2.59 | 0.87 | ||||
DICOM | 3.65 | 0.61 | 3.71 | 0.59 | 3.65 | 0.61 | ||||
Reduce errors during the surgery | 3DPHM | 2.01 | 0.78 | 0.36 | 1.94 | 0.66 | 0.85 | 2.17 | 0.6 | 0.92 |
VR | 1.98 | 0.92 | 2.01 | 0.87 | 1.95 | 0.99 | ||||
3D PDF | 2.98 | 0.56 | 2.88 | 0.75 | 2.59 | 0.61 | ||||
DICOM | 2.65 | 0.86 | 2.65 | 0.79 | 2.82 | 0.95 |
Location | Modality | Mean | SD |
---|---|---|---|
Heart chamber | 3DPHM | 1.65 | 0.61 |
VR | 1.12 | 0.33 | |
3D PDF | 2.06 | 0.65 | |
DICOM | 1.29 | 0.47 | |
Aorta | 3DPHM | 1.18 | 0.39 |
VR | 1.12 | 0.33 | |
3D PDF | 1.41 | 0.62 | |
DICOM | 1.05 | 0.24 | |
Pulmonary artery | 3DPHM | 1.12 | 0.33 |
VR | 1.06 | 0.24 | |
3D PDF | 1.41 | 0.61 | |
DICOM | 1.06 | 0.24 | |
Defect | 3DPHM | 1.29 | 0.47 |
VR | 1.18 | 0.39 | |
3D PDF | 2.24 | 0.75 | |
DICOM | 1.76 | 0.83 |
Question | Modality | Mean | SD |
---|---|---|---|
Usefulness for presurgical planning | 3DPHM | 8.47 | 1.07 |
VR | 8.71 | 1.1 | |
3D PDF | 5.25 | 1.41 | |
DICOM | 7.82 | 0.95 | |
Usefulness of educational tools for medical students or junior doctors | 3DPHM | 8.94 | 0.83 |
VR | 9.12 | 1.11 | |
3D PDF | 4.65 | 1.77 | |
DICOM | 7.18 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-y.; Squelch, A.; Sun, Z. Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 278. https://doi.org/10.3390/jcdd11090278
Lee S-y, Squelch A, Sun Z. Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease. Journal of Cardiovascular Development and Disease. 2024; 11(9):278. https://doi.org/10.3390/jcdd11090278
Chicago/Turabian StyleLee, Shen-yuan, Andrew Squelch, and Zhonghua Sun. 2024. "Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease" Journal of Cardiovascular Development and Disease 11, no. 9: 278. https://doi.org/10.3390/jcdd11090278
APA StyleLee, S. -y., Squelch, A., & Sun, Z. (2024). Investigation of the Clinical Value of Four Visualization Modalities for Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 11(9), 278. https://doi.org/10.3390/jcdd11090278