Cardiovascular Involvement in Pediatric FLNC Variants: A Case Series of Fourteen Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical and Genetic Evaluation
2.2. Genetic Analysis
2.3. Chromosomal Microarray Analysis
2.4. Next Generation Sequencing Analysis and Variant Interpretation
2.5. Histology and Immunohistochemistry
3. Results
4. Discussion
4.1. Microdeletion
4.2. Missense Variants
4.3. Truncating Variants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watkins, H.; Ashrafian, H.; Redwood, C. Inherited Cardiomyopathies. N. Engl. J. Med. 2011, 364, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, M.H. Decade in Review—Cardiomyopathies: Cardiomyopathy on the Move: Decade in Review-Cardiomyopathies. Nat. Rev. Cardiol. 2014, 11, 628–629. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, M.; Jiang, H.; Thomson, K.L.; Gehmlich, K. When Signalling Goes Wrong: Pathogenic Variants in Structural and Signalling Proteins Causing Cardiomyopathies. J. Muscle Res. Cell Motil. 2017, 38, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Davis, L.C.; Correll, R.N.; Makarewich, C.A.; Schwanekamp, J.A.; Moussavi-Harami, F.; Wang, D.; York, A.J.; Wu, H.; Houser, S.R.; et al. A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell 2016, 165, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Thiene, G.; Basso, C.; Danieli, G.; Rampazzo, A.; Corrado, D.; Nava, A. Arrhythmogenic Right Ventricular Cardiomyopathy a Still Underrecognized Clinic Entity. Trends Cardiovasc. Med. 1997, 7, 84–90. [Google Scholar] [CrossRef]
- Burlew, B.S.; Weber, K.T. Connective Tissue and the Heart. Functional Significance and Regulatory Mechanisms. Cardiol. Clin. 2000, 18, 435–442. [Google Scholar] [CrossRef]
- Brodehl, A.; Gaertner-Rommel, A.; Milting, H. FLNC (Filamin-C): A New(er) Player in the Field of Genetic Cardiomyopathies: A New(er) Player in the Field of Genetic Cardiomyopathies. Circ. Cardiovasc. Genet. 2017, 10, e001959. [Google Scholar] [CrossRef]
- Verdonschot, J.A.J.; Vanhoutte, E.K.; Claes, G.R.F.; Enden, A.T.J.M.H.D.; Hoeijmakers, J.G.J.; Hellebrekers, D.M.E.I.; de Haan, A.; Christiaans, I.; Deprez, R.H.L.; Boen, H.M.; et al. A Mutation Update for the FLNC Gene in Myopathies and Cardiomyopathies. Hum. Mutat. 2020, 41, 1091–1111. [Google Scholar] [CrossRef]
- Chakarova, C.; Wehnert, M.S.; Uhl, K.; Sakthivel, S.; Vosberg, H.-P.; van der Ven, P.F.M.; Fürst, D.O. Genomic Structure and Fine Mapping of the Two Human Filamin Gene Paralogues FLNB and FLNC and Comparative Analysis of the Filamin Gene Family. Hum. Genet. 2000, 107, 597–611. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, W.; Davie, E.W.; Chung, D.W. Molecular Cloning of Human ABPL, an Actin-Binding Protein Homologue. Biochem. Biophys. Res. Commun. 1998, 251, 914–919. [Google Scholar] [CrossRef]
