Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins
Abstract
:1. Introduction
Materials and Methods
2. Effects of Statins
3. Mechanisms of Statin-Induced Increase in CT Level
4. Potential Mechanisms of Statins’ Toxic Effects on Myocardial Cells
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Konstantinov, I.E.; Mejevoi, N.; Anichkov, N.M.; Nikolai, N. Anichkov and his theory of atherosclerosis. Tex. Heart Inst. J. 2006, 33, 417–423. [Google Scholar] [PubMed]
- Pigarevsky, P.V.; Chirsky, V.S.; Anichkov, N.M. To the 130th anniversary since the birth of the prominent pathologist N.N. Anichkov, academician of USSR Academy of sciences and Academy of medical sciences. Patol. Fiziol. Eksp. Ter. 2015, 3, 150–158. (In Russian) [Google Scholar]
- Klimov, A.N.; Sinitsyna, T.A.; Nagornev, V.A.; Razvitie ideĭ, N.N. Anichkova na sovremennom étape ucheniia ob ateroskleroze [Development of the ideas of N. N. Anichkov at the present stage of our knowledge about atherosclerosis]. Arkh Patol. 1975, 37, 3–16. (In Russian) [Google Scholar]
- Dreeva, Z.V.; Ageev, F.T. History of Statins Development. New Prospects. Med. Counc. 2017, 11, 202–207. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid. Res. 1992, 33, 1569–1582. [Google Scholar] [CrossRef]
- Kazi, D.S.; Penko, J.M.; Bibbins-Domingo, K. Statins for Primary Prevention of Cardiovascular Disease. Med. Clin. N. Am. 2017, 101, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, T.E. Role of Statin Therapy in Primary Prevention of Cardiovascular Disease in Elderly Patients. Curr. Atheroscler. Rep. 2019, 21, 28. [Google Scholar] [CrossRef] [Green Version]
- Nesti, L.; Mengozzi, A.; Natali, A. Statins, LDL Cholesterol Control, Cardiovascular Disease Prevention, and Atherosclerosis Progression: A Clinical Perspective. Am. J. Cardiovasc. Drugs 2019, 20, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Farnier, M.; Colhoun, H.M.; Sasiela, W.J.; Edelberg, J.M.; Asset, G.; Robinson, J.G. Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY Phase III clinical studies with treatment duration of 1 to 2 years. J. Clin. Lipidol. 2017, 11, 986–997. [Google Scholar] [CrossRef] [Green Version]
- Yurtseven, E.; Ural, D.; Baysal, K.; Tokgözoğlu, L. An Update on the Role of PCSK9 in Atherosclerosis. J. Atheroscler. Thromb. 2020, 27, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Duplyakov, D.V. PCSK-9: Modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Kardiologiya: Novosti, mneniya, obuchenie. Cardiol. News Opin. Train. 2019, 7, 45–57. (In Russian) [Google Scholar] [CrossRef]
- Arrieta, A.; Page, T.F.; Veledar, E.; Nasir, K. Economic Evaluation of PCSK9 Inhibitors in Reducing Cardiovascular Risk from Health System and Private Payer Perspectives. PLoS ONE 2017, 12, e0169761. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. Life 2021, 11, 914. [Google Scholar] [CrossRef]
- Agewall, S.; Giannitsis, E.; Jernberg, T.; Katus, H. Troponin elevation in coronary vs. non-coronary disease. Eur. Heart J. 2010, 32, 404–411. [Google Scholar] [CrossRef]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life 2021, 11, 1175. [Google Scholar] [CrossRef] [PubMed]
- Gorabi, A.M.; Kiaie, N.; Bianconi, V.; Pirro, M.; Jamialahmadi, T.; Sahebkar, A. Statins Attenuate Fibrotic Manifestations of Cardiac Tissue Damage. Curr. Mol. Pharmacol. 2021, 14, 782–797. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, H.; Jensen, K.S.; Liao, J.K. A novel pleiotropic effect of statins: Prevention of cardiac hypertrophy by cholesterol-independent mechanisms. Ann. Med. 2003, 35, 398–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, D.-X.; Griffin, G.; Lichtman, A.H. Mechanisms for the anti-inflammatory effects of statins. Curr. Opin. Lipidol. 2011, 22, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Rajtik, T.; Čarnická, S.; Szobi, A.; Mesárošová, L.; Máťuš, M.; Švec, P.; Ravingerová, T.; Adameová, A. Pleiotropic Effects of Simvastatin Are Associated With Mitigation of Apoptotic Component of Cell Death Upon Lethal Myocardial Reperfusion-Induced Injury. Physiol. Res. 2012, 61, S33–S41. [Google Scholar] [CrossRef] [PubMed]
