Pregnancy-Related Cardiovascular Diseases: A Radiological Overview
Abstract
:1. Introduction
2. Contrast Agents: Safety Aspects
2.1. Iodine-Based Contrast Agents
2.2. Gadolinium-Based Contrast Agents
3. Pulmonary Embolism (PE)
3.1. CTPA Diagnostic Value
3.2. Radiation Exposure in CTPA: Risks and Considerations
3.3. Non-Contrast MRI’s Emerging Role
4. Aortic Dissection (AD)
4.1. CTA: Challenges and Approaches in Clinical Practice
4.2. Unenhanced MRI: When and How
5. Spontaneous Coronary Artery Dissection (SCAD)
5.1. CCTA: Roles and Findings
5.2. CMR Assessment
6. Peripartum Cardiomyopathy (PPCM)
CMR: A Key to Diagnostic and Prognostic Insights
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanghavi, M.; Rutherford, J.D. Cardiovascular physiology of pregnancy. Circulation 2014, 130, 1003–1008. [Google Scholar] [CrossRef]
- Uchikova, E.H.; Ledjev, I.I. Changes in haemostasis during normal pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 119, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Pijuan-Domènech, A.; Galian, L.; Goya, M.; Casellas, M.; Merced, C.; Ferreira-Gonzalez, I.; Marsal-Mora, J.R.; Dos-Subirà, L.; Subirana-Domènech, M.T.; Pedrosa, V.; et al. Cardiac complications during pregnancy are better predicted with the modified WHO risk score. Int. J. Cardiol. 2015, 195, 149–154. [Google Scholar] [CrossRef]
- Mehta, L.S.; Warnes, C.A.; Bradley, E.; Burton, T.; Economy, K.; Mehran, R.; Safdar, B.; Sharma, G.; Wood, M.; Valente, A.M.; et al. Cardiovascular Considerations in Caring for Pregnant Patients: A Scientific Statement from the American Heart Association. Circulation 2020, 141, e884–e903. [Google Scholar] [PubMed]
- Regitz-Zagrosek, V.; Roos-Hesselink, J.W.; Bauersachs, J.; Blomström-Lundqvist, C.; Cífková, R.; De Bonis, M.; Iung, B.; Johnson, M.R.; Kintscher, U.; Kranke, P.; et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy: The task force for the management of cardiovascular diseases during pregnancy of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 3165–3241. [Google Scholar] [CrossRef]
- Moon, A.J.; Katzberg, R.W.; Sherman, M.P. Transplacental passage of iohexol. J. Pediatr. 2000, 136, 548–549. [Google Scholar] [CrossRef] [PubMed]
- ACR Manual on Contrast Media. ACR Committee on Drugs and Contrast Media; American College of Radiology: Reston, VA, USA, 2024. [Google Scholar]
- Puac, P.; Rodríguez, A.; Vallejo, C.; Zamora, C.A.; Castillo, M. Safety of Contrast Material Use During Pregnancy and Lactation. Magn. Reson. Imaging Clin. N. Am. 2017, 25, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Kochi, M.H.; Kaloudis, E.V.; Ahmed, W.; Moore, W.H. Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function. J. Comput. Assist. Tomogr. 2012, 36, 165–169. [Google Scholar] [CrossRef]
- Bourjeily, G.; Chalhoub, M.; Phornphutkul, C.; Alleyne, T.C.; Woodfield, C.A.; Chen, K.K. Neonatal thyroid function: Effect of a single exposure to iodinated contrast medium in utero. Radiology 2010, 256, 744–750. [Google Scholar] [CrossRef] [PubMed]
- ESUR Contrast Media Safety Committee. ESUR Guidelines on Contrast Agents; European Society of Urogenital Radiology: Vienna, Austria, 2018; Version 10.0. [Google Scholar]
- Tremblay, E.; Thérasse, E.; Thomassin-Naggara, I.; Trop, I. Quality initiatives: Guidelines for use of medical imaging during pregnancy and lactation. Radiographics 2012, 32, 897–911. [Google Scholar] [CrossRef]
- Lemmenmeier, S.; Boehm, I.B. Injection of iodinated contrast media in lactating women: Shall we continue or stop breastfeeding? Eur. J. Radiol. 2024, 175, 111464. [Google Scholar] [CrossRef]
- Cowling, T.; Frey, N. Macrocyclic and Linear Gadolinium Based Contrast Agents for Adults Undergoing Magnetic Resonance Imaging: A Review of Safety; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Committee Opinion. Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet. Gynecol. 2017, 130, e210–e216. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.Y.; Roberts, V.H.; Schabel, M.C.; Grove, K.L.; Woods, M.; Frias, A.E. Gadolinium Chelate Contrast Material in Pregnancy: Fetal Biodistribution in the Nonhuman Primate. Radiology 2015, 276, 110–118. [Google Scholar] [CrossRef]
