Optimizing Anastomoses Technique in Orthotopic Heart Transplantation: Comparison of Biatrial, Bicaval and Modified Bicaval Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Study Objectives and Follow-Up Period
2.3. Surgical Procedure and Immunosuppressive Regime
2.4. Statistics
3. Results
3.1. Preoperative Recipient Parameters
3.2. Preoperative Donor Parameters
3.3. Impact of Anastomoses Technique on Graft Ischemia and PGD
3.4. Impact of Anastomoses Technique on Postoperative Adverse Events
3.5. Impact of Anastomoses Technique on Short-Term Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, K.S.; Kittleson, M.M.; Kobashigawa, J.A. Updates on Heart Transplantation. Curr. Heart Fail. Rep. 2019, 16, 150–156. [Google Scholar] [CrossRef]
- Weber, B.N.; Kobashigawa, J.A.; Givertz, M.M. Evolving Areas in Heart Transplantation. JACC Heart Fail. 2017, 5, 869–878. [Google Scholar] [CrossRef]
- Miniati, D.N.; Robbins, R.C. Techniques in orthotopic cardiac transplantation: A review. Cardiol. Rev. 2001, 9, 131–136. [Google Scholar] [CrossRef]
- Morgan, J.A.; Edwards, N.M. Orthotopic cardiac transplantation: Comparison of outcome using biatrial, bicaval, and total techniques. J. Card. Surg. 2005, 20, 102–106. [Google Scholar] [CrossRef]
- Jacob, S.; Sellke, F. Is bicaval orthotopic heart transplantation superior to the biatrial technique? Interact. Cardiovasc. Thorac. Surg. 2009, 9, 333–342. [Google Scholar] [CrossRef]
- Zijderhand, C.F.; Veen, K.M.; Caliskan, K.; Schoonen, T.; Mokhles, M.M.; Bekkers, J.A.; Manintveld, O.C.; Constantinescu, A.A.; Brugts, J.J.; Bogers, A.; et al. Biatrial Versus Bicaval Orthotopic Heart Transplantation: A Systematic Review and Meta-Analysis. Ann. Thorac. Surg. 2020, 110, 684–691. [Google Scholar] [CrossRef]
- Maning, J.; Blumer, V.; Hernandez, G.; Acuna, E.; Li, H.; Chaparro, S.V. Bicaval vs biatrial anastomosis techniques in orthotopic heart transplantation: An updated analysis of the UNOS database. J. Card. Surg. 2020, 35, 2242–2247. [Google Scholar] [CrossRef]
- Davies, R.R.; Russo, M.J.; Morgan, J.A.; Sorabella, R.A.; Naka, Y.; Chen, J.M. Standard versus bicaval techniques for orthotopic heart transplantation: An analysis of the United Network for Organ Sharing database. J. Thorac. Cardiovasc. Surg. 2010, 140, 700–708.e2. [Google Scholar] [CrossRef] [Green Version]
- Schnoor, M.; Schafer, T.; Luhmann, D.; Sievers, H.H. Bicaval versus standard technique in orthotopic heart transplantation: A systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2007, 134, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Marasco, S.F.; Kras, A.; Schulberg, E.; Vale, M.; Lee, G.A. Impact of warm ischemia time on survival after heart transplantation. Transplant. Proc. 2012, 44, 1385–1389. [Google Scholar] [CrossRef]
- Banner, N.R.; Thomas, H.L.; Curnow, E.; Hussey, J.C.; Rogers, C.A.; Bonser, R.S.; Steering Group of the United Kingdom Cardiothoracic Transplant Audit. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation 2008, 86, 542–547. [Google Scholar] [CrossRef]