- Nežić, L.; Škrbić, R.; Amidžić, L.; Gajanin, R.; Kuča, K.; Jaćević, V. Simvastatin Protects Cardiomyocytes Against Endotoxin-induced Apoptosis and Up-regulates Survivin/NF-κB/p65 Expression. Sci. Rep. 2018, 8, 14652. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Mangoni, A.A. A Systematic Review and Meta-Analysis of the Effect of Statins on Glutathione Peroxidase, Superoxide Dismutase, and Catalase. Antioxidants 2021, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Barter, P. Antioxidant Effects of Statins in the Management of Cardiometabolic Disorders. J. Atheroscler. Thromb. 2014, 21, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Obasi, M.; Abovich, A.; Vo, J.B.; Gao, Y.; Papatheodorou, S.I.; Nohria, A.; Asnani, A.; Partridge, A.H. Statins to mitigate cardiotoxicity in cancer patients treated with anthracyclines and/or trastuzumab: A systematic review and meta-analysis. Cancer Causes Control 2021, 32, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Duplyakov, D.V. Cardioprotective Strategies for Doxorubicin-induced Cardiotoxicity: Present and Future. Ration. Pharmacother. Cardiol. 2022, 18, 103–112. (In Russian) [Google Scholar] [CrossRef]
- Weinbrenner, T.; Cladellas, M.; Covas, M.I.; Fitó, M.; Tomás, M.; Sentí, M.; Bruguera, J.; Marrugat, J. High oxidative stress in patients with stable coronary heart disease. Atherosclerosis 2003, 168, 99–106. [Google Scholar] [CrossRef]
- Palazhy, S.; Kamath, P.; Vasudevan, D.M. Elevated oxidative stress among coronary artery disease patients on statin therapy: A cross sectional study. Indian Heart J. 2015, 67, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmeister, J.; Tews, M.; Kromer, A.; Moosmann, B. Prooxidative toxicity and selenoprotein suppression by cerivastatin in muscle cells. Toxicol. Lett. 2012, 215, 219–227. [Google Scholar] [CrossRef]
- Kromer, A.; Moosmann, B. Statin-Induced Liver Injury Involves Cross-Talk between Cholesterol and Selenoprotein Biosynthetic Pathways. Mol. Pharmacol. 2009, 75, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, C.C.; Iorga, R.A.; Furtunescu, F.; Katsiki, N.; Stoian, A.P.; Rizzo, M. Statin intolerance: New data and further options for treatment. Curr. Opin. Cardiol. 2021, 36, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Karahalil, B.; Hare, E.; Koç, G.; Uslu, I.; Şentürk, K.; Özkan, Y. Hepatotoxicity associated with statins. Arch. Ind. Hyg. Toxicol. 2017, 68, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Carmena, R.; Betteridge, D.J. Diabetogenic Action of Statins: Mechanisms. Curr. Atheroscler. Rep. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, D.J.; Carmena, R. The diabetogenic action of statins—mechanisms and clinical implications. Nat. Rev. Endocrinol. 2015, 12, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Auer, J.; Sinzinger, H.; Franklin, B.; Berent, R. Muscle- and skeletal-related side-effects of statins: Tip of the iceberg? Eur. J. Prev. Cardiol. 2014, 23, 88–110. [Google Scholar] [CrossRef]
- Rojas-Fernandez, C.; Hudani, Z.; Bittner, V. Statins and Cognitive Side Effects. Cardiol. Clin. 2015, 33, 245–256. [Google Scholar] [CrossRef]
- Available online: https://www.nobelprize.org/prizes/chemistry/1965/woodward/facts/ (accessed on 27 June 2022).