- Mühler, M.R.; Clément, O.; Salomon, L.J.; Balvay, D.; Autret, G.; Autret, C.; Cuénod, C.A.; Siauve, N. Maternofetal pharmacokinetics of a gadolinium chelate contrast agent in mice. Radiology 2011, 258, 455–460. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.; Straface, G.; Cavaliere, A.F.; Carducci, B.; Caruso, A. Gadolinium periconceptional exposure: Pregnancy and neonatal outcome. Acta Obstet. Gynecol. Scand. 2007, 86, 99–101. [Google Scholar] [CrossRef]
- Ray, J.G.; Vermeulen, M.J.; Bharatha, A.; Montanera, W.J.; Park, A.L. Association Between MRI Exposure During Pregnancy and Fetal and Childhood Outcomes. JAMA 2016, 316, 952–961. [Google Scholar] [CrossRef] [PubMed]
- ACR Committee on MR Safety. ACR Manual on MR Safety; American College of Radiology: Reston, VA, USA, 2024. [Google Scholar]
- Lin, S.P.; Brown, J.J. MR contrast agents: Physical and pharmacologic basics. J. Magn. Reson. Imaging. 2007, 25, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef]
- Matthews, S. Short. communication: Imaging pulmonary embolism in pregnancy: What is the most appropriate imaging protocol? Br. J. Radiol. 2006, 79, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Bourjeily, G.; Paidas, M.; Khalil, H.; Rosene-Montella, K.; Rodger, M. Pulmonary embolism in pregnancy. Lancet 2010, 375, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Broadhurst, D.I.; Khashan, A.S.; Gilligan, O.; Kenny, L.C.; O’Donoghue, K. Gestation-specific D-dimer reference ranges: A cross-sectional study. BJOG 2015, 122, 395–400. [Google Scholar] [CrossRef]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Stiell, I.; Dreyer, J.F.; Barnes, D.; Forgie, M.; Kovacs, G.; Ward, J.; Kovacs, M.J. Excluding pulmonary embolism at the bedside without diagnostic imaging: Management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann. Intern. Med. 2001, 135, 98–107. [Google Scholar] [CrossRef]
- Robert-Ebadi, H.; Elias, A.; Sanchez, O.; Le Moigne, E.; Schmidt, J.; Le Gall, C.; Aujesky, D.; Roy, P.M.; Moumneh, T.; Chauleur, C.; et al. Assessing the clinical probability of pulmonary embolism during pregnancy: The Pregnancy-Adapted Geneva (PAG) score. J. Thromb. Haemost. 2021, 19, 3044–3050. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. 2019, 54, 1901647. [Google Scholar]
- Van Mens, T.E.; Scheres, L.J.; de Jong, P.G.; Leeflang, M.M.; Nijkeuter, M.; Middeldorp, S. Imaging for the exclusion of pulmonary embolism in pregnancy. Cochrane Database Syst. Rev. 2017, 1, CD011053. [Google Scholar] [CrossRef]
- Dronkers, C.E.A.; van der Hulle, T.; Le Gal, G.; Kyrle, P.A.; Huisman, M.V.; Cannegieter, S.C.; Klok, F.A.; Subcommittee on Predictive and Diagnostic Variables in Thrombotic Disease. Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2017, 15, 1040–1043. [Google Scholar] [CrossRef]
- Tromeur, C.; van der Pol, L.M.; Le Roux, P.Y.; Ende-Verhaar, Y.; Salaun, P.Y.; Leroyer, C.; Couturaud, F.; Kroft, L.J.M.; Huisman, M.V.; Klok, F.A. Computed tomography pulmonary angiography versus ventilation-perfusion lung scanning for diagnosing pulmonary embolism during pregnancy: A systematic review and meta-analysis. Haematologica 2019, 104, 176–188. [Google Scholar] [CrossRef]
- Andreou, A.K.; Curtin, J.J.; Wilde, S.; Clark, A. Does pregnancy affect vascular enhancement in patients undergoing CT pulmonary angiography? Eur. Radiol. 2008, 18, 2716–2722. [Google Scholar] [CrossRef]