- Kong, S.W.; Hu, Y.W.; Ho, J.W.; Ikeda, S.; Polster, S.; John, R.; Hall, J.L.; Bisping, E.; Pieske, B.; Dos Remedios, C.G.; et al. Heart Failure-Associated Changes in RNA Splicing of Sarcomere Genes. Circ. Cardiovasc. Genet. 2010, 3, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ader, F.; De Groote, P.; Réant, P.; Rooryck-Thambo, C.; Dupin-Deguine, D.; Rambaud, C.; Khraiche, D.; Perret, C.; Pruny, J.F.; Mathieu-Dramard, M.; et al. FLNC Pathogenic Variants in Patients with Cardiomyopathies: Prevalence and Genotype-Phenotype Correlations. Clin. Genet. 2019, 96, 317–329. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Cheng, A.; Deyoung, S.M.; Saltiel, A.R. Identification of CAP as a Costameric Protein That Interacts with Filamin C. Mol. Biol. Cell 2007, 18, 4731–4740. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, G.; Cutroneo, G.; Trimarchi, F.; Santoro, G.; Bruschetta, D.; Bramanti, P.; Pisani, A.; Favaloro, A. Evaluation of Sarcoglycans, Vinculin-Talin-Integrin System and Filamin2 in Alpha- and Gamma-Sarcoglycanopathy: An Immunohistochemical Study. Int. J. Mol. Med. 2004, 14, 989–999. [Google Scholar] [PubMed]
- Fürst, D.O.; Goldfarb, L.G.; Kley, R.A.; Vorgerd, M.; Olivé, M.; van der Ven, P.F.M. Filamin C-Related Myopathies: Pathology and Mechanisms. Acta Neuropathol. 2013, 125, 33–46. [Google Scholar] [CrossRef]
- Takada, F.; Vander Woude, D.L.; Tong, H.Q.; Thompson, T.G.; Watkins, S.C.; Kunkel, L.M.; Beggs, A.H. Myozenin: An Alpha-Actinin- and Gamma-Filamin-Binding Protein of Skeletal Muscle Z Lines. Proc. Natl. Acad. Sci. USA 2001, 98, 1595–1600. [Google Scholar] [CrossRef]
- Fujita, M.; Mitsuhashi, H.; Isogai, S.; Nakata, T.; Kawakami, A.; Nonaka, I.; Noguchi, S.; Hayashi, Y.K.; Nishino, I.; Kudo, A. Filamin C Plays an Essential Role in the Maintenance of the Structural Integrity of Cardiac and Skeletal Muscles, Revealed by the Medaka Mutant Zacro. Dev. Biol. 2012, 361, 79–89. [Google Scholar] [CrossRef]
- Molt, S.; Bührdel, J.B.; Yakovlev, S.; Schein, P.; Orfanos, Z.; Kirfel, G.; Winter, L.; Wiche, G.; van der Ven, P.; Rottbauer, W.; et al. Aciculin Interacts with Filamin C and Xin and Is Essential for Myofibril Assembly, Remodeling and Maintenance. J. Cell Sci. 2014, 127 Pt 16, 3578–3592. [Google Scholar] [CrossRef]
- Eden, M.; Frey, N. Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy. J. Clin. Med. 2021, 10, 577. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.; Vaz, R.; Knyazeva, A.; Khudiakov, A.; Tarnovskaya, S.; Liu, J.; Sergushichev, A.; Kazakov, S.; Frishman, D.; Smolina, N.; et al. De Novo Mutations in FLNC Leading to Early-Onset Restrictive Cardiomyopathy and Congenital Myopathy. Hum. Mutat. 2018, 39, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Genga, M.F.; Cuenca, S.; Dal Ferro, M.; Zorio, E.; Salgado-Aranda, R.; Climent, V.; Padrón-Barthe, L.; Duro-Aguado, I.; Jiménez-Jáimez, J.; Hidalgo-Olivares, V.M.; et al. Truncating FLNC Mutations Are Associated with High-Risk Dilated and Arrhythmogenic Cardiomyopathies. J. Am. Coll. Cardiol. 2016, 68, 2440–2451. [Google Scholar] [CrossRef]
- Cicenia, M.; Cantarutti, N.; Adorisio, R.; Silvetti, M.S.; Secinaro, A.; Ciancarella, P.; Di Mambro, C.; Magliozzi, M.; Novelli, A.; Amodeo, A.; et al. Arrhythmogenic Cardiomyopathy in Children According to “Padua Criteria”: Single Pediatric Center Experience. Int. J. Cardiol. 2022, 350, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Cicenia, M.; Drago, F. Arrhythmogenic Cardiomyopathy: Diagnosis, Evolution, Risk Stratification and Pediatric Population-Where Are We? J. Cardiovasc. Dev. Dis. 2022, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Lodato, V.; Parlapiano, G.; Calì, F.; Silvetti, M.S.; Adorisio, R.; Armando, M.; El Hachem, M.; Romanzo, A.; Dionisi-Vici, C.; Digilio, M.C.; et al. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J. Cardiovasc. Dev. Dis. 2022, 9, 47. [Google Scholar] [CrossRef]
