Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size Calculation
2.3. Exercise Protocols
2.3.1. Resistance Training
2.3.2. High Intensity Interval Training
2.4. Outcomes
2.4.1. Body Composition
2.4.2. Cardiovascular Parameters
2.4.3. Individual Responses to Exercise: NRs and Rs
2.4.4. Time-Based Adaptations Between NRs and Rs
2.4.5. Classification Blood Pressure
2.5. Statistical Analyses
3. Results
3.1. Baseline Measurements
3.2. Changes in Blood Pressure According to Group and Evaluation Time
3.3. Interindividual Response to Exercise: Variations in NRs
3.4. Key Findings on Time-Based Adaptations Between NRs and Rs
3.5. Observed Blood Pressure Category Distribution After Intervention
4. Discussion
4.1. Aggregate Effects of RT and HIIT
4.2. Inter-Individual Variability in Response to Exercise
4.3. Insights on Time-Based Adaptations Between NRs and Rs
4.4. Insights on Blood Pressure Category Distribution After Intervention
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Willumsen, J.; Meheus, F.; Ilbawi, A.; Bull, F.C. The cost of inaction on physical inactivity to public health-care systems: A population-attributable fraction analysis. Lancet Glob. Health 2023, 11, e32–e39. [Google Scholar] [CrossRef] [PubMed]
- Kerr, N.R.; Booth, F.W. Contributions of physical inactivity and sedentary behavior to metabolic and endocrine diseases. Trends Endocrinol. Metab. 2022, 33, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Paynter, N.P.; Kiefe, C.I.; Lewis, C.E.; Loria, C.M.; Goff, D.C.; Lloyd-Jones, D.M. Accumulation of metabolic cardiovascular risk factors in black and white young adults over 20 years. J. Am. Heart Assoc. 2015, 4, 4. [Google Scholar] [CrossRef]
- Edwards, J.J.; Deenmamode, A.H.P.; Griffiths, M.; Arnold, O.; Cooper, N.J.; Wiles, J.D.; O’Driscoll, J.M. Exercise training and resting blood pressure: A large-scale pairwise and network meta-analysis of randomised controlled trials. Br. J. Sports Med. 2023, 57, 1317–1326. [Google Scholar] [CrossRef]
- Henkin, J.S.; Pinto, R.S.; Machado, C.L.F.; Wilhelm, E.N. Chronic effect of resistance training on blood pressure in older adults with prehypertension and hypertension: A systematic review and meta-analysis. Exp. Gerontol. 2023, 177, 112193. [Google Scholar] [CrossRef]
- Martin, K.; Sinden, A. Who will stay and who will go? A review of older adults’ adherence to randomized controlled trials of exercise. J. Aging Phys. Act. 2001, 9, 91–114. [Google Scholar] [CrossRef]
- Cigarroa, I.; Zapata-Lamana, R.; Leiva-Gajardo, G.; Vasquez, E.; Parrado-Romero, E.; Vásquez-Gomez, J.; Alvarez, C.; Petermann-Rocha, F.; Reyes-Molina, D. Adherence characteristics and reasons for abandonment of physical exercise-based interventions in older adults in Latin America: A scoping review (Características de la adherencia y motivos del abandono de las intervenciones basadas en el ejercicio físic. Retos 2021, 44, 10–26. [Google Scholar] [CrossRef]