- Cummins, B.; Auckland, M.L.; Cummins, P. Cardiac-specific troponin-l radioimmunoassay in the diagnosis of acute myocardial infarction. Am. Heart J. 1987, 113, 1333–1344. [Google Scholar] [CrossRef]
- Katus, H.A.; Remppis, A.; Looser, S.; Hallermeier, K.; Scheffold, T.; Kübler, W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J. Mol. Cell. Cardiol. 1989, 21, 1349–1353. [Google Scholar] [CrossRef]
- Chaulin, A. Cardiac Troponins: Contemporary Biological Data and New Methods of Determination. Vasc. Health Risk Manag. 2021, 17, 299–316. [Google Scholar] [CrossRef]
- Westermann, D.; Neumann, J.T.; Sörensen, N.A.; Blankenberg, D.W.J.T.N.N.A.S.S. High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol. 2017, 14, 472–483. [Google Scholar] [CrossRef]
- Chaulin, A. Clinical and Diagnostic Value of Highly Sensitive Cardiac Troponins in Arterial Hypertension. Vasc. Health Risk Manag. 2021, 17, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Osuna, A.; Gaze, D.; Grau-Agramunt, M.; Morris, T.; Telha, C.; Bartolome, A.; Bishop, J.J.; Monsalve, L.; Livingston, R.; Estis, J.; et al. Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: Analytical validation and biological features. Clin. Chim. Acta 2018, 486, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Gore, M.O.; Seliger, S.L.; Defilippi, C.R.; Nambi, V.; Christenson, R.H.; Hashim, I.A.; Hoogeveen, R.; Ayers, C.R.; Sun, W.; McGuire, D.K.; et al. Age- and Sex-Dependent Upper Reference Limits for the High-Sensitivity Cardiac Troponin T Assay. J. Am. Coll. Cardiol. 2014, 63, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trupp, R.J.; Albert, G.; Ziegler, A. Sex-specific 99th percentiles derived from the AACC Universal Sample Bank for the Roche Gen 5 cTnT assay: Comorbidities and statistical methods influence derivation of reference limits. Clin. Biochem. 2018, 52, 173. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Shah, A.S.; Beshiri, A.; Jaffe, A.S.; Mills, N.L. Global Adoption of High-Sensitivity Cardiac Troponins and the Universal Definition of Myocardial Infarction. Clin. Chem. 2019, 65, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M.; Duplyakova, P.D.; Duplyakov, D.V. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russ. J. Cardiol. 2020, 25, 4061. (In Russian) [Google Scholar] [CrossRef]
- Chen, J.-Y.; Lee, S.-Y.; Li, Y.-H.; Lin, C.-Y.; Shieh, M.-D.; Ciou, D.-S. Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus. J. Clin. Med. 2020, 9, 3917. [Google Scholar] [CrossRef] [PubMed]
- Pervan, P.; Svaguša, T.; Prkačin, I.; Savuk, A.; Bakos, M.; Perkov, S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae—A J. Intensiv. Care Emerg. Med. 2017, 13 (Suppl. S3), 62–64. [Google Scholar] [CrossRef] [Green Version]
- Mirzaii-Dizgah, I.; Riahi, E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis. 2012, 19, 180–184. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Karslyan, L.S.; Bazyuk, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia 2019, 59, 66–75. (In Russian) [Google Scholar] [CrossRef]
- Klichowska-Palonka, M.; Załęska-Chromińska, K.; Bachanek, T. Possibility of using saliva as a diagnostic test material in cardiovascular diseases. Wiad. Lek. 2015, 68 Pt 2, 354–357. (In Polish) [Google Scholar] [PubMed]
- Chaulin, A.M.; Duplyakova, P.D.; Bikbaeva, G.R.; Tukhbatova, A.A.; Grigorieva, E.V.; Duplyakov, D.V. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russ. J. Cardiol. 2020, 25, 3814. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russ. Open Med. J. 2020, 9, e0305. [Google Scholar] [CrossRef]
- Fournier, S.; Iten, L.; Marques-Vidal, P.; Boulat, O.; Bardy, D.; Beggah, A.; Calderara, R.; Morawiec, B.; Lauriers, N.; Monney, P.; et al. Circadian rhythm of blood cardiac troponin T concentration. Clin. Res. Cardiol. 2017, 106, 1026–1032. [Google Scholar] [CrossRef]
- Zaninotto, M.; Padoan, A.; Mion, M.M.; Marinova, M.; Plebani, M. Short-term biological variation and diurnal rhythm of cardiac troponin I (Access hs-TnI) in healthy subjects. Clin. Chim. Acta 2020, 504, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Grigorieva, J.V.; Suvorova, G.N.; Duplyakov, D.V. Experimental Modeling Of Hypothyroidism: Principles, Methods, Several Advanced Research Directions In Cardiology. Russ. Open Med. J. 2021, 10, e0311. [Google Scholar] [CrossRef]
