Rapid Improvement in Cardiac Damage Predicts Better Prognosis After Transcatheter Aortic Valve Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Study Procedure
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Baseline Characteristics | Cardiac Damage Improved (n = 16) | Cardiac Damage Not Improved (n = 43) | p-Value |
---|---|---|---|
Age, years | 80.8 ± 8.3 | 81.9 ± 7.8 | 0.626 |
Male, n (%) | 9 (56.3%) | 21 (48.8%) | 0.613 |
Body mass index, kg/m2 | 24.6 ± 3.3 | 24.7 ± 3.8 | 0.925 |
Hypertension, n (%) | 13 (81.3%) | 40 (90.3%) | 0.183 |
Diabetes mellitus, n (%) | 7 (43.8%) | 27 (62.8%) | 0.188 |
Heart failure, n (%) | 10 (62.5%) | 21 (48.8%) | 0.350 |
Atrial fibrillation, n (%) | 4 (25.0%) | 12 (27.9%) | 0.823 |
Coronary artery disease, n (%) | 9 (56.3%) | 22 (51.2%) | 0.728 |
Triple vessel ± left main disease, n (%) | 4 (25.0%) | 9 (20.9%) | 0.737 |
Coronary artery bypass graft, n (%) | 2 (12.5%) | 4 (9.3%) | 0.718 |
Cerebrovascular disease, n (%) | 0 (0.0%) | 5 (11.6%) | 0.154 |
PAOD, n (%) | 3 (18.8%) | 10 (23.3%) | 0.710 |
Chronic kidney disease, n (%) | 7 (43.8%) | 27 (62.8%) | 0.188 |
Asthma or COPD, n (%) | 2 (12.5%) | 4 (9.3%) | 0.718 |
Prior permanent pacemaker, n (%) | 2 (12.5%) | 6 (14.0%) | 0.885 |
STS risk score, % | 9.0 ± 7.9 | 8.9 ± 6.8 | 0.955 |
Echocardiographic findings | |||
Left ventricular ejection fraction, % | 55.6 ± 13.6 | 59.2 ± 15.1 | 0.416 |
AV peak velocity, m/s | 4.4 ± 0.6 | 4.0 ± 1.0 | 0.054 |
AV mean pressure gradient, mmHg | 44.8 ± 13.4 | 39.4 ± 20.1 | 0.248 |
Moderate or severe MR, n (%) | 1 (6.3%) | 10 (23.3%) | 0.136 |
Moderate or severe TR, n (%) | 4 (25.0%) | 6 (14.0%) | 0.315 |
PASP ≥ 60 mmHg, n (%) | 6 (37.5%) | 2 (4.7%) | 0.001 |
PASP, mmHg | 52.9 ± 13.8 1 | 41.1 ± 11.2 2 | 0.002 |
Procedural findings | |||
Nontrans-femoral access, n (%) | 0 (0.0%) | 3 (7.0%) | 0.278 |
Self-expanding valve, n (%) | 14 (87.5%) | 40 (93.0%) | 0.498 |
Balloon-expandable valve, n (%) | 2 (12.5%) | 3 (7.0%) | 0.498 |
Post-TAVR Change | ||||
---|---|---|---|---|
Baseline | Post-TAVR | Abnormal at Baseline and Normalized After TAVR | Normal at Baseline and Worsened After TAVR | |
Stage 1 | ||||
Increased LV mass index | 16/64 (25.0%) | 16/64 (25.0%) | 5/16 (31.3%) | 5/48 (10.4%) |
E/e′ > 14 | 27/41 (42.2%) | 26/41 (40.6%) | 3/18 (16.7%) | 3/12 (25%) |
LVEF < 50% | 15/64 (23.4%) | 10/64 (15.6%) | 5/15 (33.3%) | 0/49 (0.0%) |
Stage 2 | ||||
LAVi > 34 mL/m2 | 47/64 (73.4%) | 44/64 (68.6%) | 9/47 (19.1%) | 6/17 (35.3%) |
Atrial fibrillation | 16/64 (25.0%) | 16/64 (25.0%) | 0/16 (0.0%) | 0/48 (0.0%) |
Moderate/Severe MR | 11/64 (17.2%) | 5/64 (7.8%) | 8/11 (72.7%) | 2/53 (3.8%) |
Stage 3 | ||||
PASP ≥ 60 mmHg | 8/64 (12.5%) | 6/64 (9.4%) | 8/8 (100.0%) | 6/56 (10.7%) |
Moderate/Severe TR | 10/64 (15.6%) | 12/64 (18.8%) | 5/10 (50.0%) | 7/54 (13.0%) |
Stage 4 | ||||
RV dysfunction | 4/64 (6.3%) | 6/64 (9.4%) | 0/4 (0.0%) | 2/60 (3.3%) |
References