- Hall, C.L.; Akhtar, M.M.; Sabater-Molina, M.; Futema, M.; Asimaki, A.; Protonotarios, A.; Dalageorgou, C.; Pittman, A.M.; Suarez, M.P.; Aguilera, B.; et al. Filamin C Variants Are Associated with a Distinctive Clinical and Immunohistochemical Arrhythmogenic Cardiomyopathy Phenotype. Int. J. Cardiol. 2020, 307, 101–108. [Google Scholar] [CrossRef]
- Duff, R.M.; Tay, V.; Hackman, P.; Ravenscroft, G.; McLean, C.; Kennedy, P.; Steinbach, A.; Schöffler, W.; van der Ven, P.F.M.; Fürst, D.O.; et al. Mutations in the N-Terminal Actin-Binding Domain of Filamin C Cause a Distal Myopathy. Am. J. Hum. Genet. 2011, 88, 729–740. [Google Scholar] [CrossRef]
- Ruparelia, A.A.; Zhao, M.; Currie, P.D.; Bryson-Richardson, R.J. Characterization and Investigation of Zebrafish Models of Filamin-Related Myofibrillar Myopathy. Hum. Mol. Genet. 2012, 21, 4073–4083. [Google Scholar] [CrossRef]
- Begay, R.L.; Tharp, C.A.; Martin, A.; Graw, S.L.; Sinagra, G.; Miani, D.; Sweet, M.E.; Slavov, D.B.; Stafford, N.; Zeller, M.J.; et al. FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy. JACC Basic Transl. Sci. 2016, 1, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Shi, A.; Lian, H.; Hu, S.; Nie, Y. Filamin C in Cardiomyopathy: From Physiological Roles to DNA Variants. Heart Fail. Rev. 2022, 27, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, A.A.; Oorschot, V.; Ramm, G.; Bryson-Richardson, R.J. FLNC Myofibrillar Myopathy Results from Impaired Autophagy and Protein Insufficiency. Hum. Mol. Genet. 2016, 25, 2131–2142. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, A.A.; Oorschot, V.; Vaz, R.; Ramm, G.; Bryson-Richardson, R.J. Zebrafish Models of BAG3 Myofibrillar Myopathy Suggest a Toxic Gain of Function Leading to BAG3 Insufficiency. Acta Neuropathol. 2014, 128, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm. 2019, 16, e301–e372. [Google Scholar] [CrossRef] [PubMed]
- Gigli, M.; Stolfo, D.; Graw, S.L.; Merlo, M.; Gregorio, C.; Nee Chen, S.; Dal Ferro, M.; Paldino, M.D.A.; De Angelis, G.; Brun, F.; et al. Phenotypic Expression, Natural History, and Risk Stratification of Cardiomyopathy Caused by Filamin C Truncating Variants. Circulation 2021, 144, 1600–1611. [Google Scholar] [CrossRef]
- Miszalski-Jamka, K.; Jefferies, J.L.; Mazur, W.; Głowacki, J.; Hu, J.; Lazar, M.; Gibbs, R.A.; Liczko, J.; Kłyś, J.; Venner, E.; et al. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients with Left Ventricular Noncompaction. Circ. Cardiovasc. Genet. 2017, 10, e001763. [Google Scholar] [CrossRef]
- Mangum, K.D.; Ferns, S.J. A Novel Familial Truncating Mutation in the Filamin C Gene Associated with Cardiac Arrhythmias. Eur. J. Med. Genet. 2019, 62, 282–285. [Google Scholar] [CrossRef]
- Xiao, F.; Wei, Q.; Wu, B.; Liu, X.; Mading, A.; Yang, L.; Li, Y.; Liu, F.; Pan, X.; Wang, H. Clinical Exome Sequencing Revealed That FLNC Variants Contribute to the Early Diagnosis of Cardiomyopathies in Infant Patients. Transl. Pediatr. 2020, 9, 21–33. [Google Scholar] [CrossRef]
- Ghaoui, R.; Cooper, S.T.; Lek, M.; Jones, K.; Corbett, A.; Reddel, S.W.; Needham, M.; Liang, C.; Waddell, L.B.; Nicholson, G.; et al. Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned: Outcomes and Lessons Learned. JAMA Neurol. 2015, 72, 1424–1432. [Google Scholar] [CrossRef]