- Tsareva, Y.O.; Mayskova, E.A.; Fedotov, E.A.; Shvarts, Y.G. Circadian rhythms of thyroid hormones in patients with ischemic heart disease, arterial hypertension, and atrial fibrillation. Kardiologiia 2019, 59, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M.; Duplyakov, D.V. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae—J. Intensiv. Care Emerg. Med. 2021, 17, 79–84. [Google Scholar] [CrossRef]
- Garg, P.; Morris, P.; Fazlanie, A.L.; Vijayan, S.; Dancso, B.; Dastidar, A.G.; Plein, S.; Mueller, C.; Haaf, P. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern. Emerg. Med. 2017, 12, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Chaulin, A.M. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int. J. Mol. Sci. 2021, 22, 10928. [Google Scholar] [CrossRef]
- Body, R.; Carlton, E. Understanding cardiac troponin part 1: Avoiding troponinitis. Emerg. Med. J. 2017, 35, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Chauin, A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other Than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc. Health Risk Manag. 2021, 17, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Sergeev, A.K. Modern concepts of the role of fine particles (PM 2.5) in the genesis of atherosclerosis and myocardial damage: Clinical and epidemiological data, the main pathophysiological mechanisms. Curr. Cardiol. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, L.; Zhuang, Y.; Hu, Y.; Cang, J.; Guo, K. Cardioprotective effect of rosuvastatin against isoproterenol-induced myocardial infarction injury in rats. Int. J. Mol. Med. 2018, 41, 3509–3516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendieta, G.; Ben-Aicha, S.; Casani, L.; Badimon, L.; Sabate, M.; Vilahur, G. Molecular pathways involved in the cardioprotective effects of intravenous statin administration during ischemia. Basic Res. Cardiol. 2019, 115, 2. [Google Scholar] [CrossRef]
- Bland, A.R.; Payne, F.M.; Ashton, J.C.; Jamialahmadi, T.; Sahebkar, A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol. Res. 2021, 175, 105986. [Google Scholar] [CrossRef]
- Ünlü, S.; Nurkoç, S.G.; Sezenöz, B.; Cingirt, M.; Gülbahar, Ö.; Abacı, A. Impact of statin use on high sensitive troponin T levels with moderate exercise. Acta Cardiol. 2018, 74, 380–385. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Trentini, A.; Manfrinato, M.C.; Bellini, T.; Volta, C.A.; Hanau, S.; Corte, F.D.; Cervellati, C.; Rosta, V.; Spadaro, S. Fast skeletal troponin I, but not the slow isoform, is increased in patients under statin therapy: A pilot study. Biochem. Med. 2018, 29, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Eijsvogels, T.M.; Januzzi, J.L.; Taylor, B.A.; Isaacs, S.K.; D’Hemecourt, P.; Zaleski, A.; Dyer, S.; Troyanos, C.; Weiner, R.B.; Thompson, P.D.; et al. Impact of Statin Use on Exercise-Induced Cardiac Troponin Elevations. Am. J. Cardiol. 2014, 114, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.; Liesinger, L.; Birner-Gruenberger, R.; Stojakovic, T.; Scharnagl, H.; Dieplinger, B.; Asslaber, M.; Radl, R.; Beer, M.; Polacin, M.; et al. Elevated Cardiac Troponin T in Patients with Skeletal Myopathies. J. Am. Coll. Cardiol. 2018, 71, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Collinson, P.; Kiely, P. Unexpected Troponin Elevation in a Patient Treated with Atorvastatin. J. Appl. Lab. Med. 2020, 5, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.; Duplyakov, D. Analytical Review of Modern Information on the Physiological and Pathochemical Mechanisms of the Release of Cardiospecific Proteins from Muscle Tissue, Methodology and Technologies of Their Research, Interpretation of the Results. East. Eur. 2022, 11, 78–97. [Google Scholar] [CrossRef]
- Chaulin, A. The Main Causes and Mechanisms of the Formation of False Positive Results of Troponin Immunotests. East. Eur. 2022, 11, 132–147. [Google Scholar] [CrossRef]
- Ricchiuti, V.; Apple, F.S. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin. Chem. 1999, 45, 2129–2135, Erratum in Clin. Chem. 2000, 46, 437. [Google Scholar] [CrossRef] [Green Version]
- Messner, B.; Baum, H.; Fischer, P.; Quasthoff, S.; Neumeier, D. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am. J. Clin. Pathol. 2000, 114, 544–549, Erratum in Am. J. Clin. Pathol. 2000, 114, 986. [Google Scholar] [CrossRef] [Green Version]