- Costa, E.C.; Hay, J.L.; Kehler, D.S.; Boreskie, K.F.; Arora, R.C.; Umpierre, D.; Szwajcer, A.; Duhamel, T.A. Effects of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training On Blood Pressure in Adults with Pre- to Established Hypertension: A Systematic Review and Meta-Analysis of Randomized Trials. Sports Med. 2018, 48, 2127–2142. [Google Scholar] [CrossRef]
- Herold, F.; Törpel, A.; Hamacher, D.; Budde, H.; Zou, L.; Strobach, T.; Müller, N.G.; Gronwald, T. Causes and Consequences of Interindividual Response Variability: A Call to Apply a More Rigorous Research Design in Acute Exercise-Cognition Studies. Front. Physiol. 2021, 12, 682891. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Blair, S.N.; Church, T.S.; Earnest, C.P.; Hagberg, J.M.; Hakkinen, K.; Jenkins, N.T.; Karavirta, L.; Kraus, W.E.; Leon, A.S.; et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS ONE 2012, 7, e37887. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Ramirez-Campillo, R.; Ramirez-Velez, R.; Izquierdo, M. Effects and prevalence of nonresponders after 12 weeks of high-intensity interval or resistance training in women with insulin resistance: A randomized trial. J. Appl. Physiol. 2017, 122, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Ramirez-Velez, R.; Ramirez-Campillo, R.; Ito, S.; Celis-Morales, C.; Garcia-Hermoso, A.; Rodriguez-Manas, L.; Lucia, A.; Izquierdo, M. Interindividual responses to different exercise stimuli among insulin-resistant women. Scand. J. Med. Sci. Sports 2018, 28, 2052–2065. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramirez-Campillo, R.; Cristi-Montero, C.; Ramirez-Velez, R.; Izquierdo, M. Prevalence of Non-responders for Blood Pressure and Cardiometabolic Risk Factors Among Prehypertensive Women After Long-Term High-Intensity Interval Training. Front. Physiol. 2018, 9, 1443. [Google Scholar] [CrossRef]
- Nascimento, D.D.C.; Da Silva, C.R.; Valduga, R.; Saraiva, B.; De Sousa Neto, I.V.; Vieira, A.; Schwerz Funghetto, S.; Silva, A.O.; Da Cunha Oliveira, S.; Borges Pereira, G.; et al. Blood pressure response to resistance training in hypertensive and normotensive older women. Clin. Interv. Aging 2018, 13, 541–553. [Google Scholar] [CrossRef]
- Ferreira, M.L.V.; Castro, A.; Nunes, S.G.O.; Santos, M.V.M.A.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Hemodynamic Predictors of Blood Pressure Responsiveness to Continuous Aerobic Training in Postmenopausal Hypertensive Women. Metab. Syndr. Relat. Disord. 2023, 21, 517–525. [Google Scholar] [CrossRef]
- Ferreira, M.L.V.; Castro, A.; de Oliveira Nunes, S.G.; Dos Santos, M.V.M.A.; Cavaglieri, C.R.; Tanaka, H.; Chacon-Mikahil, M.P.T. Hypotensive effects of exercise training: Are postmenopausal women with hypertension non-responders or responders? Hypertens. Res. 2024, 47, 2172–2182. [Google Scholar] [CrossRef]
- Delgado-Floody, P.; Chirosa-Ríos, L.; Caamaño-Navarrete, F.; Valdés-Badilla, P.; Herrera-Valenzuela, T.; Monsalves-Álvarez, M.; Núñez-Espinosa, C.; Castro-Sepulveda, M.; Guzmán-Muñoz, E.; Andrade, D.C.; et al. Concurrent training and interindividual response in women with a high number of metabolic syndrome risk factors. Front. Physiol. 2022, 13, 934038. [Google Scholar] [CrossRef]