- Shudo, Y.; Wang, H.; Woo, Y.J. A modified technique for orthotopic heart transplantation to minimize warm ischaemic time. Eur. J. Cardiothorac. Surg. 2018, 53, 1089–1090. [Google Scholar] [CrossRef]
- Bakhshandeh, A.R.; Salehi, M.; Radmehr, H.; Ezzat, A.I.; Riahi, G.A. Short crossclamp heart transplantation: A modified technique. Asian Cardiovasc. Thorac. Ann. 2012, 20, 126–129. [Google Scholar] [CrossRef]
- Lund, L.H.; Khush, K.K.; Cherikh, W.S.; Goldfarb, S.; Kucheryavaya, A.Y.; Levvey, B.J.; Meiser, B.; Rossano, J.W.; Chambers, D.C.; Yusen, R.D.; et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report—2017; Focus Theme: Allograft ischemic time. J. Heart Lung Transplant. 2017, 36, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Minasian, S.M.; Galagudza, M.M.; Dmitriev, Y.V.; Karpov, A.A.; Vlasov, T.D. Preservation of the donor heart: From basic science to clinical studies. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.; Jernryd, V.; Sjoberg, T.; Steen, S.; Nilsson, J. Machine Perfusion for Human Heart Preservation: A Systematic Review. Transpl. Int. 2022, 35, 10258. [Google Scholar] [CrossRef]
- Kobashigawa, J.; Zuckermann, A.; Macdonald, P.; Leprince, P.; Esmailian, F.; Luu, M.; Mancini, D.; Patel, J.; Razi, R.; Reichenspurner, H.; et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J. Heart Lung Transplant. 2014, 33, 327–340. [Google Scholar] [CrossRef]
- Nicoara, A.; Ruffin, D.; Cooter, M.; Patel, C.B.; Thompson, A.; Schroder, J.N.; Daneshmand, M.A.; Hernandez, A.F.; Rogers, J.G.; Podgoreanu, M.V.; et al. Primary graft dysfunction after heart transplantation: Incidence, trends, and associated risk factors. Am. J. Transplant. 2018, 18, 1461–1470. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.S.A.; Dalzell, J.R.; Berry, C.; Al-Attar, N. Primary graft dysfunction after heart transplantation: A thorn amongst the roses. Heart Fail. Rev. 2019, 24, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Ustunkaya, T.; Liang, J.J.; Lin, A.N.; Shirai, Y.; Molina, M.; Owens, A.T.; Acker, M.A.; Bermudez, C.A.; Santangeli, P.; Nazarian, S.; et al. Clinical and procedural characteristics predicting need for chronotropic support and permanent pacing post-heart transplantation. Heart Rhythm. 2020, 17, 1132–1138. [Google Scholar] [CrossRef]
- Cantillon, D.J.; Tarakji, K.G.; Hu, T.; Hsu, A.; Smedira, N.G.; Starling, R.C.; Wilkoff, B.L.; Saliba, W.I. Long-term outcomes and clinical predictors for pacemaker-requiring bradyarrhythmias after cardiac transplantation: Analysis of the UNOS/OPTN cardiac transplant database. Heart Rhythm. 2010, 7, 1567–1571. [Google Scholar] [CrossRef]
- Rivinius, R.; Helmschrott, M.; Rahm, A.K.; Darche, F.F.; Thomas, D.; Bruckner, T.; Doesch, A.O.; Ehlermann, P.; Katus, H.A.; Zitron, E. Risk factors and survival of patients with permanent pacemaker implantation after heart transplantation. J. Thorac. Dis. 2019, 11, 5440–5452. [Google Scholar] [CrossRef]