- Ridge, C.A.; Mhuircheartaigh, J.N.; Dodd, J.D.; Skehan, S.J. Pulmonary CT angiography protocol adapted to the hemodynamic effects of pregnancy. AJR Am. J. Roentgenol. 2011, 197, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Kunihiro, Y.; Nakashima, Y.; Nomura, T.; Kudomi, S.; Yonezawa, T.; Suga, K.; Matsunaga, N. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism. Eur. J. Radiol. 2015, 84, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Weidman, E.K.; Plodkowski, A.J.; Halpenny, D.F.; Hayes, S.A.; Perez-Johnston, R.; Zheng, J.; Moskowitz, C.; Ginsberg, M.S. Dual-Energy CT Angiography for Detection of Pulmonary Emboli: Incremental Benefit of Iodine Maps. Radiology 2018, 289, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Thieme, S.F.; Becker, C.R.; Hacker, M.; Nikolaou, K.; Reiser, M.F.; Johnson, T.R. Dual energy CT for the assessment of lung perfusion—Correlation to scintigraphy. Eur. J. Radiol. 2008, 68, 369–374. [Google Scholar] [CrossRef]
- Yuan, R.; Shuman, W.P.; Earls, J.P.; Hague, C.J.; Mumtaz, H.A.; Scott-Moncrieff, A.; Ellis, J.D.; Mayo, J.R.; Leipsic, J.A. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: Comparison with standard CT pulmonary angiography—A prospective randomized trial. Radiology 2012, 262, 290–297. [Google Scholar] [CrossRef]
- Gillespie, C.D.; Yates, A.; Hughes, M.; Ewins, K.; McMahon, G.; Hynes, J.; Murphy, M.C.; Galligan, M.; Vencken, S.; Alih, E.; et al. Validating the safety of low-dose CTPA in pregnancy: Results from the OPTICA (Optimised CT Pulmonary Angiography in Pregnancy) Study. Eur. Radiol. 2024, 34, 4864–4873. [Google Scholar] [CrossRef] [PubMed]
- Mainprize, J.G.; Yaffe, M.J.; Chawla, T.; Glanc, P. Effects of ionizing radiation exposure during pregnancy. Abdom Radiol 2023, 48, 1564–1578. [Google Scholar] [CrossRef] [PubMed]
- Perisinakis, K.; Seimenis, I.; Tzedakis, A.; Damilakis, J. Perfusion scintigraphy versus 256-slice CT angiography in pregnant patients suspected of pulmonary embolism: Comparison of radiation risks. J. Nucl. Med. 2014, 55, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Mulkens, T.H.; Bellinck, P.; Baeyaert, M.; Ghysen, D.; Van Dijck, X.; Mussen, E.; Venstermans, C.; Termote, J.L. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: Clinical evaluation. Radiology 2005, 237, 213–223. [Google Scholar] [CrossRef]
- Sauter, A.; Koehler, T.; Brendel, B.; Aichele, J.; Neumann, J.; Noël, P.B.; Rummeny, E.J.; Muenzel, D. CT pulmonary angiography: Dose reduction via a next generation iterative reconstruction algorithm. Acta Radiol. 2019, 60, 478–487. [Google Scholar] [CrossRef]
- Gill, M.K.; Vijayananthan, A.; Kumar, G.; Jayarani, K.; Ng, K.H.; Sun, Z. Use of 100 kV versus 120 kV in computed tomography pulmonary angiography in the detection of pulmonary embolism: Effect on radiation dose and image quality. Quant. Imaging Med. Surg. 2015, 5, 524–533. [Google Scholar]
- Mitchell, D.P.; Rowan, M.; Loughman, E.; Ridge, C.A.; MacMahon, P.J. Contrast monitoring techniques in CT pulmonary angiography: An important and underappreciated contributor to breast dose. Eur. J. Radiol. 2017, 86, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Shahir, K.; McCrea, J.M.; Lozano, L.A.; Goodman, L.R. Reduced z-axis technique for CT Pulmonary angiography in pregnancy—Validation for practical use and dose reduction. Emerg. Radiol. 2015, 22, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Zaw, A.; Nguyen, R.; Lam, L.; Kaplan, A.; Dobler, C.C. The Effect of Limiting the Scan Range of Computed Tomography Pulmonary Angiography (to Reduce Radiation Exposure) on the Detection of Pulmonary Embolism: A Systematic Review. Diagnostics 2021, 11, 2179. [Google Scholar] [CrossRef] [PubMed]
- Pannenbecker, P.; Huflage, H.; Grunz, J.P.; Gruschwitz, P.; Patzer, T.S.; Weng, A.M.; Heidenreich, J.F.; Bley, T.A.; Petritsch, B. Photon-counting CT for diagnosis of acute pulmonary embolism: Potential for contrast medium and radiation dose reduction. Eur. Radiol. 2023, 33, 7830–7839. [Google Scholar] [CrossRef] [PubMed]
- Remy-Jardin, M.; Oufriche, I.; Guiffault, L.; Duhamel, A.; Flohr, T.; Schmidt, B.; Remy, J. Diagnosis of acute pulmonary embolism: When photon-counting-detector CT replaces energy-integrating-detector CT in daily routine. Eur. Radiol. 2024, 34, 6544–6555. [Google Scholar] [CrossRef] [PubMed]