- Egan, B.; Sharples, A.P. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol. Rev. 2023, 103, 2057–2170. [Google Scholar] [CrossRef]
- Ross, R.; Goodpaster, B.H.; Koch, L.G.; Sarzynski, M.A.; Kohrt, W.M.; Johannsen, N.M.; Skinner, J.S.; Castro, A.; Irving, B.A.; Noland, R.C.; et al. Precision exercise medicine: Understanding exercise response variability. Br. J. Sports Med. 2019, 53, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Lambrianides, Y.; Epro, G.; Smith, K.; Mileva, K.N.; James, D.; Karamanidis, K. Impact of Different Mechanical and Metabolic Stimuli on the Temporal Dynamics of Muscle Strength Adaptation. J. Strength Cond. Res. 2022, 36, 3246–3255. [Google Scholar] [CrossRef] [PubMed]
- McGee, S.L.; Hargreaves, M. Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 2020, 16, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Pedralli, M.L.; Marschner, R.A.; Kollet, D.P.; Neto, S.G.; Eibel, B.; Tanaka, H.; Lehnen, A.M. Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: A randomized clinical trial. Sci. Rep. 2020, 10, 7628. [Google Scholar] [CrossRef]
- Ross, R.; de Lannoy, L.; Stotz, P.J. Separate Effects of Intensity and Amount of Exercise on Interindividual Cardiorespiratory Fitness Response. Mayo Clin. Proc. 2015, 90, 1506–1514. [Google Scholar] [CrossRef]
- Lopes, S.; Mesquita-Bastos, J.; Garcia, C.; Bertoquini, S.; Ribau, V.; Teixeira, M.; Ribeiro, I.P.; Melo, J.B.; Oliveira, J.; Figueiredo, D.; et al. Effect of Exercise Training on Ambulatory Blood Pressure Among Patients with Resistant Hypertension. JAMA Cardiol. 2021, 6, 1317. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef]
- Colado, J.C.; Furtado, G.E.; Teixeira, A.M.; Flandez, J.; Naclerio, F. Concurrent and Construct Validation of a New Scale for Rating Perceived Exertion during Elastic Resistance Training in The Elderly. J. Sports Sci. Med. 2020, 19, 175–186. [Google Scholar]
- Ciolac, E.G.; Mantuani, S.S.; Neiva, C.M.; Verardi, C.; Pessoa-Filho, D.M.; Pimenta, L. Rating of perceived exertion as a tool for prescribing and self regulating interval training: A pilot study. Biol. Sport 2015, 32, 103–108. [Google Scholar] [CrossRef]
- Cano-Montoya, J.; Ramírez-Campillo, R.; Sade Calles, F.; Izquierdo, M.; Fritz Silva, N.; Arteaga San Martín, R.; Álvarez, C. [Effects of a six weeks exercise training program for type 2 diabetes mellitus and hypertensive patients]. Rev. Med. Chil. 2018, 146, 693–701. [Google Scholar] [CrossRef]
- Geeta, A.; Jamaiyah, H.; Safiza, M.N.; Khor, G.L.; Kee, C.C.; Ahmad, A.Z.; Suzana, S.; Rahmah, R.; Faudzi, A. Reliability, technical error of measurements and validity of instruments for nutritional status assessment of adults in Malaysia. Singap. Med. J. 2009, 50, 1013–1018. [Google Scholar]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and Validity of Commercially Available Low-Cost Bioelectrical Impedance Analysis. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Yoshika, M.; Yokoi, T. Validation of three automatic devices for the self-measurement of blood pressure according to the European Society of Hypertension International Protocol revision 2010: The Omron HEM-7130, HEM-7320F, and HEM-7500F. Blood Press. Monit. 2015, 20, 92–97. [Google Scholar] [CrossRef]