- Fukui, M.; Gupta, A.; Abdelkarim, I.; Sharbaugh, M.S.; Althouse, A.D.; Elzomor, H.; Mulukutla, S.; Lee, J.S.; Schindler, J.T.; Gleason, T.G.; et al. Association of Structural and Functional Cardiac Changes with Transcatheter Aortic Valve Replacement Outcomes in Patients with Aortic Stenosis. JAMA Cardiol. 2019, 4, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.M.; Holmes, D.R.; Sherwood, M.W.; Edwards, F.H.; Carroll, J.D.; Grover, F.L.; Tuzcu, E.M.; Thourani, V.; Brindis, R.G.; Shahian, D.M.; et al. The association of transcatheter aortic valve replacement availability and hospital aortic valve replacement volume and mortality in the United States. Ann. Thorac. Surg. 2014, 98, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Pibarot, P.; Arnold, S.V.; Suri, R.M.; McAndrew, T.C.; Maniar, H.S.; Zajarias, A.; Kodali, S.; Kirtane, A.J.; Thourani, V.H.; et al. Transcatheter versus surgical aortic valve replacement in patients with diabetes and severe aortic stenosis at high risk for surgery: An analysis of the PARTNER Trial (Placement of Aortic Transcatheter Valve). J. Am. Coll. Cardiol. 2014, 63, 1090–1099. [Google Scholar] [CrossRef]
- Deeb, G.M.; Reardon, M.J.; Chetcuti, S.; Patel, H.J.; Grossman, P.M.; Yakubov, S.J.; Kleiman, N.S.; Coselli, J.S.; Gleason, T.G.; Lee, J.S.; et al. 3-Year Outcomes in High-Risk Patients Who Underwent Surgical or Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2016, 67, 2565–2574. [Google Scholar] [CrossRef]
- Mesnier, J.; Ternacle, J.; Cheema, A.N.; Campelo-Parada, F.; Urena, M.; Veiga-Fernandez, G.; Nombela-Franco, L.; Munoz-Garcia, A.J.; Vilalta, V.; Regueiro, A.; et al. Cardiac Death After Transcatheter Aortic Valve Replacement with Contemporary Devices. JACC Cardiovasc. Interv. 2023, 16, 2277–2290. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2438–2488. [Google Scholar] [CrossRef]
- Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS); Vahanian, A.; Alfieri, O.; Andreotti, F.; Antunes, M.J.; Barón-Esquivias, G.; Baumgartner, H.; Borger, M.A.; Carrel, T.P.; et al. Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J. 2012, 33, 2451–2496. [Google Scholar]
- Généreux, P.; Pibarot, P.; Redfors, B.; Mack, M.J.; Makkar, R.R.; Jaber, W.A.; Svensson, L.G.; Kapadia, S.; Tuzcu, E.M.; Thourani, V.H.; et al. Staging classification of aortic stenosis based on the extent of cardiac damage. Eur. Heart J. 2017, 38, 3351–3358. [Google Scholar] [CrossRef]
- Vollema, E.M.; Amanullah, M.R.; Ng, A.C.T.; van der Bijl, P.; Prevedello, F.; Sin, Y.K.; Prihadi, E.A.; Marsan, N.A.; Ding, Z.P.; Généreux, P.; et al. Staging Cardiac Damage in Patients with Symptomatic Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2019, 74, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Berkovitch, A.; Barbash, I.M.; Finkelstein, A.; Assali, A.R.; Danenberg, H.; Fefer, P.; Maor, E.; Zhitomirsky, S.; Orvin, K.; Zekry, S.B.; et al. Validation of cardiac damage classification and addition of albumin in a large cohort of patients undergoing transcatheter aortic valve replacement. Int. J. Cardiol. 