- Kluge, A.; Müller, C.; Hansel, J.; Gerriets, T.; Bachmann, G. Real-time MR with TrueFISP for the detection of acute pulmonary embolism: Initial clinical experience. Eur. Radiol. 2004, 14, 709–718. [Google Scholar] [CrossRef]
- Herédia, V.; Altun, E.; Ramalho, M.; de Campos, R.; Azevedo, R.; Pamuklar, E.; Semelka, R.C. MRI of pregnant patients for suspected pulmonary embolism: Steady-state free precession vs postgadolinium 3D-GRE. Acta Med. Port. 2012, 25, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Nyrén, S.; Nordgren Rogberg, A.; Vargas Paris, R.; Bengtsson, B.; Westerlund, E.; Lindholm, P. Detection of pulmonary embolism using repeated MRI acquisitions without respiratory gating: A preliminary study. Acta Radiol. 2017, 58, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Kalb, B.; Sharma, P.; Tigges, S.; Ray, G.L.; Kitajima, H.D.; Costello, J.R.; Chen, Z.; Martin, D.R. MR imaging of pulmonary embolism: Diagnostic accuracy of contrast-enhanced 3D MR pulmonary angiography, contrast-enhanced low-flip angle 3D GRE, and nonenhanced free-induction FISP sequences. Radiology 2012, 263, 271–278. [Google Scholar] [CrossRef]
- Pasin, L.; Zanon, M.; Moreira, J.; Moreira, A.L.; Watte, G.; Marchiori, E.; Hochhegger, B. Magnetic Resonance Imaging of Pulmonary Embolism: Diagnostic Accuracy of Unenhanced MR and Influence in Mortality Rates. Lung 2017, 195, 193–199. [Google Scholar] [CrossRef]
- Fu, Q.; Cheng, Q.; Kong, X.; Ma, H.; Lei, Z. Diagnostic accuracy of true fast imaging with steady-state precession, MR pulmonary angiography and volume-interpolated body examination for pulmonary embolism compared with CT pulmonary angiography. Exp. Ther. Med. 2021, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.H.; Mostafa, H.M.; Megaly, H.I.; Mohamed, M.Z.; Taha, M.G.; Abdelal, S.M. Role of MRI in diagnosis of pulmonary embolism. Egypt. J. Bronchol. 2023, 17, 40. [Google Scholar] [CrossRef]
- Medson, K.; Vargas Paris, R.; Fyrdahl, A.; Wiklund, P.; Nyren, S.; Westerlund, E.; Lindholm, P. Detection of acute pulmonary embolism using native repeated magnetic resonance imaging acquisitions under free-breathing and without respiratory or cardiac gating. A diagnostic accuracy study. Eur. J. Radiol. Open. 2024, 12, 100558. [Google Scholar] [CrossRef]
- Moody, A.R. Magnetic resonance direct thrombus imaging. J. Thromb. Haemost. 2003, 1, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Vargas Paris, R.; Skorpil, M.; Westerlund, E.; Lindholm, P.; Nyrén, S. Diffusion-weighted imaging in acute pulmonary embolism: A feasibility study. Acta Radiol. Open 2018, 7, 2058460118783013. [Google Scholar] [CrossRef]
- Broncano, J.; Bhalla, S.; Gutierrez, F.R.; Vargas, D.; Williamson, E.E.; Makan, M.; Luna, A. Cardiac MRI in Pulmonary Hypertension: From Magnet to Bedside. Radiographics 2020, 40, 982–1002. [Google Scholar] [CrossRef] [PubMed]
- Sawlani, N.; Shroff, A.; Vidovich, M.I. Aortic dissection and mortality associated with pregnancy in the United States. J. Am. Coll. Cardiol. 2015, 65, 1600–1601. [Google Scholar] [CrossRef]
- Braverman, A.C.; Mittauer, E.; Harris, K.M.; Evangelista, A.; Pyeritz, R.E.; Brinster, D.; Conklin, L.; Suzuki, T.; Fanola, C.; Ouzounian, M.; et al. Clinical Features and Outcomes of Pregnancy-Related Acute Aortic Dissection. JAMA Cardiol. 2021, 6, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Roman, M.J.; Pitcher, A.; Devereux, R.B. Pregnancy and the Risk of Aortic Dissection or Rupture: A Cohort-Crossover Analysis. Circulation 2016, 134, 527–533. [Google Scholar] [CrossRef]
- Moore, A.G.; Eagle, K.A.; Bruckman, D.; Moon, B.S.; Malouf, J.F.; Fattori, R.; Evangelista, A.; Isselbacher, E.M.; Suzuki, T.; Nienaber, C.A.; et al. Choice of computed tomography, transesophageal echocardiography, magnetic resonance imaging, and aortography in acute aortic dissection: International Registry of Acute Aortic Dissection (IRAD). Am. J. Cardiol. 2002, 89, 1235–1238. [Google Scholar] [CrossRef]