- Hopkins, W.G. Individual responses made easy. J. Appl. Physiol. 2015, 118, 1444–1446. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Suematsu, Y.; Morita, H.; Abe, M.; Uehara, Y.; Koyoshi, R.; Fujimi, K.; Ideishi, A.; Takata, K.; Kato, Y.; Hirata, T.; et al. Differences in the effects of exercise on blood pressure depending on the physical condition of the subject and the type of exercise: A systematic review and meta-analysis. Hypertens. Res. 2024. [Google Scholar] [CrossRef]
- Naci, H.; Salcher-Konrad, M.; Dias, S.; Blum, M.R.; Sahoo, S.A.; Nunan, D.; Ioannidis, J.P.A. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br. J. Sports Med. 2019, 53, 859–869. [Google Scholar] [CrossRef]
- Gorostegi-Anduaga, I.; Corres, P.; MartinezAguirre-Betolaza, A.; Pérez-Asenjo, J.; Aispuru, G.R.; Fryer, S.M.; Maldonado-Martín, S. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study. Eur. J. Prev. Cardiol. 2018, 25, 343–353. [Google Scholar] [CrossRef]
- Gao, W.; Lv, M.; Huang, T. Effects of different types of exercise on hypertension in middle-aged and older adults: A network meta-analysis. Front. Public Health 2023, 11, 1194124. [Google Scholar] [CrossRef]
- Ingul, C.B. Low volume, high intensity: Time-efficient exercise for the treatment of hypertension. Eur. J. Prev. Cardiol. 2018, 25, 569–571. [Google Scholar] [CrossRef]
- Correia, R.R.; Veras, A.S.C.; Tebar, W.R.; Rufino, J.C.; Batista, V.R.G.; Teixeira, G.R. Strength training for arterial hypertension treatment: A systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 2023, 13, 201. [Google Scholar] [CrossRef]
- Ciolac, E.G. High-intensity interval training and hypertension: Maximizing the benefits of exercise? Am. J. Cardiovasc. Dis. 2012, 2, 102–110. [Google Scholar] [PubMed]
- Hamer, M. The anti-hypertensive effects of exercise: Integrating acute and chronic mechanisms. Sports Med. 2006, 36, 109–116. [Google Scholar] [CrossRef] [PubMed]
- De Ciuceis, C.; Rizzoni, D.; Palatini, P. Microcirculation and Physical Exercise In Hypertension. Hypertension 2023, 80, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; Morelli, M.B.; Wang, X.J.; Santulli, G. Pathophysiological mechanisms underlying the beneficial effects of physical activity in hypertension. J. Clin. Hypertens. 2020, 22, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Peñailillo, L.; Ibacache-Saavedra, P.; Jerez-Mayorga, D.; Campos-Jara, C.; Andrade, D.C.; Guimarães, G.V.; Gomes-Ciolac, E.; Delgado-Floody, P.; Izquierdo, M.; et al. Six weeks of a concurrent training therapy improves endothelial function and arterial stiffness in hypertensive adults with minimum non-responders. Hipertens. Riesgo Vasc. 2024, 41, 240–250. [Google Scholar] [CrossRef]