- Wens, S.C.; Schaaf, G.J.; Michels, M.; Kruijshaar, M.E.; van Gestel, T.J.; Groen, S.I.; Pijnenburg, J.; Dekkers, D.H.; Demmers, J.A.; Verdijk, L.B.; et al. Elevated Plasma Cardiac Troponin T Levels Caused by Skeletal Muscle Damage in Pompe Disease. Circ. Cardiovasc. Genet. 2016, 9, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. High-sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovasc. Ther. Prev. 2021, 20, 2590. (In Russian) [Google Scholar] [CrossRef]
- Jaffe, A.S.; Apple, F.S. Science Moves Slowly. J. Am. Coll. Cardiol. 2018, 71, 1550–1552. [Google Scholar] [CrossRef]
- Chaulin, A.M. False-Positive Causes in Serum Cardiac Troponin Levels. J. Clin. Med. Res. 2022, 14, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M. Main analytical characteristics of laboratory methods for the determination of cardiac troponins: A review from the historical and modern points of view. Orv. Hetil. 2022, 163, 12–20. [Google Scholar] [CrossRef]
- Godoy, J.C.; Niesman, I.R.; Busija, A.R.; Kassan, A.; Schilling, J.M.; Schwarz, A.; Alvarez, E.A.; Dalton, N.D.; Drummond, J.C.; Roth, D.M.; et al. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J. 2018, 33, 1209–1225. [Google Scholar] [CrossRef]
- Zhang, D.; Contu, R.; Latronico, M.; Zhang, J.L.; Rizzi, R.; Catalucci, D.; Miyamoto, S.; Huang, K.; Ceci, M.; Gu, Y.; et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Investig. 2010, 120, 2805–2816, Erratum in J. Clin. Investig. 2010, 120, 3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Yu, B.; Li, Y. Effect of Three Statins on Glucose Uptake of Cardiomyocytes and its Mechanism. Med. Sci. Monit. 2016, 22, 2825–2830. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhang, C.; Chen, B.; Chen, R.; Guo, A.; Hong, J.; Song, L.-S. Cholesterol is required for maintaining T-tubule integrity and intercellular connections at intercalated discs in cardiomyocytes. J. Mol. Cell. Cardiol. 2016, 97, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumazaki, M.; Ando, H.; Ushijima, K.; Fujimura, A. Comparative effects of statins on murine cardiac gene expression profiles in normal mice. Eur. J. Pharmacol. 2013, 707, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.; Török, M.; Zahno, A.; Waldhauser, K.M.; Brecht, K.; Krähenbühl, S. Toxicity of statins on rat skeletal muscle mitochondria. Experientia 2006, 63, 2415–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolopoulou, M.; Corsini, A.; Roden, M. The role of mitochondria in statin-induced myopathy. Eur. J. Clin. Investig. 2015, 45, 745–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, D.J.; Mavroidis, M.; Weisleder, N.; Capetanaki, Y. Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function. J. Cell Biol. 2000, 150, 1283–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemljic-Harpf, A.E.; Ponrartana, S.; Avalos, R.T.; Jordan, M.C.; Roos, K.P.; Dalton, N.D.; Phan, V.Q.; Adamson, E.D.; Ross, R.S. Heterozygous Inactivation of the Vinculin Gene Predisposes to Stress-Induced Cardiomyopathy. Am. J. Pathol. 2004, 165, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Ghavami, S.; Yeganeh, B.; Stelmack, G.L.; Kashani, H.H.; Sharma, P.; Cunnington, R.; Freed, D.H. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis. 2012, 3, e330. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.M.; Seshasai, S.R.K.; Mcmurray, J.J.; Freeman, D.J.; Jukema, J.W.; et al. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet 2010, 375, 735–742. [Google Scholar] [CrossRef]
- Brault, M.; Ray, J.; Gomez, Y.-H.; Mantzoros, C.S.; Daskalopoulou, S.S. Statin treatment and new-onset diabetes: A review of proposed mechanisms. Metabolism 2014, 63, 735–745. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Indexing: Scopus and/or WoS and/or PubMed/Medline databases | No indexing in Scopus and/or WoS and/or PubMed/Medline databases |
Research type: original studies, clinical cases, experimental studies | Research type: reviews, comments, editorials |
Object of research: people, animals, isolated heart (ex vivo), cardiomyocyte culture (in vitro) | Refusal to give informed consent |