- Costello, J.E.; Cecava, N.D.; Tucker, J.E.; Bau, J.L. CT radiation dose: Current controversies and dose reduction strategies. AJR Am. J. Roentgenol. 2013, 201, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Euler, A.; Taslimi, T.; Eberhard, M.; Kobe, A.; Reeve, K.; Zimmermann, A.; Krauss, A.; Gutjahr, R.; Schmidt, B.; Alkadhi, H. Computed Tomography Angiography of the Aorta-Optimization of Automatic Tube Voltage Selection Settings to Reduce Radiation Dose or Contrast Medium in a Prospective Randomized Trial. Investig. Radiol. 2021, 56, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.A.; Huang, E.P.; Chen, K.T.; Chen, Y.C.; Huang, Y.L.; Chuo, C.C.; Wu, F.Z.; Wu, M.T. Comparison of four contrast medium delivery protocols in low-iodine and low-radiation dose CT angiography of the aorta. Clin. Radiol. 2020, 75, 797.e9–797.e19. [Google Scholar] [CrossRef] [PubMed]
- Fink, M.A.; Stoll, S.; Melzig, C.; Steuwe, A.; Partovi, S.; Böckler, D.; Kauczor, H.U.; Rengier, F. Prospective Study of Low-Radiation and Low-Iodine Dose Aortic CT Angiography in Obese and Non-Obese Patients: Image Quality and Impact of Patient Characteristics. Diagnostics 2022, 12, 675. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, Z.; Xu, L.; Li, Y.; Zhang, N.; Yan, Z.; Fan, Z. High-pitch, low-voltage and low-iodine-concentration CT angiography of aorta: Assessment of image quality and radiation dose with iterative reconstruction. PLoS ONE 2015, 10, e0117469. [Google Scholar] [CrossRef]
- Apfaltrer, P.; Hanna, E.L.; Schoepf, U.J.; Spears, J.R.; Schoenberg, S.O.; Fink, C.; Vliegenthart, R. Radiation dose and image quality at high-pitch CT angiography of the aorta: Intraindividual and interindividual comparisons with conventional CT angiography. AJR Am. J. Roentgenol. 2012, 199, 1402–1409. [Google Scholar] [CrossRef]
- Sauter, A.P.; Muenzel, D.; Dangelmaier, J.; Braren, R.; Pfeiffer, F.; Rummeny, E.J.; Noël, P.B.; Fingerle, A.A. Dual-layer spectral computed tomography: Virtual non-contrast in comparison to true non-contrast images. Eur. J. Radiol. 2018, 104, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Si-Mohamed, S.; Dupuis, N.; Tatard-Leitman, V.; Rotzinger, D.; Boccalini, S.; Dion, M.; Vlassenbroek, A.; Coulon, P.; Yagil, Y.; Shapira, N.; et al. Virtual versus true non-contrast dual-energy CT imaging for the diagnosis of aortic intramural hematoma. Eur. Radiol. 2019, 29, 6762–6771. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.K.; Fruauff, A.; Esses, D.; Lipsitz, E.C.; Levsky, J.M.; Haramati, L.B. Implementation of an aortic dissection CT protocol with clinical decision support aimed at decreasing radiation exposure by reducing routine abdominopelvic imaging. Clin. Imaging. 2020, 67, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. ESC Scientific Document Group. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur Heart J. 2024, 45, 3538–3700. [Google Scholar] [PubMed]
- Evangelista, A.; Carro, A.; Moral, S.; Teixido-Tura, G.; Rodríguez-Palomares, J.F.; Cuéllar, H.; García-Dorado, D. Imaging modalities for the early diagnosis of acute aortic syndrome. Nat. Rev. Cardiol. 2013, 10, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Krishnam, M.S.; Tomasian, A.; Malik, S.; Desphande, V.; Laub, G.; Ruehm, S.G. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur. Radiol. 2010, 20, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Pereles, F.S.; McCarthy, R.M.; Baskaran, V.; Carr, J.C.; Kapoor, V.; Krupinski, E.A.; Finn, J.P. Thoracic aortic dissection and aneurysm: Evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology 2002, 223, 270–274. [Google Scholar] [CrossRef]
- Elkayam, U.; Jalnapurkar, S.; Barakkat, M.N.; Khatri, N.; Kealey, A.J.; Mehra, A.; Roth, A. Pregnancy-associated acute myocardial infarction: A review of contemporary experience in 150 cases between 2006 and 2011. Circulation 2014, 129, 1695–1702. [Google Scholar] [CrossRef]
- Vijayaraghavan, R.; Verma, S.; Gupta, N.; Saw, J. Pregnancy-related spontaneous coronary artery dissection. Circulation 2014, 130, 1915–1920. [Google Scholar] [CrossRef]