- Cano-Montoya, J.; Ramírez-Campillo, R.; Martínez, C.; Sade-Calles, F.; Salas-Parada, A.; Álvarez, C. [Interaction between antihypertensive therapy and exercise training therapy requires drug regulation in hypertensive patients]. Rev. Med. Chil. 2016, 144, 152–161. [Google Scholar] [CrossRef]
- Egger, F.; Meyer, T.; Hecksteden, A. Interindividual Variation in the Relationship of Different Intensity Markers-A Challenge for Targeted Training Prescriptions. PLoS ONE 2016, 11, e0165010. [Google Scholar] [CrossRef]
- Bonafiglia, J.T.; Swinton, P.A.; Ross, R.; Johannsen, N.M.; Martin, C.K.; Church, T.S.; Slentz, C.A.; Ross, L.M.; Kraus, W.E.; Walsh, J.J.; et al. Interindividual Differences in Trainability and Moderators of Cardiorespiratory Fitness, Waist Circumference, and Body Mass Responses: A Large-Scale Individual Participant Data Meta-analysis. Sports Med. 2022, 52, 2837–2851. [Google Scholar] [CrossRef]
- Walsh, J.J.; Bonafiglia, J.T.; Goldfield, G.S.; Sigal, R.J.; Kenny, G.P.; Doucette, S.; Hadjiyannakis, S.; Alberga, A.S.; Prud’homme, D.; Gurd, B.J. Interindividual variability and individual responses to exercise training in adolescents with obesity. Appl. Physiol. Nutr. Metab. 2020, 45, 45–54. [Google Scholar] [CrossRef]
- Mori, M.; Higuchi, K.; Sakurai, A.; Tabara, Y.; Miki, T.; Nose, H. Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J. Physiol. 2009, 587, 5577–5584. [Google Scholar] [CrossRef]
- Dempsey, P.C.; Larsen, R.N.; Dunstan, D.W.; Owen, N.; Kingwell, B.A. Sitting Less and Moving More. Hypertension 2018, 72, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Leung, F.P.; Yung, L.M.; Laher, I.; Yao, X.; Chen, Z.Y.; Huang, Y. Exercise, vascular wall and cardiovascular diseases: An update (Part 1). Sports Med. 2008, 38, 1009–1024. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T.P.J. Sources of Inter-individual Variability in the Therapeutic Response of Blood Glucose Control to Exercise in Type 2 Diabetes: Going Beyond Exercise Dose. Front. Physiol. 2018, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- Juster, R.P.; Russell, J.J.; Almeida, D.; Picard, M. Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective. Dev. Psychopathol. 2016, 28, 1117–1146. [Google Scholar] [CrossRef]
- Mocayar Marón, F.J.; Ferder, L.; Saraví, F.D.; Manucha, W. Hypertension linked to allostatic load: From psychosocial stress to inflammation and mitochondrial dysfunction. Stress 2019, 22, 169–181. [Google Scholar] [CrossRef]
- Collier, S.R.; Kanaley, J.A.; Carhart, R.; Frechette, V.; Tobin, M.M.; Hall, A.K.; Luckenbaugh, A.N.; Fernhall, B. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J. Hum. Hypertens. 2008, 22, 678–686. [Google Scholar] [CrossRef]
- Mendes, B.F.; Improta-Caria, A.C.; Diniz E Magalhães, C.O.; Peixoto, M.F.D.; Cassilhas, R.C.; de Oliveira, E.M.; De Sousa, R.A.L. Resistance Training Reduces Blood Pressure: Putative Molecular Mechanisms. Curr. Hypertens. Rev. 2024, 20, 52–56. [Google Scholar] [CrossRef]