2020, 304, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.T.; Weber, L.; Weilenmann, D.; Haager, P.K.; Joerg, L.; Taramasso, M.; Buser, M.; Ehl, N.F.; Maisano, F.; Rickli, H. Invasive Hemodynamic Staging Classification of Cardiac Damage in Patients with Aortic Stenosis Undergoing Valve Replacement. Can. J. Cardiol. 2020, 36, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Cohen, D.J.; Pibarot, P.; Redfors, B.; Bax, J.J.; Zhao, Y.; Prince, H.; Makkar, R.R.; Kapadia, S.; Thourani, V.H.; et al. Cardiac Damage and Quality of Life After Aortic Valve Replacement in the PARTNER Trials. J. Am. Coll. Cardiol. 2023, 81, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Vollema, E.M.; Amanullah, M.R.; Prihadi, E.A.; Ng, A.C.T.; van der Bijl, P.; Sin, Y.K.; Ajmone Marsan, N.; Ding, Z.P.; Généreux, P.; Leon, M.B.; et al. Incremental value of left ventricular global longitudinal strain in a newly proposed staging classification based on cardiac damage in patients with severe aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 1248–1258. [Google Scholar] [CrossRef]
- Schewel, J.; Kuck, K.H.; Frerker, C.; Schmidt, T.; Schewel, D. Outcome of aortic stenosis according to invasive cardiac damage staging after transcatheter aortic valve replacement. Clin. Res. Cardiol. 2021, 110, 699–710. [Google Scholar] [CrossRef]
- Okuno, T.; Heg, D.; Lanz, J.; Stortecky, S.; Praz, F.; Windecker, S.; Pilgrim, T. Staging cardiac damage associated with aortic stenosis in patients undergoing transcatheter aortic valve implantation. Int. J. Cardiol. Heart Vasc. 2021, 33, 100768. [Google Scholar] [CrossRef]
- Snir, A.D.; Ng, M.K.; Strange, G.; Playford, D.; Stewart, S.; Celermajer, D.S.; National Echo Database of Australia. Cardiac Damage Staging Classification Predicts Prognosis in All the Major Subtypes of Severe Aortic Stenosis: Insights from the National Echo Database Australia. J. Am. Soc. Echocardiogr. 2021, 34, 1137–1147.e13. [Google Scholar] [CrossRef]
- Avvedimento, M.; Franzone, A.; Leone, A.; Piccolo, R.; Castiello, D.S.; Ilardi, F.; Mariani, A.; Esposito, R.; Iapicca, C.; Angellotti, D.; et al. Extent of Cardiac Damage and Mortality in Patients Undergoing Transcatheter Aortic Valve Implantation. J. Clin. Med. 2021, 10, 4563. [Google Scholar] [CrossRef]
- Zhu, Q.; Yuan, Z.; Xu, Y.; Chen, J.; Ng, S.; Yidilisi, A.; Ren, K.; Chen, Y.; Hu, W.; Zhu, G.; et al. Validation of a novel staging classification system based on the extent of cardiac damage among Chinese patients after transcatheter aortic valve replacement: A single-center retrospective study. Catheter. Cardiovasc. Interv. 2022, 99 (Suppl. 1), 1482–1489, Erratum in Catheter. Cardiovasc. Interv. 2024, 103, 1078. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F., Jr.; Otto, C.M. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 254–275. [Google Scholar] [CrossRef]
- Généreux, P.; Pibarot, P.; Redfors, B.; Bax, J.J.; Zhao, Y.; Makkar, R.R.; Kapadia, S.; Thourani, V.H.; Mack, M.J.; Nazif, T.M.; et al. Evolution and Prognostic Impact of Cardiac Damage After Aortic Valve Replacement. J. Am. Coll. Cardiol. 2022, 80, 783–800. [Google Scholar] [CrossRef]