- Havakuk, O.; Goland, S.; Mehra, A.; Elkayam, U. Pregnancy and the Risk of Spontaneous Coronary Artery Dissection: An. Analysis of 120 Contemporary Cases. Circ. Cardiovasc. Interv. 2017, 10, e004941. [Google Scholar] [CrossRef]
- Saw, J.; Ricci, D.; Starovoytov, A.; Fox, R.; Buller, C.E. Spontaneous coronary artery dissection: Prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc. Interv. 2013, 6, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Tweet, M.S.; Hayes, S.N.; Codsi, E.; Gulati, R.; Rose, C.H.; Best, P.J.M. Spontaneous Coronary Artery Dissection Associated with Pregnancy. J. Am. Coll. Cardiol. 2017, 70, 426–435. [Google Scholar] [CrossRef]
- Adlam, D.; Alfonso, F.; Maas, A.; Vrints, C.; Writing Committee. European Society of Cardiology, acute cardiovascular care association, SCAD study group: A position paper on spontaneous coronary artery dissection. Eur. Heart J. 2018, 39, 3353–3368. [Google Scholar] [CrossRef]
- Saw, J.; Mancini, G.B.J.; Humphries, K.H. Contemporary Review on Spontaneous Coronary Artery Dissection. J. Am. Coll. Cardiol. 2016, 68, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Pergola, V.; Continisio, S.; Mantovani, F.; Motta, R.; Mattesi, G.; Marrazzo, G.; Dellino, C.M.; Montonati, C.; De Conti, G.; Galzerano, D.; et al. Spontaneous coronary artery dissection: The emerging role of coronary computed tomography. Eur. Heart J. Cardiovasc. Imaging. 2023, 24, 839–850. [Google Scholar] [CrossRef]
- Agwuegbo, C.C.; Ahmed, E.N.; Olumuyide, E.; Moideen Sheriff, S.; Waduge, S.A. Spontaneous Coronary Artery Dissection: An Updated Comprehensive Review. Cureus 2024, 16, e55106. [Google Scholar] [CrossRef]
- Sun, Y.; Mao, D.; Lu, F.; Chen, Y.; Shi, K.; Qi, L.; Guo, X.; Hua, Y. Diagnosis of Dissection of the Coronary Artery Dissection by Multidetector Computed Tomography: A Comparative Study with Coronary Angiology. J. Comput. Assist. Tomogr. 2015, 39, 572–577. [Google Scholar] [CrossRef]
- Tweet, M.S.; Akhtar, N.J.; Hayes, S.N.; Best, P.J.; Gulati, R.; Araoz, P.A. Spontaneous coronary artery dissection: Acute findings on coronary computed tomography angiography. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 467–475. [Google Scholar] [CrossRef]
- Wong, B.; To, A.; El-Jack, S. Spontaneous coronary artery dissection: Insights from computed tomography coronary angiography follow-up. N. Z. Med. J. 2022, 135, 41–47. [Google Scholar] [PubMed]
- Roura, G.; Ariza-Solé, A.; Rodriguez-Caballero, I.F.; Gomez-Lara, J.; Ferreiro, J.L.; Romaguera, R.; Teruel, L.; de Albert, M.; Gomez-Hospital, J.A.; Cequier, A. Noninvasive Follow-Up of Patients with Spontaneous Coronary Artery Dissection with CT Angiography. JACC Cardiovasc. Imaging. 2016, 9, 896–897. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Stojanovska, J.; Khokhar, U.S.; Weinberg, R.L.; Ganesh, S.K.; Labounty, T.; Sutton, N.R.; Patel, S. Spontaneous Coronary Artery Dissection: An Underdiagnosed Clinical Entity-A Primer for Cardiac Imagers. Radiographics 2021, 41, 1897–1915. [Google Scholar] [CrossRef] [PubMed]
- Saw, J.; Humphries, K.; Aymong, E.; Sedlak, T.; Prakash, R.; Starovoytov, A.; Mancini, G.B.J. Spontaneous Coronary Artery Dissection: Clinical Outcomes and Risk of Recurrence. J. Am. Coll. Cardiol. 2017, 70, 1148–1158. [Google Scholar] [CrossRef]
- Tan, N.Y.; Hayes, S.N.; Young, P.M.; Gulati, R.; Tweet, M.S. Usefulness of Cardiac Magnetic Resonance Imaging in Patients with Acute Spontaneous Coronary Artery Dissection. Am. J. Cardiol. 2018, 122, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, A.; Abdelaty, A.M.; Gulsin, G.S.; Arnold, J.R.; Garcia-Guimaraes, M.; Premawardhana, D.; Budgeon, C.; Wood, A.; Natarajan, N.; Mangion, K.; et al. Chronic infarct size after spontaneous coronary artery dissection: Implications for pathophysiology and clinical management. Eur. Heart J. 2020, 41, 2197–2205. [Google Scholar] [CrossRef]