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2009, 41, 35–73. [Google Scholar] [CrossRef]
- Prior, S.J.; Hagberg, J.M.; Paton, C.M.; Douglass, L.W.; Brown, M.D.; McLenithan, J.C.; Roth, S.M. DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1848–H1855. [Google Scholar] [CrossRef]
- Leal, J.M.; Galliano, L.M.; Del Vecchio, F.B. Effectiveness of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training in Hypertensive Patients: A Systematic Review and Meta-Analysis. Curr. Hypertens. Rep. 2020, 22, 26. [Google Scholar] [CrossRef]
- Rossi, A.; Dikareva, A.; Bacon, S.L.; Daskalopoulou, S.S. The impact of physical activity on mortality in patients with high blood pressure: A systematic review. J. Hypertens. 2012, 30, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Lea, J.W.D.; O’Driscoll, J.M.; Wiles, J.D. The implementation of a home-based isometric wall squat intervention using ratings of perceived exertion to select and control exercise intensity: A pilot study in normotensive and pre-hypertensive adults. Eur. J. Appl. Physiol. 2024, 124, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.T.; Loehr, L.R.; Butler, K.R.; Chakladar, S.; Chang, P.P.; Folsom, A.R.; Heiss, G.; Maclehose, R.F.; Matsushita, K.; Avery, C.L. Reducing the Blood Pressure–Related Burden of Cardiovascular Disease: Impact of Achievable Improvements in Blood Pressure Prevention and Control. J. Am. Heart Assoc. 2015, 4, e002276. [Google Scholar] [CrossRef]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R.; Collaboration, P.S. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [CrossRef]
- Hrubeniuk, T.J.; Bonafiglia, J.T.; Bouchard, D.R.; Gurd, B.J.; Senechal, M. Directions for Exercise Treatment Response Heterogeneity and Individual Response Research. Int. J. Sports Med. 2022, 43, 11–22. [Google Scholar] [CrossRef]
Outcomes | Groups | |||||
---|---|---|---|---|---|---|
RT-G Mean (SD) | HIIT-G Mean (SD) | CG Mean (SD) | RT-G vs. Control p Value | HIIT-G vs. Control p Value | RT-G vs. HIIT-G p Value | |
(n = F/M) | 12/1 | 9/4 | 12/1 | |||
Age (years) | 63 ± 7.02 | 66 ± (9.19) | 66 ± (10.18) | 0.696 | 0.996 | 0.641 |
Anthropometric | ||||||
Height (m) | 1.53 ± 0.06 | 1.56 ± 0.09 | 1.53 ± 0.07 | 0.967 | 0.518 | 0.670 |
Body mass (kg) | 76.02 ± 10.22 | 74.27 ± 13.21 | 73.62 ± 14.35 | 0.881 | 0.991 | 0.935 |
BMI (kg/m2) | 32.30 ± 3.90 | 30.85 ± 6.53 | 31.57 ± 5.83 | 0.940 | 0.941 | 0.782 |
Body composition | ||||||
Body fat (%) | 39.38 ± 5.83 | 35.46 ± 9.17 | 37.26 ± 7.85 | 0.767 | 0.825 | 0.410 |
Lean mass (%) | 57.56 ± 5.53 | 61.34 ± 8.66 | 59.30 ± 7.90 | 0.825 | 0.768 | 0.412 |
Cardiometabolic risk | ||||||
HTN | ||||||
(n = F/M) | 12/1 | 9/4 | 12/1 | |||
Drugs | ||||||
ARB (n) | 10 | 7 | 9 | |||
ACEI (n) | 3 | 3 | 3 | |||
TZD (n) | 4 | 7 | 8 | |||
CCB (n) | 2 | 4 | 4 | |||
Beta Blockers (n) | 1 | 3 | 1 | |||
N° Drugs | ||||||
1 (%/n) | 62/8 | 46/6 | 31/4 | |||
2 (%/n) | 23/3 | 31/4 | 38/5 | |||
3 (%/n) | 15/2 | 15/2 | 23/3 | |||
4 (%/n) | 0/0 | 8/1 | 8/1 | |||