- Hoashi, T.; Sakaguchi, H.; Shimada, M.; Imai, K.; Komori, M.; Ichikawa, H. Application of modified bicaval technique for pediatric heart transplant with oversized donor heart. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1329–1332. [Google Scholar] [CrossRef]
- Kitamura, S.; Nakatani, T.; Bando, K.; Sasako, Y.; Kobayashi, J.; Yagihara, T. Modification of bicaval anastomosis technique for orthotopic heart transplantation. Ann. Thorac. Surg. 2001, 72, 1405–1406. [Google Scholar] [CrossRef]
- Huenges, K.; Panholzer, B.; Fritzsche, K.; Broch, O.; Renner, J.; Friedrich, C.; Rahimi-Barfeh, A.; Reinecke, A.; Cremer, J.; Haneya, A. Over Ten Years of Experience with a Modified Right Atrial Anastomosis in Orthotopic Heart Transplantation: Follow-up and Comparison with the Biatrial and Bicaval Technique. Thorac. Cardiovasc. Surg. 2018, 66, 410–416. [Google Scholar] [CrossRef]
- Marelli, D.; Silvestry, S.C.; Zwas, D.; Mather, P.; Rubin, S.; Dempsey, A.F.; Stein, L.; Rodriguez, E.; Diehl, J.T.; Feldman, A.M. Modified inferior vena caval anastomosis to reduce tricuspid valve regurgitation after heart transplantation. Tex. Heart Inst. J. 2007, 34, 30–35. [Google Scholar]
- Tsilimingas, N.B. Modification of bicaval anastomosis: An alternative technique for orthotopic cardiac transplantation. Ann. Thorac. Surg. 2003, 75, 1333–1334. [Google Scholar] [CrossRef]
- Blanche, C.; Valenza, M.; Czer, L.S.; Barath, P.; Admon, D.; Harasty, D.; Utley, C.; Freimark, D.; Aleksic, I.; Matloff, J.; et al. Orthotopic heart transplantation with bicaval and pulmonary venous anastomoses. Ann. Thorac. Surg. 1994, 58, 1505–1509. [Google Scholar] [CrossRef]
- Kim, H.R.; Jung, S.H.; Kim, J.J.; Yang, D.H.; Yun, T.J.; Lee, J.W. Modified Bicaval Technique in Orthotopic Heart Transplantation- Comparison with Conventional Bicaval Technique. Circ. J. 2018, 83, 117–121. [Google Scholar] [CrossRef]
Biatrial | Bicaval | Modified Bicaval | p-Value | |
---|---|---|---|---|
Recipient Variables | (n = 37) | (n = 191) | (n = 10) | |
Age, y | 54 ± 10 | 55 ± 11 | 57 ± 9 | 0.44 |
Female gender, n (%) | 15 (40.5) | 48 (25.1) | 3 (30.0) | 0.15 |
Height, cm | 173 ± 9 | 174 ± 8 | 176 ± 9 | 0.38 |
Weight, kg | 78 ± 18 | 78 ± 15 | 81 ± 10 | 0.68 |
Body mass index, kg/m² | 25.8 ± 5.2 | 25.7 ± 4.4 | 26.3 ± 2.7 | 0.73 |
Time on wait list, d | 491 ± 947 | 430 ± 618 | 246 ± 254 | 0.68 |
High urgency wait list status, n (%) | 15 (40.5) | 88 (46.1) | 5 (50.0) | 0.80 |
Previous thoracic surgery, n (%) | 19 (51.4) | 127 (66.5) | 5 (50.0) | 0.14 |
Ventricular assist device, n (%) | 16 (43.2) | 102 (53.4) | 3 (30.0) | 0.24 |
COPD, n (%) | 5 (13.5) | 15 (7.9) | 2 (20.0) | 0.16 |
Diabetes mellitus, n (%) | 7 (18.9) | 45 (23.6) | 2 (20.0) | 0.90 |
Arterial hypertension, n (%) | 26 (70.3) | 105 (55.0) | 4 (40.0) | 0.13 |