- Nakase, M.; Tomii, D.; Heg, D.; Praz, F.; Stortecky, S.; Reineke, D.; Samim, D.; Lanz, J.; Windecker, S.; Pilgrim, T. Long-Term Impact of Cardiac Damage Following Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2024, 17, 992–1003. [Google Scholar] [CrossRef]
- Lee, C.H.; Inohara, T.; Hayashida, K.; Park, D.W. Transcatheter Aortic Valve Replacement in Asia: Present Status and Future Perspectives. JACC Asia 2021, 1, 279–293. [Google Scholar] [CrossRef]
- Watanabe, Y.; Morice, M.C.; Kozuma, K.; Yamamoto, M.; Kawashima, H.; Yashima, F.; Inohara, T.; Bouvier, E.; Arai, T.; Fukuda, K.; et al. Comparison of aortic annulus dimensions between Japanese and European patients undergoing transcatheter aortic valve implantation as determined by multi-detector computed tomography: Results from the OCEAN-TAVI (Optimised transCathEter vAlvular interveNtion) registry and a European single-centre cohort. AsiaIntervention 2016, 2, 49–56. [Google Scholar]
- Zhou, Y.; Zhu, Q.; Lin, X.; Li, H.; Pu, Z.; Liu, X.; Wang, J. Impact of early changes in cardiac damage following transcatheter aortic valve implantation. EuroIntervention 2023, 19, 267–276. [Google Scholar]
- Myon, F.; Marut, B.; Kosmala, W.; Auffret, V.; Leurent, G.; L’official, G.; Curtis, E.; Le Breton, H.; Oger, E.; Donal, E. Transcatheter aortic valve implantation in severe aortic stenosis does not necessarily reverse left ventricular myocardial damage: Data of long-term follow-up. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, P.; Belmonte, M.; Gallinoro, E.; Scarsini, R.; Bergamaschi, L.; Portolan, L.; Armillotta, M.; Esposito, G.; Moscarella, E.; Benfari, G.; et al. SGLT2-inhibitors in diabetic patients with severe aortic stenosis and cardiac damage undergoing transcatheter aortic valve implantation (TAVI). Cardiovasc. Diabetol. 2024, 23, 420. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.J.; Wenaweser, P.; Ceylan, O.; Rat-Wirtzler, J.; Stortecky, S.; Heg, D.; Spitzer, E.; Zanchin, T.; Praz, F.; Tüller, D.; et al. Effect of Pulmonary Hypertension Hemodynamic Presentation on Clinical Outcomes in Patients with Severe Symptomatic Aortic Valve Stenosis Undergoing Transcatheter Aortic Valve Implantation: Insights From the New Proposed Pulmonary Hypertension Classification. Circ. Cardiovasc. Interv. 2015, 8, e002358. [Google Scholar]
- Weber, L.; Rickli, H.; Haager, P.K.; Joerg, L.; Weilenmann, D.; Brenner, R.; Taramasso, M.; Baier, P.; Maisano, F.; Maeder, M.T. Haemodynamic mechanisms and long-term prognostic impact of pulmonary hypertension in patients with severe aortic stenosis undergoing valve replacement. Eur. J. Heart Fail. 2019, 21, 172–181. [Google Scholar] [CrossRef]
All (n = 64) | Stage 0 (n = 5) | Stage 1 (n = 8) | Stage 2 (n = 33) | Stage 3 (n = 14) | Stage 4 (n = 4) | p-Value | |
---|---|---|---|---|---|---|---|
Age, years | 81.7 ± 7.7 | 82.6 ± 5.9 | 79.0 ± 7.8 | 81.7 ± 7.3 | 81.6 ± 9.0 | 86.0 ± 9.6 | 0.692 |
Male, n (%) | 34 (53.1%) | 4 (80.0%) | 5 (62.5%) | 18 (54.5%) | 5 (35.7%) | 2 (50.0%) | 0.481 |
Body mass index, kg/m2 | 24.7 ± 3.6 | 25.3 ± 2.9 | 23.4 ± 2.8 | 25.2 ± 3.8 | 24.3 ± 3.9 | 24.2 ± 2.6 | 0.711 |