T2D | ||||||
(n = F/M) | 4/0 | 4/2 | 5/0 | |||
Drugs | ||||||
Metformin (n) | 3 | 7 | 4 | |||
Sulfonylureas (n) | 0 | 0 | 1 | |||
Insulin (n) | 1 | 1 | 2 | |||
N° Drugs | ||||||
1 (%/n) | 100/4 | 83/5 | 60/3 | |||
2 (%/n) | 0 | 17/1 | 40/2 | |||
Dyslipidemia | ||||||
(n = F/M) | 10/1 | 9/4 | 9/1 | |||
Drugs | ||||||
Statins (n) | 11 | 13 | 10 |
Outcome | Time | Groups | |||||
---|---|---|---|---|---|---|---|
RT-G | HIIT-G | CG | Group F, (p value) | Time F, (p value) | G × T F, (p value) | ||
SBP | Baseline | 135 ± 13 | 141 ± 14 | 137 ± 17 | 1.708, (0.196) | 7.562, (0.001) | 1.961, (0.110) |
Wk 4 | 128 ± 11 | 134 ± 17 | 138 ± 16 | ||||
Wk 8 | 122 ± 10 * † | 129 ± 16 # | 137 ± 14 | ||||
DBP | Baseline | 78 ± 8 | 78 ± 8 | 81 ± 11 | 0.722, (0.493) | 1.803, (0.172) | 0.108, (0.979) |
Wk 4 | 77 ± 9 | 74 ± 9 | 79 ± 8 | ||||
Wk 8 | 77 ± 5 | 75 ± 10 | 78 ± 10 |
Groups | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Outcome | Response | RT-G | HIIT-G | C-G | ||||||||||||
Pre-Post Week 4 | Pre-Post Week 8 | w4 vs. w8 p-Value | Pre-Post Week 4 | Pre-Post Week 8 | w4 vs. w8 p-Value | Pre-Post Week 4 | Pre-Post Week 8 | w4 vs. w8 p-Value | ||||||||
(n =) | Δ | (n =) | Δ | (n =) | Δ | (n =) | Δ | (n =) | Δ | (n =) | Δ | |||||
SBP (mmHg) | NRs | 6 | 2.5 ± 9.5 | 5 | 3.4 ± 4.5 | 0.409 | 9 | 1.6 ± 11.6 | 6 | −4.3 ± 3.9 | 0.553 | 9 | 7.3 ± 7 | 10 | 6.6 ± 7.6 | 0.652 |
Rs | 7 | −14.7 ± 9.0 | 8 | −22.8 ± 11.8 | 0.132 | 4 | −25.5 ± 11.8 | 7 | −19.6 ± 6.6 | 0.447 | 4 | −13 ± 4 | 3 | −21.7 ± 11.4 | 0.629 | |
DBP (mmHg) | NRs | 8 | 2.6 ± 2.5 | 6 | 7 ± 7.6 | 0.473 | 9 | 0.9 ± 5.4 | 5 | 6.8 ± 3.4 | 0.07 | 6 | 3.3 ± 2 | 10 | 2.2 ± 3.6 | 0.473 |
Rs | 5 | −8.4 ± 3.3 | 7 | −8.9 ± 4.4 | 0.934 | 4 | −14 ± 9.5 | 8 | −8.8 ± 6.6 | 0.172 | 7 | −6.6 ± 3.7 | 3 | −16.3 ± 10.8 | 0.290 |
Groups | ||||||
---|---|---|---|---|---|---|
Categories of BP | RT-G | HIIT-G | CG | |||
Baseline n = (%) | Week 8 n = (%) | Baseline n = (%) | Week 8 n = (%) | Baseline n = (%) | Week 8 n = (%) | |
Normal | 1 (8) | 4 (31) | 1 (8) | 3 (23) | 3 (23) | 1 (8) |
Elevated | 4 (31) | 4 (31) | 1 (8) | 4 (31) | 1 (8) | 4 (31) |
HTN 1 | 4 (31) | 4 (31) | 5 (38) | 3 (23) | 3 (23) | 2 (15) |
HTN 2 | 4 (31) | 1 (8) | 6 (46) | 3 (23) | 6 (46) | 6 (46) |
Groups. | Subjects | Response w8 SBP | Response w8 DBP | Baseline | Week 8 | Category Transitions | ||||
---|---|---|---|---|---|---|---|---|---|---|
SBP | DBP | Category | SBP | DBP | Category | |||||
RT-G | 1 | R | R | 169 | 93 | HTN 2 | 124 | 78 | Normal | −3 |
2 | R | NR | 147 | 73 | HTN 2 | 116 | 76 | Normal | −3 | |
3 | R | R | 142 | 81 | HTN 2 | 119 | 76 | Normal | −3 | |
4 | R | NR | 141 | 75 | HTN 2 | 128 | 74 | Elevated | −2 | |
5 | R | R | 132 | 93 | HTN 2 | 117 | 82 | HTN 1 | −1 | |
6 | R | R | 131 | 81 | HTN 1 | 121 | 68 | Elevated | −1 | |
7 | R | R | 129 | 79 | Elevated | 110 | 70 | Normal | −1 | |
8 | R | R | 129 | 78 | Elevated | 103 | 72 | Normal | −1 | |
9 | NR | NR | 131 | 82 | HTN 1 | 128 | 81 | HTN 1 | 0 | |
10 | NR | R | 122 | 76 | Elevated | 129 | 73 | Elevated | 0 | |