Pulmonary hypertension, n (%) | 0 (0.0) | 21 (11.0) | 1 (10.0) | 0.06 |
Laboratory values | ||||
Hemoglobin, g/dL | 11.8 ± 2.2 | 12.0 ± 2.2 | 12.5 ± 1.6 | 0.64 |
Creatinine, mg/dl | 1.45 ± 1.21 | 1.39 ± 0.92 | 1.25 ± 0.89 | 0.13 |
Bilirubin, mg/dL | 0.93 ± 0.88 | 0.86 ± 0.85 | 0.60 ± 0.34 | 0.74 |
AST, U/L | 39 ± 29 | 38 ± 55 | 32 ± 14 | 0.35 |
Lactate dehydrogenase, U/L | 503 ± 737 | 318 ± 228 | 300 ± 148 | 0.37 |
Biatrial | Bicaval | Modified Bicaval | p-Value | |
---|---|---|---|---|
Donor Variables | (n = 37) | (n = 191) | (n = 10) | |
Age, y | 44 ± 13 | 43 ± 12 | 42 ± 8 | 0.72 |
Female gender, n (%) | 15 (40.5) | 89 (46.6) | 3 (30.0) | 0.50 |
Height, cm | 175 ± 9 | 174 ± 9 | 173 ± 8 | 0.79 |
Weight, kg | 81 ± 16 | 79 ± 15 | 79 ± 9 | 0.61 |
Body mass index, kg/m² | 26.2 ± 4.9 | 25.9 ± 4.7 | 26.3 ± 1.8 | 0.55 |
Left ventricular ejection fraction, % | 61 ± 8 | 61 ± 9 | 60 ± 10 | 0.85 |
Cardiopulmonary resuscitation, n (%) | 14 (37.8) | 49 (25.7) | 5 (50.0) | 0.10 |
Diabetes mellitus, n (%) | 6/17 (35.3) | 9/71 (12.7) | 0/3 (0.0) | 0.09 |
Arterial hypertension, n (%) | 9/19 (47.4) | 52/103 (50.5) | 1/4 (25.0) | 0.74 |
Nicotine abuse, n (%) | 23/30 (76.7) | 95/160 (59.4) | 6/9 (66.7) | 0.19 |
Alcohol abuse, n (%) | 9/23 (39.1) | 65/158 (41.1) | 4/7 (57.1) | 0.72 |
Drug abuse, n (%) | 6/24 (25.0) | 14/155 (9.0) | 2/7 (28.6) | 0.02 † |
Catecholamines | ||||
Norepinephrine, µg/kg/min | 0.18 ± 0.20 | 0.22 ± 0.34 | 0.20 ± 0.33 | 0.64 |
Dobutamine, µg/kg/min | 3.79 ± 1.34 | 3.56 ± 1.34 | 3.52 ± 0.96 | 0.92 |
Laboratory values | ||||
Creatinine kinase, U/L | 1345 ± 2353 | 1867 ± 6521 | 2105 ± 2727 | 0.36 |
Lactate dehydrogenase, U/L | 539 ± 405 | 542 ± 581 | 558 ± 250 | 0.39 |
C-reactive protein, mg/L | 170 ± 154 | 199 ± 282 | 207 ± 181 | 0.87 |
Leukocytes, 109/L | 19.7 ± 9.2 | 20.8 ± 26.7 | 18.1 ± 7.2 | 0.97 |
Biatrial | Bicaval | Modified Bicaval | p-Value | |
---|---|---|---|---|
Peri-Operative Variables | (n = 37) | (n = 191) | (n = 10) | |
Graft ischemia | ||||
Transport time, min | 150 ± 51 | 151 ± 48 | 159 ± 37 | 0.47 |
Warm ischemia, min | 62 ± 11 | 66 ± 15 | 48 ± 10 | <0.001 † |
Total, min | 212 ± 50 | 216 ± 49 | 203 ± 38 | 0.47 |
Operative procedure | ||||
Cardiopulmonary bypass time, min | 214 ± 99 | 267 ± 70 | 214 ± 44 | <0.001 †† |
Reperfusion, min | 89 ± 56 | 136 ± 47 | 133 ± 48 | <0.001 # |
Duration of catecholamine therapy | ||||
Postoperative dobutamine, h | 79 ± 43 | 102 ± 89 | 96 ± 52 | 0.61 |
Postoperative epinephrine, h | 120 ± 92 | 153 ± 153 | 98 ± 44 | 0.83 |
Postoperative norepinephrine, h | 235 ± 351 | 166 ± 188 | 76 ± 72 | 0.18 |
Severe primary graft dysfunction | ||||
Extracorporeal life support, n (%) | 10 (27.0) | 55 (28.8) | 1 (10.0) | 0.53 |
Duration, d | 11 ± 12 | 8 ± 7 | 15 | 0.47 |
Successful weaning, n (%) | 9 (90.0) | 39 (70.9) | 1 (100.0) | 0.46 |
Hospital stay | ||||
Mechanical ventilation, h | 155 ± 223 | 143 ± 185 | 82 ± 125 | 0.26 |