Characteristics of the object of study before the use of statins: stable condition of the disease (no recent exacerbations), not accompanied by a negative effect on cardiomyocytes | Characteristics of the object of study before the use of statins: acute cardiac and extra-cardiac pathologies (coronary heart disease, hypertension, pulmonary embolism, chronic obstructive pulmonary disease, etc. [15,16,17]), causing damage to cardiomyocytes |
Research methods: laboratory diagnostics (determination of cardiomarkers, including cardiac troponins), morphological methods (light and/or electron microscopy), immunohistochemistry, molecular genetic methods | Research methods: without the use of laboratory and/or morphological and/or molecular genetic diagnostic methods |
Mechanisms for Increasing | Comment |
---|---|
Cardiotoxic effects of statins | CTs increase due to the direct cardiotoxic effect of statins on myocardial cells |
False-positive increase in CTs | CTs are increased due to the non-specific interaction of anti-CT antibodies with skeletal troponin molecules that are released due to statin-induced skeletal muscle damage (statin-induced myopathy) |
Re-expression of CT molecules in skeletal muscles | CT molecules are re-expressed in damaged skeletal muscle due to the effect of statins and react with anti-CT antibodies when released into the bloodstream |
Mechanism of Toxic Effect | Comment | Source |
---|---|---|
Damage to the mitochondria of cardiac myocytes | Damage to mitochondria leads to inhibition of aerobic glycolysis in cardiac myocytes and, as a result, to a decrease in the production of ATP energy, which is necessary for proper functioning and maintaining of the structural integrity of myocardial cells | [84,89] |
Stress of the endoplasmic reticulum | Violation of the endoplasmic reticulum functioning is accompanied by a violation of cardiac myocytes calcium homeostasis, the maintenance of which is associated with the regulation of contraction-relaxation of the myocardium | [84,93] |
Ubiquinone deficiency | Ubiquinone, being an essential component of the mitochondrial respiratory chain, is exceptionally important in terms of ATP molecules generation in cardiac myocytes | [31,32] |
Induction of cardiac myocytes apoptosis | Statin-induced apoptosis of cardiac myocytes can develop due to a number of factors: (1) energy deficiency as a manifestation of mitochondrial damage and a decrease in ubiquinone formation; (2) imbalance of calcium homeostasis as a manifestation of endoplasmic reticulum stress; (3) inhibition of the anti-apoptotic Akt/mTOR pathway in myocardial cells | [84,85,89,93] |
Deformation of intercalated discs between cardiac myocytes | Excessive cholesterol reduction due to statin use can lead to violation of the structure and functioning of those cellular structures which contain this lipid in large quantities, in particular, the plasma membrane, T-tubules, intercalated discs of cardiac myocytes | [87] |
Inhibition of glucose intake into myocardial cells | Since glucose is the most important energy substrate for myocardial cells, limitation of its intake may be accompanied by a decrease in the formation of ATP energy in cardiac myocytes | [86] |
Diabetogenic (hyperglycemic) effect | This effect of statins may, in the long term, contribute to the development of diabetic angiopathy, including those involving the coronary arteries, due to which the delivery of oxygen and metabolic products through them will be reduced, which can lead to subclinical damage and the release of the cytoplasmic CT fraction | [94,95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaulin, A.M. Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins. J. Cardiovasc. Dev. Dis. 2022, 9, 403. https://doi.org/10.3390/jcdd9110403
Chaulin AM. Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins. Journal of Cardiovascular Development and Disease. 2022; 9(11):403. https://doi.org/10.3390/jcdd9110403
Chicago/Turabian StyleChaulin, Aleksey M. 2022. "Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins" Journal of Cardiovascular Development and Disease 9, no. 11: 403. https://doi.org/10.3390/jcdd9110403
APA StyleChaulin, A. M. (2022). Review of Recent Laboratory and Experimental Data on Cardiotoxicity of Statins. Journal of Cardiovascular Development and Disease, 9(11), 403. https://doi.org/10.3390/jcdd9110403