- Baban, A.; Cicenia, M.; Magliozzi, M.; Gnazzo, M.; Cantarutti, N.; Silvetti, M.S.; Adorisio, R.; Dallapiccola, B.; Bertini, E.; Novelli, A.; et al. Cardiovascular Involvement in Pediatric Laminopathies. Report of Six Patients and Literature Revision. Front. Pediatr. 2020, 8, 374. [Google Scholar] [CrossRef]
- Theis, J.L.; Hu, J.J.; Sundsbak, R.S.; Evans, J.M.; Bamlet, W.R.; Qureshi, M.Y.; O’Leary, P.W.; Olson, T.M. Genetic Association between Hypoplastic Left Heart Syndrome and Cardiomyopathies. Circ. Genom. Precis. Med. 2021, 14, e003126. [Google Scholar] [CrossRef] [PubMed]
- Baban, A.; Lodato, V.; Parlapiano, G.; Drago, F. Genetics in Congenital Heart Diseases: Unraveling the Link Between Cardiac Morphogenesis, Heart Muscle Disease, and Electrical Disorders. Heart Fail. Clin. 2022, 18, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Neethling, A.; Mouton, J.; Loos, B.; Corfield, V.; de Villiers, C.; Kinnear, C. Filamin C: A Novel Component of the KCNE2 Interactome during Hypoxia. Cardiovasc. J. Afr. 2016, 27, 4–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Summary of Phenotypic and Genotypic Characteristics in the Studied Cohort of Patients with FLNC Variants | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient | Main Cardiac Phenotype | Other | Arrhythmic Events and Conduction System Disorders | Muscular/Multisystemic | Outcome | Age | Sex | Age at Dx | CPK | Chromosomal Microarray Analysis | Inh | CNV Interpretation | Reference | Family History | ||||
1 | DCM/LVNC | Severe LV dysfunction | - | Palpebral ptosis | HT list, Lost in FUP | 7 y | M | 2 month | N | arr[hg19] 7q32.1(128,470,838-128,521,431)x1 mat | mat | - | Current study | Mother: EF 48–50% | ||||
Main Cardiac Phenotype | Other | Arrhythmic Events | Outcome | Age | Sex | Age at Dx | CPK | c-Notation | p-Notation | Protein Domain | Variant Type | Inh | ACMG Criteria | Variant Interpretation | Family History | |||
2 | DCM | ESHF | QTc 450msec | Unexplained severe hypotonia after AG | BH, Infant Jarvik, died | 4 y | F | 2 y and 9 month | high | c.4069G>A | p.Gly1357Arg | ROD1 | Missense | Pat | PM2, PP3, BP1 | VUS | Current study | Father: EF 50%, IVS 12 mm, no LGE in CMR. Pat GF: G?, Ph: cardiac?, progressive myopathy |
3 | DCM/EFE | ESHF | - | - | HT | 9 y | F | 9 y | N | c.4076G>T | p.Gly1359Val | ROD1 | Missense | Pat | PM2, PP3, BP1 | VUS | Current study | Father: G+, Ph? |
4 | LV hypertrabeculation | - | Mild LQT | Mild scoliosis, distal BHSJ | Alive and well | 15 y | M | 15 y | N | c.6751A>C | p.Thr2251Pro | ROD2 | Missense | De novo | PM2, PP3, BP1 | VUS | Current study | - |
5 | DCM | EF 52% and diffuse LGE in CMR | - | - | Alive and well | 21 y | M | 18 y | N | c.241delC | p.Arg81AlaTer15 | ABD | Frameshift | Mat | PVS1, PM2, PP3 | LP | (Ortiz-Genga et al., 2016) [23] | Mother, mat aunts: G+, Ph+: DCM, ICD. No SCD. Mat GM: G+, Ph- (80 y old) |
6 | Familial DCM | Normal imaging | AVB-II | Duane ocular defect, mild scoliosis, flat feet, BHSJ | Alive and well | 17 y | M | 16 y | N | c.6662T>C | p.Val2221Ala | ROD2 | Missense | Mat | PM1, PM2, PP3, BP1 | VUS | Current study | Mat: DCM. Mat GF: DCM. Mat uncle: DCM, diffuse LGE |