- Ordovas, K.G.; Baldassarre, L.A.; Bucciarelli-Ducci, C.; Carr, J.; Fernandes, J.L.; Ferreira, V.M.; Frank, L.; Mavrogeni, S.; Ntusi, N.; Ostenfeld, E.; et al. Cardiovascular magnetic resonance in women with cardiovascular disease: Position statement from the Society for Cardiovascular Magnetic Resonance (SCMR). J. Cardiovasc. Magn. Reson. 2021, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.T.; Richardson, J.D.; Puri, R.; Nelson, A.J.; Bertaso, A.G.; Teo, K.S.; Worthley, M.I.; Worthley, S.G. The role of cardiac magnetic resonance imaging following acute myocardial infarction. Eur. Radiol. 2012, 22, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, J.; König, T.; van der Meer, P.; Petrie, M.C.; Hilfiker-Kleiner, D.; Mbakwem, A.; Hamdan, R.; Jackson, A.M.; Forsyth, P.; de Boer, R.A.; et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: A position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 2019, 21, 827–843. [Google Scholar] [CrossRef] [PubMed]
- Schaufelberger, M. Cardiomyopathy and pregnancy. Heart 2019, 105, 1543–1551. [Google Scholar] [CrossRef]
- Kolte, D.; Khera, S.; Aronow, W.S.; Palaniswamy, C.; Mujib, M.; Ahn, C.; Jain, D.; Gass, A.; Ahmed, A.; Panza, J.A.; et al. Temporal trends in incidence and outcomes of peripartum cardiomyopathy in the United States: A nationwide population-based study. J. Am. Heart Assoc. 2014, 3, e001056. [Google Scholar] [CrossRef] [PubMed]
- Arany, Z.; Elkayam, U. Peripartum Cardiomyopathy. Circulation 2016, 133, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Iorgoveanu, C.; Zaghloul, A.; Ashwath, M. Peripartum cardiomyopathy: A review. Heart Fail. Rev. 2021, 26, 1287–1296. [Google Scholar] [CrossRef]
- Elkayam, U.; Akhter, M.W.; Singh, H.; Khan, S.; Bitar, F.; Hameed, A.; Shotan, A. Pregnancy-associated cardiomyopathy: Clinical characteristics and a comparison between early and late presentation. Circulation 2005, 111, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Tanous, D.; Siu, S.C.; Mason, J.; Greutmann, M.; Wald, R.M.; Parker, J.D.; Sermer, M.; Colman, J.M.; Silversides, C.K. B-type natriuretic peptide in pregnant women with heart disease. J. Am. Coll. Cardiol. 2010, 56, 1247–1253. [Google Scholar] [CrossRef]
- Ersbøll, A.S.; Damm, P.; Gustafsson, F.; Vejlstrup, N.G.; Johansen, M. Peripartum cardiomyopathy: A systematic literature review. Acta Obstet. Gynecol. Scand. 2016, 95, 1205–1219. [Google Scholar] [CrossRef] [PubMed]
- Rajiah, P.S.; François, C.J.; Leiner, T. Cardiac MRI: State of the Art. Radiology 2023, 307, e223008. [Google Scholar] [CrossRef]
- Prameswari, H.S.; Kamarullah, W.; Pranata, R.; Putra, I.C.S.; Undarsa, A.C.; Iqbal, M.; Dewi, T.I.; Kusumawardhani, N.Y.; Akbar, M.R.; Astuti, A. Meta-analysis of cardiac magnetic resonance in prognosticating left ventricular function in peripartum cardiomyopathy. ESC Heart Fail. 2024. [Google Scholar] [CrossRef]
- Nii, M.; Ishida, M.; Dohi, K.; Tanaka, H.; Kondo, E.; Ito, M.; Sakuma, H.; Ikeda, T. Myocardial tissue characterization and strain analysis in healthy pregnant women using cardiovascular magnetic resonance native T1 mapping and feature tracking technique. J. Cardiovasc. Magn. Reson. 2018, 20, 52. [Google Scholar] [CrossRef] [PubMed]
- Haghikia, A.; Röntgen, P.; Vogel-Claussen, J.; Schwab, J.; Westenfeld, R.; Ehlermann, P.; Berliner, D.; Podewski, E.; Hilfiker-Kleiner, D.; Bauersachs, J.; et al. Prognostic implication of right ventricular involvement in peripartum cardiomyopathy: A cardiovascular magnetic resonance study. ESC Heart Fail. 2015, 2, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Caroline, M.; Zhao, H.; Baldwin, M.R.; Forfia, P.R.; Tsai, E.J. Initial Right Ventricular Dysfunction Severity Identifies Severe Peripartum Cardiomyopathy Phenotype with Worse Early and Overall Outcomes: A 24-Year Cohort Study. J. Am. Heart Assoc. 2018, 7, e008378. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.D.; Xu, Y.W.; Li, W.H.; Wan, K.; Sun, J.Y.; Lin, J.Y.; Zhang, Q.; Zhou, X.-Y.; Chen, Y.-C. Left ventricular function recovery in peripartum cardiomyopathy: A cardiovascular magnetic resonance study by myocardial T1 and T2 mapping. J. Cardiovasc. Magn. Reson. 2020, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhao, L.; Fu, H.; Xu, R.; Xie, L.; Zhang, K.; Song, Y.; Yang, Z.; Zhao, S.; Guo, Y. Prognostic Value of Cardiac MRI Late Gadolinium Enhancement in Patients with Peripartum Cardiomyopathy: A Retrospective Study. Curr. Probl. Cardiol. 2023, 48, 101587. [Google Scholar] [CrossRef] [PubMed]