ICU/IMC stay, d | 34 ± 34 | 22 ± 23 | 24 ± 25 | 0.04 ## |
Postoperative hospital stay, d | 61 ± 54 | 42 ± 29 | 56 ± 31 | 0.09 |
Blood transfusions | ||||
Packed red blood cells, mL | 3583 ± 4203 | 3606 ± 4829 | 2314 ± 2990 | 0.48 |
Platelets, mL | 1035 ± 1783 | 1053 ± 2173 | 63 ± 166 | 0.10 |
Fresh frozen plasma, mL | 5593 ± 5148 | 5905 ± 7334 | 4250 ± 4521 | 0.54 |
Biatrial | Bicaval | Modified Bicaval | p-Value | |
---|---|---|---|---|
Outcome Variables | (n = 37) | (n = 191) | (n = 10) | |
Postoperative morbidity | ||||
Neurological events, % | 8 (27.6) | 32/189 (16.9) | 1/9 (11.1) | 0.72 |
Thoracic re-exploration, % | 15 (40.5) | 53/189 (28.0) | 2/9 (22.2) | 0.30 |
Acute graft rejection, % | 1 (2.7) | 14/189 (7.4) | 1/9 (11.1) | 0.37 |
Infections, % | 10 (27.0) | 43/189 (22.8) | 2/9 (22.2) | 0.90 |
Heart rhythm | ||||
At hospital discharge | ||||
Sinus rhythm, % | 27/33 (81.8) | 157/163 (96.3) | 10 (100.0) | 0.01 † |
Pacemaker, % | 6/33 (18.2) | 5/164 (3.0) | 0 (0.0) | 0.01 †† |
At last follow-up | ||||
Sinus rhythm, % | 27/33 (81.8) | 150/162 (92.6) | 10 (100.0) | 0.14 |
Pacemaker, % | 6/33 (18.2) | 6/162 (3.7) | 0 (0.0) | 0.01 ††† |
Survival | ||||
30-day, n (%) | 35 (94.6) | 169/189 (89.4) | 9/9 (100.0) | 0.56 |
1-year, n (%) | 21/26 (80.8) | 137/174 (78.7) | 1/1 (100.0) | >0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Immohr, M.B.; Boeken, U.; Bruno, R.R.; Sugimura, Y.; Mehdiani, A.; Aubin, H.; Westenfeld, R.; Tudorache, I.; Lichtenberg, A.; Akhyari, P. Optimizing Anastomoses Technique in Orthotopic Heart Transplantation: Comparison of Biatrial, Bicaval and Modified Bicaval Technique. J. Cardiovasc. Dev. Dis. 2022, 9, 404. https://doi.org/10.3390/jcdd9110404
Immohr MB, Boeken U, Bruno RR, Sugimura Y, Mehdiani A, Aubin H, Westenfeld R, Tudorache I, Lichtenberg A, Akhyari P. Optimizing Anastomoses Technique in Orthotopic Heart Transplantation: Comparison of Biatrial, Bicaval and Modified Bicaval Technique. Journal of Cardiovascular Development and Disease. 2022; 9(11):404. https://doi.org/10.3390/jcdd9110404
Chicago/Turabian StyleImmohr, Moritz Benjamin, Udo Boeken, Raphael Romano Bruno, Yukiharu Sugimura, Arash Mehdiani, Hug Aubin, Ralf Westenfeld, Igor Tudorache, Artur Lichtenberg, and Payam Akhyari. 2022. "Optimizing Anastomoses Technique in Orthotopic Heart Transplantation: Comparison of Biatrial, Bicaval and Modified Bicaval Technique" Journal of Cardiovascular Development and Disease 9, no. 11: 404. https://doi.org/10.3390/jcdd9110404
APA StyleImmohr, M. B., Boeken, U., Bruno, R. R., Sugimura, Y., Mehdiani, A., Aubin, H., Westenfeld, R., Tudorache, I., Lichtenberg, A., & Akhyari, P. (2022). Optimizing Anastomoses Technique in Orthotopic Heart Transplantation: Comparison of Biatrial, Bicaval and Modified Bicaval Technique. Journal of Cardiovascular Development and Disease, 9(11), 404. https://doi.org/10.3390/jcdd9110404