7 | RCM | Chronic HF | AVB-I, LQTS | Arthrogryposis, LGD (Figure 2A) | HT waiting list | 9 y | M | 3 y and 6 month | Increased | c.3557C>T | p.Ala1186Val | ROD1 | Missense | De novo | PP5, PM2, PP3, BP1 | LP | (Kiselev et al., 2018) [22] | Negative |
8 | RCM | Chronic HF | - | LGD (Figure 2B) | HT waiting list | 2 y | M | 1 y | Increased | c.3557C>T | p.Ala1186Val | ROD1 | Missense | Pat | PP5, PM2, PP3, BP1 | LP | (Kiselev et al., 2018) [22] | Father: RCM dx at 18 y, musculoskeletal abnormalities |
9 | RCM | ESHF, pulmonary hypertension | LQTS | Arthrogryposis, LGD | VAD, HT | 13 y | F | 11 y | N | c.7570T>C | p.Ser2524Pro | ROD2 | Missense | Not Mat | PM2, PP3, BP1 | VUS | Current study | |
10 | HCM | - | - | - | Alive and well | 13 y | F | 11 y | N | c.3799C>G | p.Arg1267Gly | ROD1 | Missense | Pat | PM2, PP3, BP1 | VUS | Current study | Sister: SCD at 7 y old. Father: syncope, normal cardiac screening. No recent data. |
11 | HCM | - | - | - | Alive and well | 14 y | M | 13 y | N | c.1102G>A | p.Val368Met | ROD1 | Missense | Pat | PP3, BP1 | VUS | Current study | Father: HCM, IVS 14 mm |
12 | Congenital AVB, ASD | ASD | Congenital AVB III | Microsomy | Alive | 4 y | F | Prenatal onset | N | c.7450G>A | p.Gly2484Ser | ROD2 | Missense | Mat | PP3, BP1 | VUS | (Verdonschot et al., 2020) [8] | Mother: G+, Ph? |
13 | Congenital UAV | Ascending aortic dilatation | - | Distal BHSJ | Alive and well | 11 y | M | 10 y | N | c.6151_ 6161del | p.Leu2051ThrfsTer25 | ROD2 | Frameshift | Mat | PVS1, PM2, PP3 | Path | Current study | Mother: G+, Ph? Refused echo. Maternal aunt: G?, Ph: CMP |
14 | RCM | - | AVB-I, QTc at upper limits | Arthrogryposis, LGD restricted jaw movements (Figure 2C) | HT waiting list | 14 y | F | 7 y | N | c.4628G>C | p.Arg1543Pro | ROD2 | Missense | De novo | PS2, PM2, PP3 | LP | Currentstudy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baban, A.; Alesi, V.; Magliozzi, M.; Parlapiano, G.; Genovese, S.; Cicenia, M.; Loddo, S.; Lodato, V.; Di Chiara, L.; Fattori, F.; et al. Cardiovascular Involvement in Pediatric FLNC Variants: A Case Series of Fourteen Patients. J. Cardiovasc. Dev. Dis. 2022, 9, 332. https://doi.org/10.3390/jcdd9100332
Baban A, Alesi V, Magliozzi M, Parlapiano G, Genovese S, Cicenia M, Loddo S, Lodato V, Di Chiara L, Fattori F, et al. Cardiovascular Involvement in Pediatric FLNC Variants: A Case Series of Fourteen Patients. Journal of Cardiovascular Development and Disease. 2022; 9(10):332. https://doi.org/10.3390/jcdd9100332
Chicago/Turabian StyleBaban, Anwar, Viola Alesi, Monia Magliozzi, Giovanni Parlapiano, Silvia Genovese, Marianna Cicenia, Sara Loddo, Valentina Lodato, Luca Di Chiara, Fabiana Fattori, and et al. 2022. "Cardiovascular Involvement in Pediatric FLNC Variants: A Case Series of Fourteen Patients" Journal of Cardiovascular Development and Disease 9, no. 10: 332. https://doi.org/10.3390/jcdd9100332
APA StyleBaban, A., Alesi, V., Magliozzi, M., Parlapiano, G., Genovese, S., Cicenia, M., Loddo, S., Lodato, V., Di Chiara, L., Fattori, F., D’Amico, A., Francalanci, P., Amodeo, A., Novelli, A., & Drago, F. (2022). Cardiovascular Involvement in Pediatric FLNC Variants: A Case Series of Fourteen Patients. Journal of Cardiovascular Development and Disease, 9(10), 332. https://doi.org/10.3390/jcdd9100332