11 | NR | NR | 137 | 65 | HTN 1 | 145 | 77 | HTN 2 | 1 | |
12 | NR | NR | 129 | 70 | Elevated | 130 | 83 | HTN 1 | 1 | |
13 | NR | NR | 117 | 71 | Normal | 121 | 87 | HTN 1 | 2 | |
HIIT-G | 1 | R | R | 150 | 78 | HTN 1 | 120 | 72 | Normal | −2 |
2 | R | R | 138 | 81 | HTN 1 | 116 | 77 | Normal | −2 | |
3 | R | R | 130 | 74 | HTN 1 | 119 | 69 | Normal | −2 | |
4 | NR | R | 130 | 71 | HTN 1 | 123 | 48 | Normal | −2 | |
5 | R | R | 152 | 78 | HTN 2 | 130 | 71 | HTN 1 | −1 | |
6 | R | NR | 153 | 74 | HTN 2 | 130 | 81 | HTN 1 | −1 | |
7 | R | R | 138 | 86 | HTN 1 | 123 | 74 | Elevated | −1 | |
8 | NR | NR | 172 | 87 | HTN 2 | 167 | 89 | HTN 2 | 0 | |
9 | NR | NR | 146 | 78 | HTN 2 | 141 | 88 | HTN 2 | 0 | |
10 | NR | R | 145 | 95 | HTN 2 | 141 | 84 | HTN 2 | 0 | |
11 | NR | NR | 139 | 69 | HTN 1 | 131 | 79 | HTN 1 | 0 | |
12 | NR | NR | 125 | 70 | Elevated | 128 | 75 | Elevated | 0 | |
13 | R | R | 116 | 72 | Normal | 102 | 70 | Normal | 0 | |
CG | 1 | R | R | 144 | 88 | HTN 2 | 113 | 67 | Normal | −3 |
2 | R | R | 148 | 90 | HTN 2 | 123 | 66 | Elevated | −2 | |
3 | NR | NR | 158 | 98 | HTN 2 | 159 | 97 | HTN 2 | 0 | |
4 | NR | NR | 158 | 72 | HTN 2 | 154 | 80 | HTN 2 | 0 | |
5 | R | R | 152 | 83 | HTN 2 | 143 | 79 | HTN 2 | 0 | |
6 | NR | NR | 146 | 95 | HTN 2 | 148 | 96 | HTN 2 | 0 | |
7 | NR | NR | 133 | 72 | HTN 1 | 134 | 73 | HTN 1 | 0 | |
8 | NR | NR | 120 | 70 | Elevated | 128 | 69 | Elevated | 0 | |
9 | NR | NR | 139 | 71 | HTN 1 | 143 | 79 | HTN 2 | 1 | |
10 | NR | NR | 137 | 88 | HTN 1 | 150 | 87 | HTN 2 | 1 | |
11 | NR | NR | 124 | 77 | Elevated | 130 | 80 | HTN 1 | 1 | |
12 | NR | NR | 102 | 79 | Normal | 124 | 78 | Elevated | 1 | |
13 | NR | NR | 116 | 64 | Normal | 129 | 69 | Elevated | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Montoya, J.; Hurtado, N.; Núñez Vergara, C.; Báez Vargas, S.; Rojas-Vargas, M.; Martínez-Huenchullán, S.; Alvarez, C.; Izquierdo, M. Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults. J. Cardiovasc. Dev. Dis. 2025, 12, 30. https://doi.org/10.3390/jcdd12010030
Cano-Montoya J, Hurtado N, Núñez Vergara C, Báez Vargas S, Rojas-Vargas M, Martínez-Huenchullán S, Alvarez C, Izquierdo M. Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults. Journal of Cardiovascular Development and Disease. 2025; 12(1):30. https://doi.org/10.3390/jcdd12010030
Chicago/Turabian StyleCano-Montoya, Johnattan, Nicolas Hurtado, Carolina Núñez Vergara, Sebastián Báez Vargas, Marcela Rojas-Vargas, Sergio Martínez-Huenchullán, Cristian Alvarez, and Mikel Izquierdo. 2025. "Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults" Journal of Cardiovascular Development and Disease 12, no. 1: 30. https://doi.org/10.3390/jcdd12010030
APA StyleCano-Montoya, J., Hurtado, N., Núñez Vergara, C., Báez Vargas, S., Rojas-Vargas, M., Martínez-Huenchullán, S., Alvarez, C., & Izquierdo, M. (2025). Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults. Journal of Cardiovascular Development and Disease, 12(1), 30. https://doi.org/10.3390/jcdd12010030