- Schelbert, E.B.; Elkayam, U.; Cooper, L.T.; Givertz, M.M.; Alexis, J.D.; Briller, J.; Felker, M.; Chaparro, S.; Kealey, A.; Pisarcik, J.; et al. Myocardial Damage Detected by Late Gadolinium Enhancement Cardiac Magnetic Resonance Is Uncommon in Peripartum Cardiomyopathy. J. Am. Heart Assoc. 2017, 6, e005472. [Google Scholar] [CrossRef]
- Du Plessis, J.; Gujrathi, R.; Hassanin, M.; McKee, H.; Hanneman, K.; Karur, G.R.; Chan, V.; Warnica, W.; Wald, R.M.; Nguyen, E.T. Peripartum Cardiomyopathy is Associated with Abnormalities of Myocardial Deformation and Late Gadolinium Enhancement. Can. Assoc. Radiol. J. 2024, 6, 8465371241268426. [Google Scholar] [CrossRef] [PubMed]
- Radakrishnan, A.; Dokko, J.; Pastena, P.; Kalogeropoulos, A.P. Thromboembolism in peripartum cardiomyopathy: A systematic review. J. Thorac. Dis. 2024, 16, 645–660. [Google Scholar] [CrossRef]
Study | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
Kalb et al., 2012 [52] | 67% | 100% | 100% | 83% |
Pasin et al., 2017 [53] | 85.0% | 98.6% | 94.5% | 95.9% |
Fu et al., 2021 [54] | 81.3% | 80% | 92.9% | 57.1% |
Mohammad et al., 2023 [55] | 84% | 100% | 100% | 79.2% |
Medson et al., 2024 [56] | 97.87% | 100% | 100% | 99.49% |
Primary Findings | CCTA appearance | ||
Abrupt luminal stenosis | >50% diameter change over a length of 0.5 mm | ||
Tapered luminal stenosis | >50% diameter change over a length of 5.0 mm | ||
IMH | Vessel wall thickening (hyperattenuation in unenhanced CT) | ||
Dissection | Linear hypoattenuation extending between contrast medium–filled false and true lumens | ||
Secondary Findings | Epicardial and perivascular fat stranding Coronary tortuosity Myocardial hypoperfusion Absence of coronary calcifications Vessel occlusion with no distal flow present |
CMR Sequences | Planes | Evaluation/Detection | ||
---|---|---|---|---|
Cine-SSFP | SA and long axis | Cardiac structure and function | ||
T2w | T2w imaging | SA | Myocardial edema | |
T2 mapping | SA | Myocardial edema | ||
T1w | Pre-contrast | Native T1 mapping | SA | Myocardial edema, necrosis and fibrosis |
Post-contrast (postpartum period) | EGE | SA | Hyperemia/capillary leak and thrombus | |
LGE | SA and long axis | Myocardial edema, necrosis, fibrosis and thrombus | ||
Enhanced T1 mapping/ECV | SA | Myocardial edema, necrosis and fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriero, F.; Mazza, G.; Perazzolo, A.; Ottoni, G.; Cipriani, A.; Castro Pereira, J.F.; Marano, R.; Natale, L. Pregnancy-Related Cardiovascular Diseases: A Radiological Overview. J. Cardiovasc. Dev. Dis. 2025, 12, 43. https://doi.org/10.3390/jcdd12020043
Lauriero F, Mazza G, Perazzolo A, Ottoni G, Cipriani A, Castro Pereira JF, Marano R, Natale L. Pregnancy-Related Cardiovascular Diseases: A Radiological Overview. Journal of Cardiovascular Development and Disease. 2025; 12(2):43. https://doi.org/10.3390/jcdd12020043
Chicago/Turabian StyleLauriero, Francesco, Giulia Mazza, Alessio Perazzolo, Giacomo Ottoni, Alessia Cipriani, José F. Castro Pereira, Riccardo Marano, and Luigi Natale. 2025. "Pregnancy-Related Cardiovascular Diseases: A Radiological Overview" Journal of Cardiovascular Development and Disease 12, no. 2: 43. https://doi.org/10.3390/jcdd12020043
APA StyleLauriero, F., Mazza, G., Perazzolo, A., Ottoni, G., Cipriani, A., Castro Pereira, J. F., Marano, R., & Natale, L. (2025). Pregnancy-Related Cardiovascular Diseases: A Radiological Overview. Journal of Cardiovascular Development and Disease, 12(2), 43. https://doi.org/10.3390/jcdd12020043