Hypertension, n (%) | 57 (89.1%) | 4 (80.0%) | 7 (87.5%) | 29 (87.9%) | 13 (92.9%) | 4 (100.0%) | 0.880 |
Diabetes mellitus, n (%) | 35 (54.7%) | 1 (20.0%) | 5 (62.5%) | 18 (54.5%) | 9 (64.3%) | 2 (50.0%) | 0.528 |
Heart failure, n (%) | 32 (50.0%) | 1 (20.0%) | 2 (25.0%) | 14 (42.4%) | 11 (78.6%) | 4 (100.0%) | 0.011 |
Atrial fibrillation, n (%) | 16 (25.0%) | 0 (0.0%) | 0 (0.0%) | 7 (21.2%) | 7 (50.0%) | 2 (50.0%) | 0.032 |
Coronary artery disease, n (%) | 33 (51.6%) | 2 (40.0%) | 4 (50.0%) | 15 (45.5%) | 8 (57.1%) | 4 (100.0%) | 0.319 |
Triple vessel ± LM disease, n (%) | 14 (21.9%) | 1 (20.0%) | 2 (25.0%) | 6 (18.2%) | 4 (28.6%) | 1 (25.0%) | 0.950 |
Coronary artery bypass graft, n (%) | 7 (10.9%) | 1 (20.0%) | 1 (12.5%) | 3 (9.1%) | 2 (14.3%) | 0 (0.0%) | 0.877 |
Cerebrovascular disease, n (%) | 5 (7.8%) | 0 (0.0%) | 1 (12.5%) | 3 (9.1%) | 1 (7.1%) | 0 (0.0%) | 0.896 |
PAOD, n (%) | 14 (21.9%) | 1 (20.0%) | 4 (50.0%) | 8 (24.2%) | 1 (7.1%) | 0 (0.0%) | 0.151 |
Chronic kidney disease, n (%) | 37 (57.8%) | 3 (60.0%) | 5 (62.5%) | 17 (51.5%) | 9 (64.3%) | 3 (75.0%) | 0.854 |
Asthma or COPD, n (%) | 8 (12.5%) | 2 (40.0%) | 2 (25.0%) | 3 (9.1%) | 1 (7.1%) | 0 (0.0%) | 0.208 |
Prior permanent pacemaker, n (%) | 8 (12.5%) | 0 (0.0%) | 0 (0.0%) | 5 (15.2%) | 1 (7.1%) | 2 (50.0%) | 0.108 |
STS risk score, % | 8.5 ± 7.0 | 3.4 ± 1.8 | 9.5 ± 5.3 | 6.4 ± 4.8 | 13.6 ± 8.8 | 12.2 ± 11.7 | 0.004 |
Echocardiographic findings | |||||||
LVEF, % | 58.9 ± 14.4 | 67.2 ± 4.2 | 56.5 ± 20.2 | 62.2 ± 11.8 | 52.9 ± 14.7 | 47.8 ± 16.7 | 0.070 |
AV peak velocity, m/s | 4.1 ± 0.9 | 3.9 ± 0.5 | 4.4 ± 0.9 | 4.2 ± 1.0 | 3.9 ± 0.6 | 3.3 ± 0.6 | 0.149 |
AV MPG, mmHg | 40.5 ± 18.4 | 37.0 ± 11.1 | 45.6 ± 18.6 | 44.4 ± 21.0 | 34.1 ± 11.8 | 25.3 ± 9.4 | 0.150 |
Moderate or severe MR, n (%) | 11 (17.2%) | 0 (0.0%) | 1 (12.5%) | 5 (15.2%) | 4 (28.6%) | 1 (25.0%) | 0.609 |
Moderate or severe TR, n (%) | 10 (15.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 9 (64.3%) | 1 (25.0%) | <0.001 |
PASP ≥ 60 mmHg, n (%) | 8 (12.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 7 (50.0%) | 1 (25.0%) | <0.001 |
PASP, mmHg | 43.0 ± 13.0 1 | 29.2 ± 2.2 | 37.4 ± 7.0 | 39.5 ± 10.3 2 | 58.0 ± 10.0 | 46.0 ± 15.2 | <0.001 |
Procedural findings | |||||||
Nontrans-femoral access, n (%) | 3 (4.7%) | 0 (0.0%) | 0 (0.0%) | 1 (3.0%) | 0 (0.0%) | 2 (50.0%) | <0.001 |
Self-expanding valve, n (%) | 59 (92.2%) | 5 (100.0%) | 7 (87.5%) | 32 (97.0%) | 11 (78.6%) | 4 (100.0%) | 0.226 |
Balloon-expandable valve, n (%) | 5 (7.8%) | 0 (0.0%) | 1 (12.5%) | 1 (3.0%) | 3 (21.4%) | 0 (0.0%) | 0.226 |
Cardiac Damage Change | |||||||
---|---|---|---|---|---|---|---|
Stage 1–4 (n = 59) | Stage 0–3 (n = 60) | ||||||
All (n = 64) | Improved (n = 16) | Not Improved (n = 43) | p-Value | Worsening (n = 13) | Not Worsening (n = 47) | p-Value | |
Primary outcome | |||||||
Mortality or HF hospitalization, n (%) | 22 (34.4%) | 2 (12.5%) | 19 (44.2%) | 0.024 | 4 (30.8%) | 16 (34.0%) | 0.825 |
Secondary outcomes | |||||||
Mortality, n (%) | 16 (25.0%) | 2 (12.5%) | 13 (30.2%) | 0.164 | 3 (23.1%) | 12 (25.5%) | 0.856 |
HF hospitalization, n (%) | 6 (9.4%) | 0 (0.0%) | 6 (14.0%) | 0.115 | 1 (7.7%) | 4 (8.5%) | 0.925 |
New-onset LBBB, n (%) | 6 (9.4%) | 1 (6.3%) | 5 (11.6%) | 0.543 | 0 (0.0%) | 5 (10.6%) | 0.219 |
PPM implantation 1, n (%) | 5 (7.8%) | 0 (0.0%) | 4 (9.3%) | 0.206 | 1 (7.7%) | 4 (8.5%) | 0.925 |
Univariable | Multivariable | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age, years | 1.152 (1.043–1.272) | 0.005 | 1.139 (1.021–1.270) | 0.019 |
Male | 1.100 (0.379–3.196) | 0.861 | ||
Body mass index, kg/m2 | 0.788 (0.646–0.961) | 0.018 | 0.804 (0.625–1.033) | 0.088 |
Hypertension | 0.514 (0.094–2.810) | 0.443 | ||
Diabetes mellitus | 0.390 (0.131–1.164) | 0.092 | 0.277 (0.058–1.332) | 0.109 |
Heart failure | 1.333 (0.456–3.899) | 0.599 | ||
Atrial fibrillation | 0.767 (0.225–2.610) | 0.671 | ||
Coronary artery disease | 0.736 (0.253–2.143) | 0.574 | ||
Triple vessel ± LM disease | 0.758 (0.202–2.842) | 0.681 | ||
CABG | 0.330 (0.036–3.031) | 0.327 | ||
Cerebrovascular disease | 1.228 (0.188–8.003) | 0.830 | ||
PAOD | 1.172 (0.329–4.179) | 0.807 | ||
Chronic kidney disease | 2.500 (0.799–7.821) | 0.115 | 2.806 (0.637–12.360) | 0.173 |
Asthma or COPD | 1.172 (0.329–4.179) | 0.807 | ||
Prior permanent pacemaker | 1.100 (0.235–5.143) | 0.904 | ||
STS risk score, % | 1.025 (0.952–1.104) | 0.512 | ||
LVEF, % | 1.009 (0.972–1.047) | 0.645 | ||
AV peak velocity, m/s | 0.868 (0.482–1.564) | 0.638 | ||
AV MPG, mmHg | 1.005 (0.977–1.034) | 0.744 | ||
Moderate or severe MR | 1.667 (0.441–6.301) | 0.452 | ||
Moderate or severe TR | 1.255 (0.311–5.065) | 0.750 | ||
PASP ≥ 60 mmHg | 1.100 (0.235–5.143) | 0.904 | ||
Nontrans-femoral access | 0.900 (0.077–10.554) | 0.933 | ||
Self-expanding valve | 0.814 (0.125–5.306) | 0.830 | ||
Cardiac damage improved | 0.180 (0.036–0.893) | 0.036 | 0.095 (0.014–0.627) | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-W.; Chin, C.-H.; Chou, P.-c.; Chang, C.-H.; Tsai, C.-L.; Huang, C.-H. Rapid Improvement in Cardiac Damage Predicts Better Prognosis After Transcatheter Aortic Valve Replacement. J. Cardiovasc. Dev. Dis. 2025, 12, 29. https://doi.org/10.3390/jcdd12010029
Lee H-W, Chin C-H, Chou P-c, Chang C-H, Tsai C-L, Huang C-H. Rapid Improvement in Cardiac Damage Predicts Better Prognosis After Transcatheter Aortic Valve Replacement. Journal of Cardiovascular Development and Disease. 2025; 12(1):29. https://doi.org/10.3390/jcdd12010029
Chicago/Turabian StyleLee, Hao-Wei, Chih-Hui Chin, Po-chin Chou, Chia-Hsiu Chang, Chiu-Ling Tsai, and Chi-Hung Huang. 2025. "Rapid Improvement in Cardiac Damage Predicts Better Prognosis After Transcatheter Aortic Valve Replacement" Journal of Cardiovascular Development and Disease 12, no. 1: 29. https://doi.org/10.3390/jcdd12010029
APA StyleLee, H.-W., Chin, C.-H., Chou, P.-c., Chang, C.-H., Tsai, C.-L., & Huang, C.-H. (2025). Rapid Improvement in Cardiac Damage Predicts Better Prognosis After Transcatheter Aortic Valve Replacement. Journal of Cardiovascular Development and Disease, 12(1), 29. https://doi.org/10.3390/jcdd12010029